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Figure 1. Qualitative approximation results. For a JPEG quality of 50, both Shin et al. [24] and our differentiable JPEG approach

approximate the standard JPEG coding well. When reducing the JPEG quality to 1, the approach by Shin et al. does not approximate the

JPEG coding well, while our differentiable JPEG still leads to a strong approximation. Structural similarity index measure (SSIM) and peak

signal-to-noise ratio (PSNR) measured w.r.t. the coded image of the (non-differentiable) reference JPEG implementation (OpenCV [2]).

Abstract

JPEG remains one of the most widespread lossy im-

age coding methods. However, the non-differentiable na-

ture of JPEG restricts the application in deep learning

pipelines. Several differentiable approximations of JPEG

have recently been proposed to address this issue. This pa-

per conducts a comprehensive review of existing diff. JPEG

approaches and identifies critical details that have been

missed by previous methods. To this end, we propose a novel

diff. JPEG approach, overcoming previous limitations. Our

approach is differentiable w.r.t. the input image, the JPEG

quality, the quantization tables, and the color conversion

parameters. We evaluate the forward and backward perfor-

mance of our diff. JPEG approach against existing meth-

ods. Additionally, extensive ablations are performed to

evaluate crucial design choices. Our proposed diff. JPEG

resembles the (non-diff.) reference implementation best,

significantly surpassing the recent-best diff. approach by

3.47dB (PSNR) on average. For strong compression rates,

we can even improve PSNR by 9.51dB. Strong adversarial

attack results are yielded by our diff. JPEG, demonstrating

the effective gradient approximation. Our code is available

at https://github.com/necla-ml/Diff-JPEG.

1. Introduction

JPEG (Joint Photographic Experts Group) coding is a

standardized lossy compression approach for digital im-

ages [9,30]. As one of the most popular image coding stan-

dards for storing and transmitting image data, JPEG cod-

ing has become an integral part of various devices and pro-

grams. The acceptable rate-distortion performance paired

with a strong compression efficiency strikes a delicate bal-

ance for many applications. JPEG’s straightforward imple-

mentation and support for parallel computing further bol-

sters its popularity and makes JPEG coding a preferred

choice in many image processing pipelines [9].

The widespread use of JPEG in image processing

pipelines has motivated the integration of JPEG coding into

deep learning pipelines. Applications of JPEG coding in

deep learning pipelines include (differentiable) data aug-

mentation [7,12,13,23,25,26,37], data hiding [36,38], deep-

fake detection [34], adversarial attacks [6,24], or optimizing

JPEG for deep neural networks [3, 16, 32]. Using JPEG in

deep learning pipelines requires non-zero gradients to be

propagated through the JPEG encoding-decoding. How-

ever, due to its inherently discrete nature, JPEG encoding-

decoding is non-differentiable. Motivated by this, consid-

erable effort has been devoted to building various differen-

tiable JPEG approaches [3, 16, 24, 27, 32, 34, 36, 38].

While various differentiable JPEG approaches have been

proposed, we are not aware of any work providing a com-

parison of these approaches. In this paper, we conduct a

comprehensive review of existing differentiable JPEG ap-

proaches and highlight crucial deficiencies (e.g., not con-

sidering discretizations of standard JPEG) and suboptimal

design choices (e.g., poor rounding approximations) that
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impede precise predictions (cf . Fig. 1) and effective gra-

dients. To remedy the outlined deficiencies, we present

a novel differentiable JPEG approach. While drawing in-

spiration from prior differentiable JPEG implementations,

our differentiable JPEG approach makes use of novel com-

ponents, such as differentiable clipping, and is the first to

model all important details of standard (non-differentiable)

JPEG. In addition, we also propose a straight-through esti-

mator (STE) variant of our differentiable JPEG.

We thoroughly evaluate the performance of existing dif-

ferentiable JPEG implementations and our proposed ap-

proach, in approximating standard (non-diff.) JPEG cod-

ing. We show that all existing diff. approaches fail to accu-

rately resemble standard JPEG over the whole compression

range (cf . Fig. 1). To the best of our knowledge, our dif-

ferentiable JPEG approach (w/ & w/o STE) is the first to

provide an accurate approximation of standard JPEG across

the entire range of compression strengths, while offering

gradients w.r.t. all inputs. This is qualitatively showcased

in Fig. 1. We validate the effectiveness of gradients derived

from existing approaches and our differentiable JPEG by

conducting adversarial attack experiments. Our approach

generates superior adversarial samples in comparison to ex-

isting methods. These findings indicate that gradients ob-

tained through our differentiable JPEG are notably more

effective for gradient-based optimization tasks (e.g., neural

network training) than those derived from existing methods.

