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Abstract

Generalization on unseen domains is critical for Deep
Neural Networks (DNNs) to perform well in real-world ap-
plications such as autonomous navigation. However, catas-
trophic forgetting limits the ability of domain generalization
and unsupervised domain adaption approaches to adapt to
constantly changing target domains. To overcome these
challenges, We propose DoSe framework, a Domain-aware
Self-Distillation method based on batch normalization pro-
totypes to facilitate continual model generalization across
varying target domains. Specifically, we enforce the consis-
tency of batch normalization statistics between two batches
of images sampled from the same target domain distribution
between the student and teacher models. To alleviate catas-
trophic forgetting, we introduce a novel exemplar-based re-
play buffer to identify difficult samples for the model to re-
tain the knowledge. Specifically, we demonstrate that iden-
tifying difficult samples and updating the model periodically
using them can help in preserving knowledge learned from
previously seen domains. We conduct extensive experiments
on two real-world datasets ACDC, C-Driving, and one syn-
thetic dataset SHIFT to verify the efficiency of the proposed
DoSe framework. On ACDC, our method outperforms ex-
isting SOTA in Domain Generalization, Unsupervised Do-
main Adaptation, and Daytime settings by 26%, 14%, and
70% respectively.

1. Introduction

Generalization performance in unseen scenarios plays an
important role in the performance of Deep Neural Networks
(DNNs) in real-world applications such as autonomous nav-
igation. DNNs have been shown to be robust against small
shifts in the data distribution. However, when there is a
substantial and prolonged alteration in the data distribution,
referred to as the ”Continuous shift”, the model’s perfor-
mance on new scenarios may significantly decline. For ex-
ample, an autonomous navigation system designed for clear

weather conditions can perform significantly poor in low-
light conditions.

Despite their success in urban-scene semantic segmenta-
tion task under ideal daytime conditions, the performance
of SOTA techniques such as DeepLabv3+ ResNet101 [7]
and DeepLabv2 MobileNet V2 [6], deteriorate significantly
under challenging scenarios such as nighttime or adverse
weather conditions. On the other hand, obtaining labeled
ground truth data for training DNN models at night and in
adverse weather conditions is difficult and costly.

Existing methods in Domain Generalization (DG), and
Unsupervised Domain Adaptation (UDA) for semantic seg-
mentation fail to perform well in a continually changing
target environment due to phenomena referred to as catas-
trophic forgetting. To overcome this, Continual Domain
Adaptation methods (CDA) [29,50] aim to continually adapt
a model to the unseen domains without degrading perfor-
mance on previously seen domains. However, existing CDA
methods require access to the source dataset, which limits
its applicability due to limited storage and privacy concerns.
This work aims to complement the aforementioned meth-
ods to adapt to the target domain with continually changing
target distribution.

In a real-world setting, collecting (even unlabeled) target
domain images for all adverse visual circumstances or their
exponential number of combinations is not feasible. More-
over, due to the dynamic nature of the real world, the target
data itself may change during inference. This motivates the
development of a method that can adapt itself as more data
is received during inference in an online manner.

Test-time Adaptation (TTA) or Online DA aims to adapt
a pre-trained model on-the-fly to the target data without
having access to the source dataset. Existing work on TTA
[35, 64] focuses on adapting a pre-trained model to a fixed
target domain by updating the model’s parameters with un-
supervised or self-supervised loss. Existing TTA methods
are shown to be effective when the target test data is drawn
from a stationary domain, but are unstable [46] in a continu-
ally changing environment, which is common in real-world
applications. Furthermore, as the model has been continu-
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Problem Setting Source Data Target Data Train Loss Test Loss Open Targets Forgetting Alleviation

Fine-tuning [59] ✗ xt, yt L (xt, yt) ✗ ✗ ✗
Continual Learning [32] ✗ xt, yt L (xt, yt) ✗ ✗

Unsupervised DA [73] xs, ys xt L (xs, ys) + L (xt, xs) ✗ ✗ ✗
Continual DA [29] xs, ys xt L (xs, ys) + L (xt, xs) ✗ ✗
Source-free DA [22] ✗ xt L (xt) ✗ ✗ ✗
Domain Generalization [23] xs, ys ✗ L (xs, ys) ✗ ✗
Test-time training [58] xs, ys ✗ L (xs, ys) + L (xs) L (xt) ✗
Test-Time DA (TTA) [64] ✗ ✗ ✗ L (xt) ✗

Continual TTA [65] ✗ ✗ ✗ L (xt)

Table 1. Characteristics of existing paradigms, the proposed framework DoSe fits in Continual test-time domain adaptation setting, which
aims to adapt a source pre-trained model to an unseen target domain where the target domain is continually changing. Current work aims
to alleviate catastrophic forgetting. DA refers to Domain Adaptation, and TTA refers to Test-Time Domain Adaptation.

ously changed to adapt to new distributions for a long pe-
riod, knowledge from the source domain becomes more dif-
ficult to preserve, resulting in degraded performance known
as catastrophic forgetting [13, 34, 43].

