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Abstract

Diversified image color editing is typically modeled as a
multimodal image-to-image translation (MMI2IT) problem
with an impact on multiple applications such as photo en-
hancement and retouching. Although previous GAN-based
algorithms successfully generate diverse edits with clear
control, we observe two issues remaining: Firstly, they tend
to apply the same color style to all kinds of input images
when sampling with the same style latent, regardless of the
input content and scenes. Secondly, they usually edit the
color style globally in an image and fail to keep each se-
mantic region and instance in harmonic colors individu-
ally. We attribute these issues to the strong independence
between the style latent and the condition image in most
current MMI2IT methods.

To edit the raw image into a more harmonic direction
with awareness of its global content and local semantics,
we introduce auxiliary color restoration tasks by reducing
the input color information and training jointly. We also
increase the model’s capacity and enrich the noise’s local-
ity with diffusion models. Furthermore, we propose a new
set of metrics to measure the content-awareness of MMI2IT
models, that is, how the generated style is adaptive to the in-
put image’s content. Our model is also extensible to several
downstream applications including exemplar-based color
editing and language-guided color editing, without impos-
ing extra demands on the already trained model.

1. Introduction
We investigate the task of diversified image color edit-

ing. Given an input image, the goal is to generate multiple
edited images in different photographic color styles while
keeping their original content, structure and texture. Im-
age color editing is essential for various downstream appli-
cations such as image enhancement [10, 26] and retouch-
ing [3, 13]. The problem is typically formulated as a mul-

*Part of this work was done when Yixuan was an intern at Adobe Re-
search.

Figure 1. Our model generates content-aware color editing results.
Given different patches cropped out of the same image as the in-
put, our model applies adaptive color styles to different seman-
tics to produce harmonic and aesthetic output. For example, sky
usually has the most artistic diversity, while buildings and human
portraits have their preferred color tone ranges. When a randomly
sampled latent z ∼ N (0, 1) edits a sky image into very extraordi-
nary colors (1st row), it yet adapts less colorful but brighter tones
to buildings, and least colorful but warmer tones to humans (2nd
and 3rd rows). In the meantime the major editing direction of each
latent z is retained the same for smooth controllability.

timodal image-to-image translation (MMI2IT) task, where
the model is trained to edit a raw image in diverse color
styles given different randomly sampled noise. Early work
has difficulty extracting the multimodal capability. Bicy-
cleGAN [30] and DivCo [14] are limited to the simple net-
work design. SpaceEdit [23] leverages the latent space of
the StyleGAN2 [9] and achieves excellent multimodal gen-
eration capability with clear control.

In practice, non-expert users are more used to the raw
photos being tuned and polished automatically and smartly
in batch. Therefore we expect the model to be able to
perform semantic-adaptive color editing mainly based on
the input image. Although SpaceEdit can achieve diversi-
fied and controllable color editing results, we find its un-
derstanding of the input semantics still insufficient for ad-
vanced cases.
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When randomly sampling from noise as the style latent,
we observe that the same or very similar color styles are ap-
plied to all kinds of input images, no matter if they match
well. However, images of natural scenes and human por-
traits can prefer different color tones, such as the examples
in Fig. 1, where the sky patch can be extremely artistic, but
humans are suitable for milder color tone to keep the face
clear. Besides, we also find SpaceEdit usually only per-
forms global editing, turning the entire frame toward one
direction. A uniform color tone is forced to be applied to
every region and instance without considering the seman-
tics, resulting in unappealing output and even artifacts. For
example, while polishing the color of the sky to more blue
or red in an artistic way, people’s clothing may also be dyed,
especially when the original color is shallow. Figs. 3, 4 and
5 provide some such samples.

We suspect reasons causing the aforementioned observa-
tions are low content awareness in both data and model as-
pects. Different types of raw images may share commonly
welcomed color editing styles as well as holding their own
preferences dependent on comprehensive and complicated
circumstances. Thus the ground truth editing styles in the
data lack an evident correlation with the input images that
are easy to capture. Besides, many samples have relatively
subtle color editing and thus increase the risk of a trivial
shortcut that learns an almost identity transform plus some
random perturbations.

From the perspective of models, although SpaceEdit has
leveraged the upgraded structure of CoModGAN [29] con-
necting the input image’s feature to the style sampling net-
work as well to conditionally co-modulate, this path might
not be fully utilized when the styles don’t strongly corre-
lated with the input images in the training data. The vanilla
GAN objective also contributes to this issue as an indirect
constraint, especially when the target domain is not far from
the source domain. SpaceEdit reports that a conditional dis-
criminator feeding on the input image contrastively is crit-
ical to the performance compared to an unconditional one.
Furthermore, the spatial alignment for the style sampling
and modulation process of StyleGAN-based methods [22]
is yet insufficient for all detailed cases. This limits the
model to perform fine-grained regional editing.