2. Background: The JPEG Coding Standard

The JPEG compression standard [10,30], in the baseline

mode, uses both lossy and lossless coding to achieve effi-

cient image compression. The encoding starts by converting

the original RGB image to the YCbCr color space and per-

forming chroma downsampling. The YCbCr channels are

then transformed into the frequency domain using a patch-

wise discrete cosine transform (DCT). A given JPEG qual-

ity controls the quantization strength of the DCT features,

trading file-size against distortion (cf . Sec. 2.3). Finally,

the compressed JPEG file is produced using lossless cod-

ing. During decoding, the lossless and lossy encoding steps

are reversed to reconstruct the JPEG-coded image from the

JPEG file. Fig. 2 illustrates the JPEG coding process.

In general, JPEG encoding-decoding can be seen as a

function mapping from an original (raw) RGB image I and

the JPEG quality q to the JPEG-coded (distorted) image Î

JPEG (I, q) = Î, q ∈ {1, 2, . . . , 99}

I, Î ∈ {1, . . . , 255}3×H×W .
(1)

H and W denote the image resolution. Some implementa-

tions consider a max. q of 100, others of 99, for the sake of

generality we use 99 as max. q. In the next subsections, we

describe the internals of the JPEG function in detail.

2.1. JPEG encoding

The JPEG encoding process compresses a given image

to a binary JPEG file and is composed of four main steps

followed by lossless encoding (cf . Fig. 2). In the following,

we explain the details of all encoding steps.

Color conversion (RGB → YCbCr). Digital imagery

is typically displayed using the RGB color space. JPEG

makes use of the YCbCr color space for compression. To

this end, JPEG converts the RGB image to the YCbCr color

space by a pixel-wise affine transformation.

Chroma subsampling. The human eye tends to be

more sensitive to variations in brightness than to color de-

tails [17]. This motivates the use of chroma subsampling in

JPEG. By discarding less relevant information to the human

eye, chroma subsampling introduces a minimal loss in per-

ceptual quality while leading to compression. Chroma sub-

sampling is typically implemented by an anti-aliasing op-

eration (e.g., 2D convolution) followed by standard down-

sampling and is applied to both chroma channels (Cb & Cr).

Patch-wise discrete cosine transform. JPEG compres-

sion utilizes a patch-wise (and channel-wise) DCT-II oper-

ation to transform an image into a frequency (DCT) space.

Before applying the DCT, non-overlapping 8 × 8 patches

from the chroma-subsampled YCbCr image are extracted.

For a given (flatten) patch p ∈ {0, 1, . . . , 255}64, the DCT

is described by p̂ = a ⊙ Gp. ⊙ denotes the Hadamard

product, G ∈ R
64×64 contains the DCT coefficients, and

a is a scaling factor. G is computed by G8u+v,8i+j =
cos

(

2x+1
16

)

cos
(

2y+1
16

)

and a by a8u+v = 1
4α(u)α(v) with

α(u) =

{

1√
2

if u = 0

1 otherwise
and u, v, i, j ∈ {0, 1, . . . , 7}.

p̂ ∈ R
64 represents the transformed patch. For simplicity,

we omit the channel (YCbCr) and patch indexing.

Quantization. Through quantization, controlled by the

JPEG quality q, frequencies are suppressed for the sake of

compression. During the quantization step, the given JPEG

quality q is mapped to a scale factor s by:

s(q) =

{

5000
q if q < 50

200− 2q otherwise.
(2)

The scale factor is applied to the (standard) quantization ta-

ble QTs ∈ {1, 255}8×8 by Q̂T =
sQTs+50

100 . The scaled

quantization table is applied to each 2D DCT patch P̂ ∈
R

8×8 (reshaped p̂) followed by the application of the round-

ing function Pm,n =

⌊

P̂m,n

Q̂Tm,n

⌉

with m,n ∈ {0, 1, . . . , 7}.

⌊·⌉ denotes the rounding to the next integer. Note that

standard JPEG performs integer arithmetic to compute s

and Q̂T this is equivalent to applying the floor function

⌊·⌋. Additionally, Q̂T is clipped to the integer range of
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Figure 2. The JPEG encoding-decoding pipeline. The original input image is encoded to a JPEG file in a lossy manner. To recover the

coded image the encoding is reversed in the decoding. JPEG uses lossless coding in conjunction with lossy coding. Since no information

is lost (identity mapping) during the lossless encoding/decoding we can neglect these coding steps in our differentiable JPEG approach.

{1, 2, . . . , 255}. Note JPEG also supports custom quantiza-

tion tables and uses two separate tables for the luma channel

(Y) as well as the chroma channels (Cb & Cr). For simplic-

ity, we do not distinguish between quantization tables.

Lossless encoding. JPEG utilizes lossless entropy coding

to compress all quantized DCT patches P̂. The lossless en-

coding first arranges the lossy encoded patches in a zigzag

order before performing run-length encoding. Finally, Huff-

man coding is performed to build the binary JPEG file. Note

the final JPEG file includes not only the encoded image con-

tent but also the scaled quantization tables and other mark-

ers including information such as the image resolution.