Motivated by the Continual Test-time adaptation [65]
paradigm, we propose an online continual learning setting
for domain incremental semantic segmentation task. The
current work adapts any pre-trained model to continually
changing target domains without having access to target do-
main data during training.
Contributions: The key contributions of our work include:

• We propose a novel Domain-aware Knowledge Self-
distillation framework that uses domain-aware batch nor-
malization prototypes to improve continual model gen-
eralization of urban-scene semantic segmentation task
given any pre-trained model.

• To alleviate catastrophic forgetting, we propose an
Exemplar-based buffer strategy to store difficult samples
in the buffer and replay them after every few iterations to
preserve knowledge learned in previously seen domains.

• We show the superiority of our approach over SOTA day-
time, UDA, and DG methods for semantic segmentation.

• We conduct extensive experiments, on two real-world
datasets ACDC [54], C-Driving [31] and one synthetic
dataset SHIFT [47] with six different weather conditions
such as overcast, rain, snow, fog, night and cloudy.

2. Related Work
2.1. Adaptation with Target Data

Unsupervised domain adaptation (UDA) methods for se-
mantic segmentation aim to transfer knowledge from la-
beled source domain to unlabeled target domain [8, 16, 21,
33, 61, 62, 67, 74, 76, 79–81]. However, they assume access
to unlabeled target data during training and perform poorly

in adverse weather and low illumination conditions. Spe-
cialised UDA methods have been designed to perform well
in low light conditions such as night [51,53,66,68], and ad-
verse weather conditions such as fog [11, 52]. Still, these
methods fail to adapt to continually changing environment.
Continual DA methods [29, 50] aim to continually adapt
a model to the unseen domains without degrading perfor-
mance on previously seen domains. However, existing CDA
methods require access to the source dataset, which lim-
its its applicability due to limited storage, and privacy con-
cerns.
Source-Free DA Methods [2, 30, 75] are proposed to re-
lax the necessity of having access to source data. However,
they assume that unlabeled target data is available during
training, and also they fail to overcome the issue of catas-
trophic forgetting. Also, it’s not practical to assume that it’s
possible to collect target data during training for all possible
low-light conditions possible in the real world.

2.2. Adaptation without Target Data

Domain Generalization (DG) approaches have the objec-
tive of increasing generalization on unexplored target data.
While DG techniques are popular for image classification
[25, 26, 49, 77, 78], very few have been proposed for se-
mantic segmentation. To improve DG in semantic segmenta-
tion task, IBNNet [40], Switchable whitening [41], Robust-
Net [9] and WildNet [23] are proposed. Our proposed ap-
proach DoSe improves DG for semantic segmentation and
complements the above DG approaches by directly adapting
these DG models to continually changing target domains di-
rectly during inference.
Test-Time Adaptation (TTA) In Test-Time Training [58],
we train a DNN with the main task of classification and an
auxiliary task of image rotation prediction. The auxiliary
task is used during inference to update model parameters
to handle the distribution shift. Fully Test-Time adapta-
tion [64] aims to adapt a source pre-trained model directly
to target data during inference. Existing TTA methods are
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shown to be effective when target data is drawn from a
fixed stationary distribution. Also, most of the TTA meth-
ods [36, 38, 39, 63, 64, 72] focus only on classification or
object detection setting and do not perform well under con-
tinuous shifts.

Continual Test-Time Adaptation (CTTA) [65] methods
aim to adapt a pre-trained model to a continually chang-
ing target environment during inference. Similar to TTA,
existing works in Continual Test-Time Adaptation [5, 12,
17, 28, 72] focus on classification setting. Recent works
CoTTA [65], ONDA [42], and MALL [48] demonstrate im-
provements in the task of Continual test-time adaptation for
urban-scene segmentation. Current work focuses on further
enhancing the performance in dealing with catastrophic for-
getting of domain-incremental semantic segmentation task.

Batch Normalization (BN) in Domain Shift Batch Nor-
malization statistics vary significantly in case of domain
shift between source and target data. Recent work TENT
[64], and EATA [38] update the BN parameters to align the
domain shift between source and target domains. MECTA
[17] introduces additional BN layers into the network to
efficiently adapt in a continual domain adaptation setting.
However, it requires access to source data which limits its
applicability. Domain-specific BN [4] maintains separate
batch normalization statistics for source, and target data to
handle domain shift. BNE [56] uses domain-specific batch
normalization and assigns BN statistics of the target domain
as a combination of BN statistics for multiple source do-
mains in a latent space. Our work enforces the feature
matching of BN statistics of two batches of images from
the same domain to have identical latent representations by
distilling knowledge between student and teacher models
(referred to as Self-Distillation).