Diffusion models [2,5] provide a bigger latent space with
a closer spatial alignment of the same shape of the condi-
tion image. For I2I tasks, the latent noise is concatenated
with the input image and thus sets up a dense correlation
between the input content and editing style spatially. Be-
sides, the direct L1/L2 loss is a more strict constraint to
enforce the learned mapping not to be trivial. Therefore, we
employ diffusion models to improve the content-aware co-
modulation and spatial alignment between the editing styles
and input content.

We further introduce multiple auxiliary color restoration

Figure 2. Our model is built upon Latent Diffusion Models . There
are 5 tasks being trained jointly: the main task has the input of raw
RGB, and the auxiliary color restoration tasks are fed with extra in-
put conditions decomposed from YUV color space, for enhancing
content-adaptive luminance and chrominance editing respectively.
In every training iteration one of the input types is randomly cho-
sen as the input.

tasks that enforce the model to learn and utilize more infor-
mation on the input content implicitly. The tasks include
colorization, which predicts an image’s chrominance given
its luminance, and its complementary task to infer the lu-
minance from the chrominance. By reducing the input in-
formation in color channels the auxiliary tasks require the
model a deeper understanding of the input semantics to pro-
duce reasonable output, forcing the model to take the input
image’s features into consideration when determining the
output style, instead of mapping the latent noise to a dedi-
cated color style and simply applying it on any raw image.
The colorization task aims for a proper color tone and its
complementary tackles brightness to avoid under- or over-
exposure outcomes.

In summary, our contributions are:
• We introduced a diffusion-based model for multimodal

diversified image color editing, and enhanced its con-
tent awareness via auxiliary color restoration tasks
with joint training strategy.

• We analyzed the non-adaptiveness issues in existing
MMI2IT algorithms and proposed a new framework of
metrics to measure content awareness quantitatively.

• We conducted massive experiments to validate that our
model learns to always apply reasonable color styles
adaptive to the input semantics. We further extended
its functionality for various downstream applications.

2. Related Work

Multimodal Image Editing. Multimodal image editing
task aims to edit an input image with multiple diverse styles
given random noise latent. BicycleGAN [30] first performs
multimodal image-to-image translation trained on paired
data. [7, 11, 12, 16] extended it to unpaired training data.
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Figure 3. Qualitative comparisons between our model and
SpaceEdit on randomly sampled color editing styles. Although
SpaceEdit sometimes generates fancier and more extraodinary col-
ors, it risks a lot on the essential quality and harmony, and results
in heavy artifacts, such as dark humans and buildings, gapped
edges around foreground objects, dyed clothes, etc. Our model
instead understands the input semantics and processes them spa-
tially, assigning adaptive color styles to different background and
foreground content with also good diversity.

StyleGAN [8] injects the latent code into multiple layers
of the generator via normalization and modulation. It has
been demonstrated to have well-disentangled latent space
and thus has been applied to many downstream image edit-
ing tasks. CoModGAN [29] further addresses the impor-
tance of the condition image modulating the editing style
and embedding both conditional and stochastic style rep-
resentations via co-modulation. SpaceEdit [23] leverages
this structure for multimodal image color editing pretrain-
ing. However, we notice that there still exist artifacts in their
results, especially when the condition image is less relied on
than the style vector when determining the editing style.

Diffusion Models. The diffusion model is a type of score-
based generative models that iteratively denoising the step
to map a Gaussian noise to the sample within the empirical
data distribution. [5,24] provided the foundational work for
subsequent diffusion models. Denoising Diffusion Implicit
Models (DDIMs) [25] achieves deterministic generation by
omitting the noise sampled for each middle timesteps. Dif-
fusion with Classifier-Free Guidance (CFG) [6] lifts the
need for an external classifier which in addition guides a
pretrained diffusion model to generate images following
certain criteria. Latent Diffusion Models (LDMs) [18] that
transformed the diffusion model into a high-performance

Figure 4. Content-awareness comparisons given the same style
latent z. This is an extreme case containing two distinct scenar-
ios: sky and landscape tend to have striking artistic color editing,
while for close objects and indoor scenes most editings are only in
a small range. Both SpaceEdit and our model are able to perform
distinctive and colorful editings. However, SpaceEdit applies them
to other input images without adaptation, and thus dyes and twists
the clay pot in an unnatural and unpleasing way. By contrast our
model manages to retain the reasonable scene and object and edits
them via adding various lighting and shadowing in corresponding
colors. This ensures that for any randomly sampled style latent
z ∼ N (0, 1), our model can always produce proper color editing,
diversified as well as adaptive to the input content. This is thus
friendly and reliable for common users without any guidance in-
struction or post-selection required.

generator for general conditional inputs by introducing a
cross-attention layer. It significantly reduces the compu-
tational cost while almost preserving the generative qual-
ity, and thus plenties of work and pipelines derived from it
for various applications, such as Stable Diffusion (SD) for
large-scale text-to-image generation and many other image-
to-image editing tasks. Diffusion models have been demon-
strated to be indeed powerful in image synthesis and editing
tasks. Therefore, we leverage LDMs for diversified image
color editing tasks.