2.2. JPEG decoding

The JPEG decoding converts the compressed binary

JPEG file back to an RGB image (cf . Fig. 2). Four main

steps and the inversion of the lossless encoding operations

compose the decoding. On a high level, every decoding step

reverses the corresponding encoding step (cf . Fig. 2).

Decoding of lossless encoding. The Huffman-encoded

JPEG file is decoded before the run-length encoding is un-

done. Finally, the information is rearranged as a pixel grid

with three channels. Note that lossless encoding and decod-

ing can be viewed as an identity mapping.

Dequantization. To dequantize, the quantized DCT fea-

tures are multiplied with the respective scaled QT (luma or

chroma table) P̃ = P⊙ Q̂T.

Inverse patch-wise discrete cosine transform. To con-

vert the DCT information back into pixel space, the inverse

discrete cosine transform is applied to each 8× 8 patch.

Chroma upsampling. To recover the original image reso-

lution, both chroma channels are upsampled using bilinear

interpolation.

Color conversion (YCbCr → RGB). The coded image

(YCbCr) is converted back into the RGB color space by ap-

plying the inverse of the previous affine transformation.

(a) Original image (b) JPEG quality 50 (c) JPEG quality 1

Figure 3. JPEG coding artifacts. (a) Original image, (b) JPEG-

coded image with a JPEG quality of 50, file size is 47.3kB, and (c)

coded image with a JPEG quality of 1, file size is 6.2kB. Image

from the Set14 [35] and OpenCV [2] JPEG used.

2.3. JPEG rate-distortion trade-off

JPEG has strong support for different compression

strengths. By adjusting the JPEG quality parameter q, dif-

ferent compression strengths can be achieved. A low JPEG

quality results in a small file size but leads to significant

image distortion (cf . Fig. 3c) since quantization suppresses

plenty of frequencies. Vice versa, a high JPEG quality leads

to a larger file size but reduces distortion (cf . Fig. 3b). This

tradeoff is known as the rate-distortion trade-off.

JPEG employs the DCT in a patch-wise manner to

achieve efficient compression. This compression approach

introduces distinctive artifacts in the resulting distorted

JPEG-coded image. These artifacts manifest in various

forms, including ringing, contouring, posterizing, and most

notably, block boundary artifacts. Among these artifacts,

block boundary artifacts are particularly noticeable when

compressing natural images (cf . Fig. 3b).

2.4. Non-differentiability of JPEG

The JPEG encoding-decoding process (cf . Eq. (1)) is

an inherently discrete operation that precludes the ap-

plication of continuous differentiation. However, we

can extend all operations of the JPEG encoding-decoding

to real-valued numbers. Consequently, we can formu-

late a continuous JPEG function, JPEGc, that accepts

continuous inputs in terms of the original image and

JPEG quality and produces a continuous coded image

(JPEGc : R
3×H×W × [1, 99] → R

3×H×W ). This naive
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continuous generalization of the JPEG encoding-decoding

suffers from a major limitation. The gradient of JPEGc

(w.r.t. to both inputs) is zero almost everywhere (a.e.) and

undefined at points of jump discontinuity. This is caused

by the reliance on rounding and floor functions in the en-

coding process. This property inhibits the direct integration

of JPEGc into gradient-based learning systems (e.g., deep

neural network training) as they rely on the availability of

ªusefulº non-zero gradients for optimization.

3. Existing Differentiable JPEG Approaches

Existing differentiable JPEG approaches can be broadly

categorized into three groups: straight-through estimator

approaches, surrogate model approaches, and noise-based

methods. All approaches aim to propagate ªusefulº gradi-

ents through the JPEG encoding-decoding.

STE approaches. In standard STE, the gradient of a non-

differentiable function is approximated by assuming a con-

stant gradient of one [1]. During the forward pass, the

true non-differentiable function is used. STE has been

shown to be effective in various deep learning-based ap-

proaches [1, 4, 11, 19, 29]. This technique is also used when

the gradient of a function would be zero a.e. (e.g., rounding

function). Choi et al. [3] used STE to propagate gradients

through the rounding operation of the JPEG encoding [28].

Instead of assuming a constant gradient as in standard STE,

Xie et al. [32] utilizes the gradient of a tanh-based differen-

tiable rounding approximation in the backward pass. Both

approaches do not model the JPEG quality scaling of the

quantization tables, limiting the general usability beyond

the application proposed in the respective papers. Addi-

tionally, the bounded nature of the quantization tables and

the quantization table scale is not considered. Nor is the

bounded nature of the coded image modeled.

Surrogate model approaches. Another technique

to achieve ªusefulº gradients is to replace all non-

differentiable components of JPEG coding (e.g., rounding)

with differentiable approximations. The resulting differen-

tiable JPEG approach is both an approximation in the for-

ward and backward pass. Shin et al. proposed the first dif-

ferentiable surrogate of the JPEG encoding-decoding [24].