3. Methodology

3.1. Preliminaries

Given a pre-trained model fθs , trained on source data
DS = {(xS , yS)}, with network parameters of the source
model are denoted by θs, Continual Test-Time Adaptation
aims to adapt fθs to continually changing target domains
denoted by X0,X1,X2...,XT . Here, Xt refers to samples
from the distribution Ptest that continually changes with
time t. During inference, we receive a batch of unlabeled
images denoted by xt from Ptest which changes w.r.t time
denoted by P0,P1, ...,Pt.

Batch Normalization [20] is a widely used technique for
training DNN to stabilize the training process and improve
convergence speed. Given a Batch size B, channel dimen-
sion C, and a feature map f ∈ RB×C×H×W , the mean and

variance of channel i are computed as:

µi =
1

BHW

B∑
b=1

H∑
h=1

W∑
w=1

f(b,i,h,w) , (1)

σ2
i =

1

BHW

B∑
b=1

H∑
h=1

W∑
w=1

(f(b,i,h,w) − µc)
2 . (2)

where µi refers to the mean of channel i, and σ2
i refers

to the variance of channel i. Feature map f is normalized
using µi, σ2

i as follows:

BN(f(b,i,h,w);µ, σ
2) = γi

f(b,i,h,w) − µi√
σ2
i + ϵ

+ βi , (3)

where ϵ > 0 ensures the denominator does not get a value
0, and γ, β refer to learnable parameters specific to a layer
corresponding to feature map f . µ, σ2 refer to BN mean and
variance, respectively.
BN layer statistics (mean, variance) are calculated during

training and used during inference. However, due to domain
shift during inference, global statistics calculated normalize
target features incorrectly, leading to significantly poor per-
formance. To overcome this, recent methods [38,64,65] cal-
culate BN layer statistics based on the current mini batch’s
mean and variance. However, due to sudden continual
changes in different domains (for example weather), the
BN mean and variance change rapidly leading to the per-
formance of BN to drop rapidly [37].

For every BN layer l ∈ {1, 2, ..., L }, current mini-batch
of target data xt belonging to domain d, the BN prototype
bxt

of the current mini-batch is defined as follows,

bxt =
[
b1xt

, b2xt
, . . . , bLxt

]
(4)

=
[(

µ1
xt
, σ12

xt

)
⊕

(
µ2
xt
, σ22

xt

)
⊕ . . .⊕

(
µL
xt
, σL2

xt

)]
where ⊕ denotes the concatenation operation. We define a
domain-aware BN prototype Pd and update it as follows:

P d = mP d + (1−m)bxt (5)

3.2. Self-Distillation Using Batch Norm Prototypes

In the continual adaptation setting, let each iteration is
denoted by k = 1, 2, .... Let θ0 denote the pre-trained model
trained on source data, θk denote the model updated in the
iteration ’k’, L being the loss used to update the model θk,
and Sk, Sk−1 denote the probabilities of the segmentation
predictions of model θk, θk−1. Here, A(xt) refers to aug-
mented images of mini-batch xt. In other words, for each
image x in current mini-batch xt, we perform b−1 augmen-
tations, and then, these compiled batches of augmentations
of image x along with the image itself x are passed into
model θk−1 to get robust predictions for the mini-batch.
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Figure 1. For a batch of images, Our Proposed DoSe framework enforces the feature matching between Batch Normalization prototypes
between the student (θk) and teacher model (θk−1). Also, the current mini-batch’s batch normalization prototype should be closer to the
domain-specific batch norm prototype in the Latent space. Exemplar-based replay buffer is used to identify difficult samples based on
gradient information and replayed after every few iterations such that model preserves knowledge it learned from previously seen domains.
Exemplar-based replay buffer is helpful in alleviating catastrophic forgetting.

The proposed architecture is shown in Fig. 1. We start
training the model θ0 with the target data in the current
time stamp denoted by xt. Note that network θk−1 acts as a
teacher to the student model θk in self-distillation. We pro-
pose a novel self-distillation framework that uses domain-
aware BN prototypes to improve continual model adaptation
given any pre-trained model during inference.

Llayer
distill =

1

L

∑
l ∈{1,...,L}

∥∥∥blθk (xt)− blθk−1
(xt)

∥∥∥2
F

(6)

Further, we define, domain-preserving similarity distillation
loss using the BN domain prototype (Eq. (5) ) as follows:

Ldomain
distill =

1

L

xt∈d∑
l∈{1,...,L}

∥∥∥blθk (xt)− P l
θk−1

(xt)
∥∥∥2
F

(7)

Here Pθk−1
denotes batch domain prototype of domain d.