A polynomial approximation of the rounding function

⌊x⌉+ (x− ⌊x⌉)
3

enables the propagation of gradient

through the rounding operation. Additionally, the quantiza-

tion table scaling by the JPEG quality q is reformulated to

s(q) =

{

50
q if q < 50

2− 2q
100 otherwise

and Q̂T = sQTs. Note this

leads to a difference of 0.5 in the scale quantization table

Q̂T compared to the standard scaling factor computation

(cf . Eq. (2)), subsequently deteriorating the approximation

performance. Other approaches have been built on the ap-

proach by Shin et al. with slight modifications [16, 27, 33].

Instead of a polynomial approximation, Xing et al. approx-

imate the rounding function with finite Fourier series ap-

proximation x −
∑10

k=1
(−1)k+1

kπ
sin(2πkx). While Shin et

al. does not model integer divisions nor the bounded nature

of the quantization tables as well as the coded image, Xing

et al. hard clips the coded image to the valid pixel range,

leading to a zero-valued gradient for clipped pixels.

Noise-based approaches. JPEG coding introduces unique

distortion artifacts to the coded image (cf . Sec. 2.3 and

Fig. 3). This motivates noise-based approach, wherein

JPEG coding is approximated by introducing specific noise

into the original image. Zhu et al. [38] achieves this by

randomly applying dropout to the DCT features mimicking

JPEG distortion. However, applying random dropout offers

very limited control over the precise quality, leads to sparse

gradients, and is only a coarse and stochastic approxima-

tion. Zhang et al. [36] adds the true distortion as pseudo

noise to the original image. While the resulting coded im-

ages match the true coded image, this approach is equiva-

lent to applying STE to the full JPEG coding function. The

resulting gradients are fully independent of the JPEG func-

tion. Additionally, both approaches only offer gradients

w.r.t. the original image, severely limiting general applica-

bility. Due to these major limitations, we do not consider

noise-based approach as differentiable approximations.

JPEG file size modeling. Certain applications require a

differentiable estimate of the JPEG file size [16, 32]. As

all differentiable JPEG approaches neglect the lossless en-

coding/decoding, modeling the file size is non-trivial [16,

24, 32, 33]. Existing approaches typically train a deep neu-

ral network to regress the file size from the quantized DCT

features of the differentiable JPEG approach [16, 32]. Note

that the scope of this paper is to model JPEG encoding-

decoding in a differentiable manner and not to model the

JPEG file size. We refer the reader to Luo et al. [16] and

Xie et al. [32] for more details on file-size modeling.

4. Method: Differentiable JPEG Coding

We aim to build a continuous and differentiable ap-

proximation (JPEGdiff : [0, 255]3×H×W × [1, 99] →
[0, 255]3×H×W ) of the full JPEG encoding-decoding func-

tion (cf . Eq. (1)). This approximation should accurately re-

semble standard (non-diff.) JPEG and yield gradients ªuse-

fulº for gradient-based optimization. To achieve this, we

first take a surrogate model approach (Sec. 4.1). Later we

present the incorporation of the STE technique (Sec. 4.2).

We noticed that existing approaches just focus on finding

ªusefulº differentiable surrogates of the rounding function

used for quantization; however, other discretizations and

bounds are not modeled. These operations include the clip-

ping as well as the discretization of the quantization table,

the discretization of the quantization table scaling, and the
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bounding of the output/coded image. We present differen-

tiable approximations for modeling all five operations. Note

for operations not described (e.g., DCT), we use their naive

continuous generalization (cf . Sec. 2). Since the gradient is

not affected by the lossless encoding/decoding (cf . Fig. 2),

we follow existing approaches and neglect these steps.

4.1. Differentiable JPEG surrogate

Differentiable quantization. For approximating the quan-

tization operation, which uses the rounding function, we uti-

lize the polynomial approximation ⌊x⌉+(x−⌊x⌉)3 by Shin

et al. [24]. While other approximations exist (e.g., sigmoid

func.), we later show that this design choice leads to supe-

rior performance over other approximations (cf . Sec. 6.3).

Differentiable QT scale floor. Non-differentiable standard

JPEG computes the quantization table scaling s(q) based on

the JPEG quality with integer arithmetic (cf . Eq. (2)). This

is equivalent to computing s with float precision and apply-

ing the floor function. To model this operation in a differen-

tiable manner, we introduce a differentiable floor approach.

Note the original scaling approach (cf . Eq. (2)) is used, not

the approach by Shin et al. [24].

Our differentiable floor function makes use of the rela-

tion between the rounding and floor function. We can ex-

press the floor function as a shifted version of the rounding

function ⌊x − 0.5⌉ = ⌊x⌋. Based on this property, we can

use the polynomial rounding approach to approximate the

floor function by ⌊x − 0.5⌉ + (x − 0.5 − ⌊x − 0.5⌉)3. We

later validate this design choice against other approxima-

tions (cf . Sec. 6.3).