Motivated by stochastic restoration [65], and to deal
with over-fitting and handle catastrophic forgetting. We use
the Bernoulli Distribution, to randomly select a subset of
weights. p value used to restore a subset of parameters from
the source pre-trained model is set to 0.1.

M ∼ BernoulliDistribution(p),
θk = M ⊙ θ0 + (1−M)⊙ θk−1,

Motivated by [60], we use an average of augmented pre-
dictions of the image using θk−1 to provide robust pseudo-

labels used for training θk.

ỹt =
1

B

B−1∑
i=0

fθk−1
(A(xt)) (8)

where fθk−1
(A(xt)) corresponds to output of θk−1 with in-

put A(xt). We get 1-hot vector label from the teacher model
i.e., ỹt denoted by y′t. y

′
t is used as a ground truth label to

train network θk (student model) using cross entropy loss.

LCE = − 1

B

B−1∑
i=0

y′t log(fθk (xt)) (9)

Total loss is defined as follows:

Ltotal = LCE + λ1Llayer
distill + λ2Ldomain

distill (10)

3.3. Exemplar-based Replay buffer

The replay buffer is a well-known technique to allevi-
ate catastrophic forgetting by replaying samples into the
neural network so that model does not forget past knowl-
edge. Recent work [45] aims to selectively pick samples
in a greedy manner and replay them periodically to alle-
viate catastrophic forgetting. We extend Variance of Gra-
dients [1] to an online continual setting, where gradients
are computed over previous k iteration steps to analyze how
gradients vary given a set of input images.
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To limit the computational overhead, we use student and
teacher model weights, i.e., θk and θk−1 to compute the gra-
dients instead of all the models from k iterations. A higher
VoG score implies a difficulty level for the model to pre-
dict. We maintain a fixed number of samples n per domain
in the buffer, and the samples in the buffer keep on updating
based on the VoG score in a greedy manner. Images in the
Replay buffer are passed into the network after every 100
samples, such that model does not forget the knowledge it
learned from previously seen domains. n value is set to 10.
The computation of the VoG score is as follows:

G = ∇xtfθk (xt), (11)

VoGp =

√
1

2

k∑
t=k−1

(Gt − µ)
2
,

where, µ =
1

2

k∑
t=k−1

Gt,

(12)

and VoG(xt) =
1

N

N∑
t=1

(VoGp) (13)

where p denotes a pixel in an image, N denotes total num-
ber of pixels.

4. Datasets and Evaluation criteria
ACDC [54] ACDC dataset contains 4006 images of adverse
weather conditions with a resolution of 1920×1080 pixels.
It includes images from foggy, dark, snowy, and rainy con-
ditions. Each visual domain (fog, night, snow, and rain)
has 400 training images with ground truth semantic labels,
100 validation images (106 for the night domain), and 500
unlabeled test images.
C-Driving [31] The dataset contains four adverse weather
conditions collected from BDD100K dataset [70], consist-
ing of four different weather conditions such as cloudy,
rainy, snowy, and overcast conditions. C-Driving rain val
results correspond to C-Driving rain validation images.
SHIFT [57] The dataset is a collection of 2.5M synthetic
images. We consider the fog, rain, night, and overcast con-
ditions. The SHIFT-val dataset is used to report the results.
Cityscapes (Day) [10] It comprises 5000 broad daylight
images of resolution 2048 × 1024 pixels. For validation,
Cityscapes-val containing 500 images is used.
Evaluation Criteria Mean Intersection over Union (mIoU)
is used as an evaluation criterion. Higher mIoU indicates
better semantic segmentation label predictions. For a fair
comparison, multi-scale testing is not considered in all ex-
isting and proposed approaches.
Implementation details We implement the proposed ap-
proach DoSe using Pytorch [44] and train it on an NVIDIA

A100 40GB GPU. The network’s parameters are updated
during training using the Stochastic Gradient Descent
(SGD) optimizer with the momentum of 0.9, a learning rate
of 1× 10−3, and a weight decay of 5× 10−5. Hyperparam-
eters for the loss function defined in Eq. (10) (λ1, λ2) are
0.1, 1.0 respectively.

Experiment Setup Given a source pre-trained model
trained on broad daylight conditions, the objective is to
achieve domain incremental continual semantic segmenta-
tion, where each domain is a weather condition designed
to simulate real-world distribution shifts. The target do-
main consists of images from various adverse weather
and low illumination conditions. To mimic evolving and
real-world environments, adverse weather and illumina-
tion conditions are revisited to evaluate catastrophic for-
getting periodically after every few frames. We repeat a
sequence of four weather conditions in 10 iterations (i.e.,
Fog→Night→Rain→Snow→Fog→Snow, etc...). Each
weather is treated as a domain. Existing work in Continual
test-time adaptation [12,15,17,28,71,72] focus only on clas-
sification setting. For a fair comparison, we extend the clas-
sification setting to the segmentation setting and report their
results. Recall that recent work CoTTA [65], ONDA [42],
TENT [64], MALL [48] focus on the task of test-time adap-
tation (and not continual learning scenario) for urban-scene
segmentation task.

5. Experiments and Results

Comparison with TTA methods As defined in the Prob-
lem setup (Sec. 4), using the adverse weather datasets, we
demonstrate the results of the domain incremental semantic
segmentation task. We report the results of DoSe using a
source pre-trained model trained on daytime, DeepLabv3+
ResNet101 [7] and RefineNet [27]. On the cityscapes-
val dataset, the mIOU of the above-mentioned source pre-
trained models is 78.5%, and 71.4%, respectively. The pro-
posed DoSe framework significantly improves the perfor-
mance of DeepLabv3+ ResNet101 by 8% better mIoU. On
ACDC-snow in the 10th iteration, DoSe approach achieves
5.4% better mIoU than CoTTA. Compared to TENT [64],
which does not handle catastrophic forgetting the proposed
DoSe approach alleviates the catastrophic forgetting by re-
taining the knowledge it learned in previously seen do-
mains. Average mIoU is shown to demonstrate an overall
improvement in semantic segmentation performance. Re-
sults on RefineNet [27], Qualitative visual results are re-
ported in Fig. 2. Extra qualitative visual results are pre-
sented in supplementary material.

Improving SOTA Daytime models We apply the proposed
DoSe framework on the SOTA daytime pre-trained mod-
els. We consider SOTA daytime pre-trained models namely,
Mobilenet V2 [55], LRASPP [18], BiseNetV2 [69], ISANet
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Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 4 7 10 All

Model+Method Fog Night rain snow Fog Night rain snow Fog Night rain snow Fog Night rain snow Mean
DeepLabv3+ ResNet101 [7] 67.6 21.9 52.3 50.6 67.6 21.9 52.3 50.6 67.6 21.9 52.3 50.6 67.6 21.9 52.3 50.6 48.1
• BN Stats Adapt 68.2 20.6 53.5 51.3 64.8 16.5 51.4 48.7 61.3 14.2 48.7 47.4 60.9 13.8 47.9 47.4 44.8
• TENT-continual [64] 67.4 24.7 52.8 48.4 57.5 12.9 40.7 35.6 51.7 11.2 36.1 32.7 48.4 11.3 34.5 31.1 37.3
• EATA-continual [38] 69.7 29.2 56.6 54.8 68.6 27.9 54.3 52.1 64.9 25.7 52.7 51.6 64.9 25.7 52.7 51.6 50.1
• MEMO [72] 67.8 22.3 53.4 51.4 66.7 21.8 52.7 48.4 65.8 20.5 51.5 50.4 48.9 20.7 51.2 50.4 46.5
• SAR [39] 68.5 21.6 55.5 53.3 69.8 22.2 56.7 54.3 69.7 22.8 56.3 54.9 69.7 22.8 56.3 54.9 50.6
• NOTE [15] 69.2 22.4 54.9 54.7 70.4 23.8 55.6 57.3 68.1 20.4 54.2 55.8 68.0 20.2 54.1 55.9 50.3
• RoTTA [71] 69.7 23.8 55.3 55.4 71.8 24.2 54.8 56.9 69.2 21.8 53.3 55.8 67.4 19.8 52.6 54.7 50.4
• MECTA [17] 69.4 23.1 54.8 54.9 70.1 24.4 55.4 55.1 70.5 24.1 55.9 56.1 69.3 22.4 54.9 54.7 50.8
• RATP [28] 70.3 21.5 54.6 52.1 69.4 21.3 54.8 54.2 69.3 21.5 55.1 54.6 68.8 20.7 54.8 54.2 49.9
• RMT [12] 69.9 26.2 56.9 54.3 70.4 26.6 57.1 55.3 66.9 21.3 54.1 50.8 65.4 21.1 53.3 50.4 50.1
• MALL [48] 70.4 25.6 56.4 52.1 71.8 26.6 57.7 53.2 66.7 23.1 53.4 52.7 63.4 20.2 51.8 51.4 49.8
• ONDA [42] 71.5 25.1 57.2 52.4 72.1 27.3 56.6 54.4 67.2 24.8 52.2 53.3 64.8 20.8 52.7 52.6 51.4
• CoTTA [65] 71.6 24.5 56.9 56.2 71.1 25.4 59.7 57.7 72.6 24.7 59.5 57.8 73.2 23.8 57.9 55.3 53.2