Differentiable QT floor. Since the quantization table is

included in every JPEG file, the JPEG standard requires

the QT to include integer values. The standard (non-diff.)

JPEG implementation ensures this by using integer arith-

metic. This is equivalent to applying the floor function to

QT after scaling. To ensure gradient propagation, we apply

the proposed floor approximation to the scale QT.

Differentiable QT clipping. Based on the JPEG stan-

dard [30], the quantization table is bounded to the inte-

ger range {1, . . . , 255}8×8. Utilizing low JPEG qualities

(strong compression) can lead to values outside of this

range, even when utilizing the standard QT. To ensure val-

ues approximately within this range, we propose a differen-

tiable (soft) clipping operation clip.

clip(x) =

{

x ifx ∈ [bmin, bmax]

γ x otherwise
, x ∈ R, γ ∈ (0, 1]. (3)

This soft approximation ensures a non-zero gradient of x

when outside of the range [bmin, bmax]. We set the scale pa-

rameter γ to 10−3.

Differentiable output clipping. Similar to the input im-

age, the output image is bounded to the pixel range of

{0, . . . , 255}. Depending on the image content and the ap-

plied JPEG quality, values outside of this range can occur.

To approximately adhere to this range, we also apply the

proposed differentiable clipping to the output/coded image.

4.2. Differentiable JPEG coding with STE

Instead of differentiably approximating all discretiza-

tions and bounds both in the forward and backward pass,

we can also take advantage of the STE technique. In our

STE-based differentiable JPEG approach, we utilize the

true rounding, floor, and clipping functions in the forward

pass. However, instead of using a constant gradient of one,

as done by standard STE, we employ the gradient of the

proposed approximations during backpropagation. This ap-

proach leads to a reduced error of the forward function since

the true function and not an approximation is used. We later

show that our STE approach can be beneficial in certain set-

tings. We also show that using the gradient of the proposed

approximations is more effective than standard STE.

5. Evaluation

Evaluating a differentiable JPEG implementation comes

in two different flavors. First, evaluating the performance

of the forward mapping and second, the validation of gradi-

ents obtained from the differentiable JPEG approach. While

evaluating the forward mapping is well-defined, validating

the effectiveness of the backward function is non-trivial.

Forward function evaluation. We evaluate the perfor-

mance of the forward mapping by measuring the similar-

ity between the coded image obtained by the differentiable

approach and the coded image of the reference implemen-

tation. We use the SSIM [31] and the PSNR for evaluation.

Backward function evaluation. We aim to showcase the

ªusefulnessº of gradients obtained by the backward func-

tion. Taking inspiration from Shin et al. [24] we utilize

adversarial attack experiments to showcase the quality and

ªusefulnessº of gradients in the context of gradient-based

optimization. Adversarial examples are crafted through the

mapping C (JPEGdiff (I, q)) = p, composed of an Ima-

geNet classifier C (e.g., ResNet-50 [8]) and a differentiable

JPEG function JPEGdiff, conditioned on a given JPEG

quality q. We aim to craft an adversarial image Iadv, from

the original image I, s.t. the prediction p ∈ [0, 1]c over c

classes is deteriorated. Note, while crafting the adversarial

example using a differentiable JPEG approach we validate

the effectiveness of the adversarial example by using the

non-differentiable JPEG reference implementation.

We consider two adversarial attack techniques, the fast

gradient sign method (FGSM) [5] and the iterative fast gra-

dient sign method (IGSM) [14, 15]. FGSM in the non-

targeted setting crafts an adversarial example by Iadv =
I + ϵ · sign(∆I[L(y, C (JPEGdiff (I, q)))]), where L is the
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cross-entropy loss and y the true class label. IFGSM per-

forms FGSM for N iterations and uses ϵ
N

as the update size.

Both FGSM and IFGSM ensure that ∥Iadv − I∥∞ ≤ ϵ.

We argue that in order to generate an effective adversar-

ial example, JPEGdiff needs to produce ªusefulº gradients.

The more effective the adversarial images are in deteriorat-

ing the prediction (measured by accuracy), the more ªuse-

fulº the gradients of JPEGdiff become. Note, since C con-

sumes the JPEG-coded image the resulting gradient is also

partly dependent on the forward performance of JPEGdiff.

Vanishing gradient evaluation. While it is not possible

to directly measure the ªusefulnessº of gradients, we can

evaluate the gradients’ ability to adhere to desired proper-

ties in gradient-based optimization. For local and global

minima, it is desirable that gradients vanish. While the

exact position of local and global minima w.r.t. to a dif-

ferentiable JPEG approach is not known, we can mea-

sure the gradient magnitude at positions that are desired

to be local or global minima. Optimally, the gradient at

these positions vanishes. In particular, we compute the

L1 loss between the differentiable and the reference JPEG

L1(JPEGdiff (I, q) , JPEGr (I, q)). Subsequently, estimate

the gradient norms w.r.t. to both the JPEG quality ∥∆qL1∥
and the (internal) standard QT ∥∆QTY,C

L1∥ (luma and

chroma table). We average the gradient norms over both the

different integer JPEG quality ranges and the dataset D.