• DoSe (ours) 73.4 26.4 57.7 57.9 76.5 27.9 60.4 60.3 76.1 28.2 61.1 60.4 76.8 30.9 63.8 60.7 56.1

Table 2. Comparison of DoSe with existing TTA methods on DeepLabv3+ ResNet101 [7] pre-trained model. Results are reported after
applying existing TTA methods on the DeepLabv3+ ResNet101 [7] pre-trained model trained on source (daytime) data. Results of our
DoSe framework are reported in pink colored row. The experiment setup is described in Sec. 4.

(a) Input image (b) RATP (c) CoTTA (d) DoSe (ours) (e) Semantic GT

Figure 2. Qualitative visual comparison of our proposed DoSe framework with existing state-of-the-art TTA methods.

[19], STDC [14], and GCNet [3]. Results are reported
in Tab. 3. We observe that DoSe improves the perfor-
mance significantly across multiple adverse weather condi-
tions. DoSe improves BiseNet V2 [69] average miou per-
formance by 6%. The performance improvement of DoSe
framework across multiple SOTA daytime models demon-
strate the generalization ability of the proposed framework.

Improving SOTA Domain Generalization methods In
Tab. 4, we demonstrate the effectiveness of the DoSe frame-
work over the SOTA DG methods for urban-scene seg-
mentation WildNet [23], RobustNet [9], IBNNet [40], and
Switchable whitening (SW) [41]. We apply the proposed
DoSe framework to the pre-trained models. DoSe on IBN-
Net, WildNet shows an average increase of 2.6%, 3.1% bet-
ter mIoU respectively across 10 iterations. This illustrates
that DoSe can further enhance the performance of DG ap-
proaches to adapt to unseen adverse weather images without
altering training or requiring unlabeled target data during
training.

Improving SOTA UDA methods Most UDA methods for
semantic segmentation focus on adverse weather and low
illumination conditions as there is limited availability of

ground truth data in low light conditions. We demon-
strate performance improvement on SOTA UDA methods
designed for night image segmentation in two settings: 1)
No availability of night images during training, 2) Access
to unlabeled night images during training. For setting 1,
we consider ZeroShotDN [24]. For setting 2, we consider
MGCDA [53], DANNet [66] as our pre-trained model and
adapt them to continually changing target domains. Results
are reported in Tab. 7. DoSe enhances the performance of
SOTA method for night image segmentation by 2.7% better
mIoU.

6. Ablation Study

To demonstrate the effectiveness of Domain-aware Self-
Distillation method (Sec. 3.2) and Exemplar-based buffer
(Sec. 3.3), we perform an ablation study with and without
these loss components in the Total loss function defined in
Eq. (10). Results are reported in Tab. 6.
Results on SHIFT, C-driving datasets Results of the pro-
posed DoSe framework on SHIFT, C-Driving are reported
in Tab. 8 and Tab. 9 respectively. Results show that DoSe is
effective in improving performance significantly on SHIFT,
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Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 4 7 10 All

Model+Method Fog Night rain snow Fog Night rain snow Fog Night rain snow Fog Night rain snow Mean

Mobilenet V2 [55] 41.7 4.4 38.3 24.1 41.7 4.4 38.3 24.1 41.7 4.4 38.3 24.1 41.7 4.4 38.3 24.1 27.1
• DoSe (ours) 42.3 7.8 40.5 27.2 44.6 10.1 41.1 28.4 45.1 11.5 42.3 29.8 45.9 11.8 42.5 30.3 31.3

LRASPP [18] 51.2 15.4 37.3 38.2 51.2 15.4 37.3 38.2 51.2 15.4 37.3 38.2 51.2 15.4 37.3 38.2 35.5
• DoSe (ours) 52.3 16.8 39.8 40.1 54.6 17.5 40.9 41.3 55.2 18.2 41.5 42.8 56.7 20.3 43.2 43.3 39.1

BiseNetV2 [69] 48.3 13.7 38.2 35.7 48.3 13.7 38.2 35.7 48.3 13.7 38.2 35.7 48.3 13.7 38.2 35.7 33.9
• DoSe (ours) 50.1 16.4 39.4 36.8 51.8 18.2 40.9 40.2 53.4 20.1 44.3 43.4 55.8 20.9 46.9 44.2 38.9

ISANet [19] 62.2 18.8 46.8 44.9 62.2 18.8 46.8 44.9 62.2 18.8 46.8 44.9 62.2 18.8 46.8 44.9 43.1
• DoSe (ours) 63.1 20.4 48.2 46.5 64.5 21.6 51.3 49.2 65.3 23.3 54.9 50.5 67.5 23.9 55.2 50.8 47.3