6. Experiments

Datasets. For our adversarial attack experiments, we uti-

lize 5k randomly chosen images of the ImageNet-1k vali-

dation set (ILSVRC 2012) [22]. For all other experiments,

we use the Set14 dataset [35], composed of 14 RGB images

ranging from natural to document-like images.

Implementation details. For all experiments, we utilize

the OpenCV [2] JPEG implementation as a reference. We

utilize Kornia [21] for computing the SSIM. The utilized

SSIM patch size is 11. Adversarial attack experiments are

conducted using a ResNet-50 from torchvision [18] super-

vised trained on ImageNet-1k. For IFGSM experiments, we

utilize N = 10 iterations. The step parameter ϵ is varied be-

tween experiments. After each attack iteration, we hard clip

the image to the valid pixel range of [0, 255].

Baselines. We compare against the surrogate-based ap-

proaches by Xing et al. [33] and Shin et al. [24]. We also

compare against the STE-based approach of Xie et al. [32].

Since Xie et al. are not modeling the JPEG quality, we ex-

tend the approach with the JPEG quality mapping of Xing et

al. [33]. Both the approach of Shin et al. and Xie et al. offer

no code, we have reimplemented both in PyTorch [20]. For

the approach of Xing et al. [33], we use the official code.

We noticed a bug in the official code (wrong QT transpo-

sition). We run experiments with the debug code. Note due

to the very limited control (JPEG quality can not be set) and

stochasticity, we do not consider noise-based approaches.

6.1. Forward function results

We evaluate the ability to resemble the reference JPEG

implementation of existing approaches against our differen-

tiable JPEG approach (w/ STE). Our approach outperforms

existing approaches over the whole JPEG quality range (cf .

Fig. 4). The performance gap between differentiable meth-

ods becomes smaller for high JPEG quality values, but still,

our approach leads to superior performance.
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Figure 4. Forward function performance. Performance of ap-

proximating the reference JPEG implementation (OpenCV [2]) for

different JPEG qualities. Mean & one standard deviation shown.

For small JPEG qualities, we observe a significant dis-

parity in performance between methods. While our ap-

proach still approximates standard JPEG well, existing ap-

proaches fail and produce coded images vastly different

from the reference implementation. This is showcased in

Fig. 1 and quantitatively analyzed in Fig. 5 and Tab. 1.
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Figure 5. Forward function performance for strong compres-

sion. Performance of approximating the reference JPEG imple-

mentation (OpenCV [2]) for low JPEG qualities. Mean & one

standard deviation shown.

Forward function ablation results. To understand what

makes our differentiable JPEG implementation effective in

resembling the reference implementation, we conduct an

ablation study (cf . Tab. 1 and Fig. 6). We gradually add

our introduced components (config. A to F). All our novel

components improve performance while our full configura-

tion (config. E) performs best among non-STE approaches.

Using STE (config. F) further improves forward perfor-

mance, leading to coded images perceptually indistinguish-

able from the reference implementation.

Fig. 6 showcases the effect of all introduced components

for each (integer) JPEG quality. We observe that especially
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SSIM ↑ PSNR ↑
Configuration q range → 1-99 1-10 11-99 1-99 1-10 10-99

Xing et al. [33] 0.961 0.833 0.977 38.10 29.45 39.19

Xie et al. [32] 0.972 0.884 0.983 40.02 31.63 41.07

A Shin et al. [24] 0.969 0.888 0.979 38.71 31.07 39.66

B + diff. QT clipping 0.978 0.966 0.979 39.16 35.10 39.67

C + diff. QT floor 0.983 0.971 0.985 41.03 35.95 41.66

D + diff. QT scale floor 0.984 0.971 0.986 41.08 35.96 41.72

E + diff. output clipping
0.991 0.987 0.992 42.60 38.28 43.14

(our differentiable JPEG)

F + STE (cf . Sec. 4.2)
0.993 0.993 0.992 43.49 41.14 43.78

(our differentiable STE JPEG)

Table 1. Forward function performance summary & ablation.

To ablate our approach, we gradually add our novel components

to Shin et al. [24]. We also report the performance of other diff.

approaches. STE-based approaches marked in gray ■■.
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Figure 6. Ablation study graph. JPEG quality-wise forward

function performance for different configurations (cf . Tab. 1).

differentially clipping the coded output image (config. E)

improves performance and, in particular, leads to strong re-

sults for small JPEG qualities.

Using STE (config. F) leads to a superior forward func-

tion performance over our non-STE approach (config. E,

cf . Fig. 6). As showcased in Fig. 7, our diff. STE JPEG ap-

proach especially outperforms our differentiable JPEG ap-

proach w/o STE for low JPEG qualities.
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Figure 7. Forward function performance with STE. Per-

formance of approximating the reference JPEG implementation

(OpenCV [2]) for different JPEG qualties. Mean & one SD shown.

6.2. Backward function results

Adversarial attack results. We craft adversarial exam-

ples to showcase the ªusefulnessº of gradients derived by

differentiable JPEG approaches. When using FGSM with

ϵ = 3, our differentiable JPEG w/o STE consistently leads

to superior results over our approach w/ STE and other dif-

ferentiable approaches (cf . Tab. 2 (top)). When increasing

ϵ to 9, our differentiable JPEG w/ STE scores slightly better

than our approach w/o STE (cf . Tab. 2 (bottom)).

Top-1 acc ↓ Top-5 acc ↓
Approach q range → 1-99 1-10 11-99 1-99 1-10 10-99

No attack 66.83 33.36 71.01 85.91 53.10 90.01

FSGM with ϵ = 3

Xing et al. [33] 53.92 26.00 57.42 77.90 45.65 81.93

Xie et al. [32] 41.48 20.07 44.15 66.53 38.52 70.03

Shin et al. [24] 36.62 16.40 39.15 60.19 32.38 63.67

Our diff. JPEG 36.51 15.80 39.10 59.92 30.89 63.54

Our diff. STE JPEG 36.97 16.38 39.55 60.79 32.61 64.32

FSGM with ϵ = 9

Xing et al. [33] 51.25 27.64 54.20 75.24 47.41 78.72

Xie et al. [32] 38.29 18.15 40.81 61.89 35.38 65.21

Shin et al. [24] 35.01 15.04 37.51 57.40 29.70 60.86

Our diff. JPEG 35.00 14.65 37.55 57.28 28.97 60.82

Our diff. STE JPEG 34.79 14.96 37.26 57.21 29.86 60.63

Table 2. FGSM attack results summary. Summarized top-1

and top-5 accuracy after FGSM attack for different JPEG qual-

ity ranges. We report results for both ϵ = 3 and ϵ = 9. As a

reference, we also report accuracies for no attack performed.

When using IFGSM to craft adversarial examples, the

results are consistently in favor of our differentiable JPEG

approach w/o STE (cf . Tab. 3). Interestingly, the approach

by Xing et al. leads to predominately poor adversarial ex-

amples. We explain this result by the use of the Fourier

rounding approximation which is highly non-monotonic.

Top-1 acc ↓ Top-5 acc ↓
Approach q range → 1-99 1-10 11-99 1-99 1-10 10-99

IFSGM with ϵ = 3

Xing et al. [33] 43.44 24.42 45.82 72.52 45.55 75.90

Xie et al. [32] 25.30 14.72 26.63 46.55 31.47 48.43

Shin et al. [24] 15.11 8.98 15.88 27.21 19.99 28.11

Our diff. JPEG 14.39 7.97 15.19 25.79 17.53 26.83

Our diff. STE JPEG 15.02 8.35 15.85 27.11 18.77 28.15

IFSGM with ϵ = 9

Xing et al. [33] 39.59 24.99 41.41 67.73 45.41 70.52

Xie et al. [32] 15.03 8.70 15.82 27.34 19.21 28.35

Shin et al. [24] 6.89 4.99 7.12 12.64 10.47 12.91

Our diff. JPEG 6.54 4.09 6.85 11.96 8.32 12.41

Our diff. STE JPEG 7.22 4.23 7.59 13.16 8.85 13.69

Table 3. IFGSM attack results summary. Summarized top-1

and top-5 accuracy results after IFGSM attack for multiple JPEG

quality ranges and different differentiable JPEG approaches. We

report accuracy results for both ϵ = 3 and ϵ = 9.

Our approach w/o STE leads to particularly strong attack

results for low JPEG qualities compared to other approaches

(cf . Tab. 3). Our approaches (w/ & w/o STE) lead to strong

adversarial images for a JPEG quality of 1, 2, and 3, while

Shin et al. suffer to produce effective adversarial images (cf .

Fig. 8). In general, our approach w/ STE leads to a stronger

forward performance, while a better backward performance

is achieved w/o STE.
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Figure 8. IFGSM attack results. Top-1 accuracy after IFGSM

attack with our approach (w/ & w/o STE) vs. Shin et al. [24].

Vanishing gradient experiment. Both our differentiable

JPEG w/ and w/o STE lead to lower gradient norms at the

desired minima (cf . Tab. 4). The approach by Xing et al.

leads to particularly large gradient norms. We suspect again

the choice of rounding function approximation (Fourier-

based) to be a major contributor to these results.