STDC [14] 62.6 18.7 46.4 45.3 62.6 18.7 46.4 45.3 62.6 18.7 46.4 45.3 62.6 18.7 46.4 45.3 43.2
• DoSe (ours) 64.3 20.4 49.8 46.7 64.9 21.7 52.3 48.9 65.4 22.5 54.7 51.5 65.9 23.4 56.4 52.8 47.6

GCNet [3] 62.6 19.4 47.8 48.1 62.6 19.4 47.8 48.1 62.6 19.4 47.8 48.1 62.6 19.4 47.8 48.1 44.5
• DoSe (ours) 63.3 20.2 48.7 50.4 65.8 21.1 50.2 50.8 66.4 21.4 51.1 51.4 67.9 21.8 52.4 51.6 47.1

Table 3. Performance of various SOTA techniques with and without using our DoSe framework. Results after using our DoSe framework
are reported in pink colored row. Experiment setup is described in Sec. 4.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 4 7 10 All

Model+Method Fog Night rain snow Fog Night rain snow Fog Night rain snow Fog Night rain snow Mean
IBNNet [40] 63.6 25.9 50.4 50.2 63.6 25.9 50.4 50.2 63.6 25.9 50.4 50.2 63.6 25.9 50.4 50.2 47.5
• DoSe (ours) 64.5 26.2 51.8 52.4 66.7 27.4 53.8 55.4 67.4 28.8 55.3 56.2 67.8 30.2 55.8 57.3 51.1

SW [41] 54.8 20.7 40.2 45.6 54.8 20.7 40.2 45.6 54.8 20.7 40.2 45.6 54.8 20.7 40.2 45.6 40.3
• DoSe (ours) 56.4 21.6 42.8 47.1 57.7 22.9 43.4 47.5 59.9 24.3 45.4 49.8 60.1 25.2 46.5 50.3 43.1

RobustNet-R50 [9] 60.5 26.1 46.9 50.1 60.5 26.1 46.9 50.1 60.5 26.1 46.9 50.1 60.5 26.1 46.9 50.1 45.9
• DoSe (ours) 62.1 27.6 47.7 50.8 63.2 28.8 49.9 52.2 64.4 30.2 52.1 52.7 64.8 30.5 52.3 53.3 48.9

RobustNet-R101 [9] 59.3 26.8 46.5 45.2 59.3 26.8 46.5 45.2 59.3 26.8 46.5 45.2 59.3 26.8 46.5 45.2 44.4
• DoSe (ours) 60.1 27.7 48.9 46.4 61.4 28.5 49.4 47.3 62.1 29.2 50.8 48.2 63.7 30.4 51.1 50.8 47.2

WildNet [23] 64.8 27.9 50.5 49.4 64.8 27.9 50.5 49.4 64.8 27.9 50.5 49.4 64.8 27.9 50.5 49.4 48.1
• DoSe (ours) 66.4 28.2 51.8 49.9 67.9 29.9 54.4 50.5 69.4 30.4 55.6 51.5 70.6 31.3 56.4 53.9 51.2

Table 4. Results of DoSe framework on SOTA pre-trained Domain Generalization models. Results are reported after applying DoSe
framework on SOTA DG methods. The experiment setup is described in Sec. 4. RobustNet-R50 corresponds to RobustNet-ResNet50, and
RobustNet-R101 corresponds to RobustNet-ResNet101.

Method Inference time

DeepLabv3+ ResNet101 [7] 80

CoTTA [65] 920
DoSe (ours) 750

Table 5. Inference time comparison of DoSe framework on
DeepLabv3+ ResNet101, Inference time values are in seconds.

C-Driving datasets.

Affect of order sequence To understand how the sequence

order of domains affect the performance of the proposed
DoSe framework, we vary the order of domains from the
sequence used to report performance in Tab. 2. Results are
reported in supplementary material.

Computational cost In order to analyze the computational
cost of the proposed DoSe framework, we consider the
DeepLabv3+ ResNet101 [7] and adapt it to 100-night im-
ages from ACDC [54] and perform continual test-time
adaptation for 10 iterations. Results are reported in Tab. 5.
Proposed DoSe framework adapts to continually chang-
ing target environment faster than existing SOTA method
CoTTA.
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Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 4 7 10 All

Model+Method Fog Night rain snow Fog Night rain snow Fog Night rain snow Fog Night rain snow Mean
DeepLabv3+ MobileNet V2 [7] 41.8 4.4 38.3 24.1 41.8 4.4 38.3 24.1 41.8 4.4 38.3 24.1 41.8 4.4 38.3 24.1 27.1
• DoSe (ours) 52.2 7.5 44.6 29.2 54.2 10.8 47.7 35.7 56.8 13.2 45.4 38.6 57.2 11.4 45.9 37.2 36.8

• w/o Self-Distillation 46.5 5.1 43.5 28.8 51.3 7.4 44.2 32.9 53.7 10 43.9 35 53.4 10.9 42.3 34.6 32.3
• w/o Exemplar-based Buffer 49.3 6.5 44.7 29.8 50.4 8.2 45.8 33.3 52.8 9.7 45.9 35.4 54.1 9.4 44.9 35.3 34.7

Table 6. To analyse the impact of Self-distillation method and Exemplar-based replay buffer, we perform ablation study of the proposed
framework DoSe using different loss variants on DeepLabv3+ MobileNet V2 [7]. The experiment setup is described in Sec. 4.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 4 7 10 All

Model+Method Fog Night rain snow Fog Night rain snow Fog Night rain snow Fog Night rain snow Mean
Trained on source data (daytime images) only

ZeroShotDN [24] 42.4 32.8 28.9 31.7 42.4 32.8 28.9 31.7 42.4 32.8 28.9 31.7 42.4 32.8 28.9 31.7 33.9
• DoSe (ours) 43.1 33.5 30.4 32.8 44.2 34.1 31.1 33.2 44.7 34.6 31.4 35.4 45.9 35.4 33.1 37.8 36.2

Trained on source data (daytime images) and unlabeled (nighttime) target images only

MGCDA [53] 49.4 38.6 35.8 44.9 49.4 38.6 35.8 44.9 49.4 38.6 35.8 44.9 49.4 38.6 35.8 44.9 42.1
• DoSe (ours) 51.2 39.4 36.4 45.7 52.8 40.1 37.3 46.3 53.4 41.3 38.1 47.4 54.1 42.5 38.7 47.8 44.5

DANNet [66] 52.4 39.9 45.7 49.1 52.4 39.9 45.7 49.1 52.4 39.9 45.7 49.1 52.4 39.9 45.7 49.1 46.7
• DoSe (ours) 53.1 40.4 46.5 50.5 54.5 41.1 48.2 50.8 55.1 41.5 50.7 51.7 56.8 42.3 52.9 53.4 49.4

Table 7. Results of DoSe framework on SOTA UDA methods for semantic segmentation. The experiment setup is described in Sec. 4.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 4 7 10 All

Model+Method Fog Night rain overcast Fog Night rain overcast Fog Night rain overcast Fog Night rain overcast Mean
DeepLabv3+ ResNet101 [7] 28.5 21.8 24.3 29.2 28.5 21.8 24.3 29.2 28.5 21.8 24.3 29.2 28.5 21.8 24.3 29.2 25.9
• DoSe (ours) 29.9 24.1 28.2 32.3 31.3 25.7 30.6 32.7 31.1 25.3 30.5 32.5 30.4 25 30.3 32.2 29.5

Table 8. Results of DoSe framework using DeepLabv3+ ResNet101 [7] on SHIFT dataset. The experiment setup is described in Sec. 4.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 4 7 10 All

Model+Method cloud rain snow overcast cloud rain snow overcast cloud rain snow overcast cloud rain snow overcast Mean
DeepLabv3+ ResNet101 [7] 42.3 34.8 35.5 44.7 42.3 34.8 35.5 44.7 42.3 34.8 35.5 44.7 42.3 34.8 35.5 44.7 39.3
• DoSe (ours) 43.9 35.3 36.7 46.9 43.9 35.3 36.7 47.3 44.5 36.3 38.2 47.5 45.6 38.9 39.9 48.1 41.6

Table 9. Results of DoSe framework using DeepLabv3+ ResNet101 [7] on C-driving dataset. The experiment setup is described in Sec. 4.

7. Conclusion

Existing test time adaptation methods fail to perform
well due to the assumption that samples come from a sin-
gle target distribution. However, in real-world applications,
the target domain keeps changing continually with time.
To alleviate this, we introduce a novel Domain-aware Self-
distillation method to enforce feature matching in the latent
space between batch normalization prototypes of student
and teacher models. To alleviate catastrophic forgetting,
we propose an Exemplar-based replay buffer to identify
difficult samples for the model to predict and replay them

to preserve the learned knowledge from previously seen
domains. Proposed DoSe framework outperforms SOTA
methods in various settings, viz: naive pre-training with
daytime samples, domain generalization, and unsupervised
domain adaptation.
Acknowledgment: We thank UQ-IIT Delhi Research
Academy (UQIDAR) for providing a contingency grant.
This work has also been partly supported by the fund-
ing received from DST through the IMPRINT program
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