EQ,D[∥∆qL1∥] EQ,D [∥∆QTY,C
L1∥]

Approach q range → 1-99 1-10 11-99 1-99 1-10 10-99

Xing et al. [33] 1.254 7.271 0.502 ± ± ±

Xie et al. [32] 0.955 4.617 0.492 0.913 1.041 0.896

Shin et al. [24] 0.587 4.172 0.139 0.213 0.474 0.181

Our diff. JPEG 0.022 0.068 0.017 0.043 0.030 0.044

Our diff. STE JPEG 0.014 0.077 0.007 0.020 0.076 0.013

Table 4. Vanishing gradient results. Average gradient norms

at desired global minima. Gradient norms are averaged over the

integer JPEG quality range Q and the Set14 [35] dataset D.

6.3. Additional ablation results

Which rounding/floor approximation to use? In Tab. 5,

we analyze the effect of different differentiable rounding

and floor function approximations on the forward perfor-

mance. Both the linear and the polynomial differentiable

approximation perform best, with a slight advantage for the

polynomial approach.

SSIM ↑ PSNR ↑
Function q range → 1-99 1-10 11-99 1-99 1-10 10-99

Fourier x −
∑10
k=1

(−1)k+1

kπ
sin(2πkx) 0.984 0.956 0.987 41.28 35.66 41.98

Linear ⌊x⌉ + 0.1 (x − ⌊x⌉) 0.990 0.987 0.991 42.37 38.70 42.83

Polynomial ⌊x⌉ + (x − ⌊x⌉)3 0.991 0.987 0.992 42.60 38.28 43.14

Sigmoid σ(60(x − 1
2

+ ⌊x⌋)) + ⌊x⌋ 0.990 0.980 0.992 42.29 36.88 42.96

Tanh 1
2

tanh
(

5
(

x − 1
2

− ⌊x⌉
))

+ 1
2

0.972 0.918 0.978 38.51 31.15 39.42

Table 5. Rounding/floor ablation (forward function). Perfor-

mance of approximating the reference OpenCV [2] JPEG. For all

experiments, our diff. JPEG w/o STE was used; only the differen-

tiable rounding/floor approx. is varied. Eq. describe the rounding

approximations; for the floor approx., we shift x by −0.5.

As in terms of backward function performance, the poly-

nomial approximation also leads to the best adversarial ex-

amples (cf . Tab. 6). This suggests gradients derived from

the polynomial approximation are more ªusefulº than from

other approximations. While leading to a fair forward per-

formance (cf . Tab. 5), the Fourier approximation leads to

poor attack results, thus also yields worse gradients. This

result aligns with the attack results by Xing et al. (cf . Tab. 2

& Tab. 3) also employing the Fourier approximation.

Top-1 acc ↓ Top-5 acc ↓
Function q range → 1-99 1-10 11-99 1-99 1-10 10-99

Fourier 39.53 20.16 41.95 68.98 40.81 72.50

Linear 25.69 22.41 26.10 46.52 42.84 46.98

Polynomial 14.39 7.97 15.19 25.79 17.53 26.83

Sigmoid 20.28 6.34 22.02 36.79 14.44 39.59

Tanh 22.52 15.20 23.43 41.80 32.79 42.92

Table 6. Rounding/floor ablation (IFGSM). IFGSM attack

results for various differentiable rounding/floor approximations.

IFGSM w/ ϵ = 3 used. For all experiments; our diff. JPEG was

used, only the rounding/floor approximation was varied.

When considering both forward and backward perfor-

mance (cf . Tab. 5 & Tab. 6), the best choice for approxi-

mating the rounding and floor function is the polynomial

approach. These results might be explained by the fact

the polynomial approximation strikes a vital trade-off be-

tween approximation error (w.r.t. the rounding/floor func-

tion), monotonicity, and gradient magnitude.

Which STE backward approximation to use? Standard

STE assumes a constant gradient in the backward pass,

while our STE approach uses a closer approximation of the

true derivative. When using our proposed surrogate-based

STE, we observe substantial gains in adversarial attack per-

formance over standard STE (cf . Tab. 7), indicating that our

approach leads to more ªusefulº gradients.

Top-1 acc ↓ Top-5 acc ↓
Backw. approach q range → 1-99 1-10 11-99 1-99 1-10 10-99

Constant grad. (standard STE) 25.30 21.62 25.76 45.38 41.37 45.88

Surrogate (ours) 7.22 4.23 7.59 13.16 8.85 13.69

Table 7. STE backward ablation (IFGSM). IFGSM attack re-

sults for different STE backward approaches. IFGSM w/ ϵ = 3

used. For all experiments, our differentiable JPEG w/ STE was

used; only the STE backward approach was varied.

7. Conclusion

We reviewed existing differentiable JPEG approaches

and proposed a novel differentiable JPEG approach mod-

eling missing properties of standard (non-diff.) JPEG. Our

approach is the first to accurately resemble standard JPEG

over the entire JPEG quality range, outperforming all ex-

isting approaches. Notably, gradients derived from our

approach yield superior adversarial examples, demonstrat-

ing the ªusefulnessº of the obtained gradients for gradient-

based optimization. With strong forward and backward per-

formance, our approach provides a solid foundation for fu-

ture work considering JPEG as part of deep vision pipelines.
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