3. Image Color Editing with Diffusion Models
We formulate the diversified image color editing task as

a multimodal image-to-image translation problem: we learn
a mapping x = f(z, y) where x is the target edited image,
y is the raw input image as the condition and z is random
noise as the style latent.

Fig. 2 shows the main architecture of our proposed sys-
tem. Diffusion models work as iteratively mapping noise
from standard Gaussian distribution into the empirical data
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Figure 5. Qualitative comparisons based on exemplar-based color editing. In subfigure (a), the reference style is to tune toward colder
color tone, and to add a vignetting effect. SpaceEdit simply adjusts all images into blue color even for human faces. Vanilla LDM fails to
apply a consistent vignetting region around the margins and sometimes turns the main objects too dark or greyscale. Our jointly trained
model (4th column) is able to produce the most accurate and proper effect as in the reference row. In subfigure (b), our model adapts
brightness to the diverse input content, preventing overexposure on both day and night scenes, as well as preserves the original color hue
faithfully. In subfigure (c), our model produces the most vibrant red color to the background uniformly, without touching the background
and foreground texture. Note that on the sofa and table case (4th row), our model is able to recognize the reflection on the shiny tabletop
surface, and dims the luminance a bit compared to the directly lit ceiling and walls. More results are shown in the appendix.

distribution via a denoising Gaussian process. To achieve
image-to-image translation, we adopt conditional diffusion
model [18, 20], where the conditional input image is con-
catenated with the noise at every denoising step. We employ
latent diffusion models (LDMs) [21] for computational ef-
ficiency.

A LDM works in two stages. In the first stage, an en-
coder E and a decoder D are trained to bi-directionally con-
vert images between the pixel space and the latent space. In
the second stage, we train a denoising UNet [19] ϵθ with pa-
rameters θ, and it only needs to predict the low-dimensional
latent representation of the target image. At each timestep t,
we concatenate the input condition together with the noise
zt following [18, 20], and the training objective is

LLDM := EE(y),x,ϵ∼N (0,1),t ∥ϵ− ϵθ((zt ⊕ E(x)), t)∥n ,
(1)

where ⊕ denotes concatenation operation, and n can be ei-
ther 1 or 2 indicating L1 or L2 loss. The appendix provides
more details on the model mechanism.

4. Auxiliary Color Restoration Tasks
The lack of understanding of the semantics when the

model generates non-adaptive color editing styles inspires

us to enhance its content awareness. Our goal is that the
same z will adapt to different image content and regions to
get a realistically and aesthetically edited image. We pro-
pose two auxiliary tasks to achieve our goal: colorization
(chrominance completion) and luminance completion.

4.1. Joint Training of Colorization Task

The colorization task [20] maps a grayscale image to a
colorful image, and we observed that the assigned color is
highly dependent on the input content and semantics in real-
world data. For example, the palettes of living creatures and
artificial objects diverge a lot. Mammals and fish also have
different skin colors due to their species. Clothing colors
vary among summer shorts and winter coats because of their
different materials and their usual surroundings. These in-
stances require the model to understand the semantics of the
input image thoroughly to generate proper colors. Hence we
propose to train our color editing task with the colorization
task jointly.

We leverage YUV [15] color space, which has been
widely applied to colorful video and image compression
and transmission, to decompose the chrominance (UV)
from luminance (Y), that is, the grayscale of the color im-
age. The most straightforward option is to use the grayscale
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of the target image to predict its colorful format. Moreover,
we can also input the grayscale of the raw image and still
predict its edited colorful image. This becomes harder be-
cause the model additionally needs to learn to transfer the
luminance from the raw image to the target image before
colorizing it. The full editing path can also be decomposed
as colorizing on raw images first and then transferring the
luminance changes toward target images.

In every training step, raw RGB or target Y or raw Y im-
ages are randomly selected and input, and the reconstruc-
tion loss is calculated for all output. The output target has
to always be the same otherwise the joint training will be
unstable and inconstant.

4.2. Chrominance to Luminance Completion

We find that our model with above colorization tasks
sometimes outputs under- or over-exposure images, which
indicates that it is still less capable to produce a proper lu-
minance range. To address this issue, we further design
an auxiliary task of chrominance to luminance completion.
Following the YUV color space, we set the Y channel of
the image to 127.5 out of 255 and map the color space back
to RGB space. The degraded image only remains chromi-
nance information and loses the luminance signal. Then the
model takes it in and is expected to recover the complete
RGB target with the original luminance. With these tasks
jointly trained, our model is promoted to comprehend the
chrominance space and estimates the appropriate luminance
and thus benefiting our color editing task with improved lu-
minance quality. Similar to the colorization tasks, we use
both the target UV images and the raw UV images as the
input, and they are randomly chosen to compose a batch.
Reconstruction losses are calculated between all output and
target RGB images.

5. Downstream Applications
Our model is primarily designed and trained for the case

that given randomly sampled noise, it is able to always gen-
erate aesthetic and proper style of color editing with the
awareness of the input semantics, which simplify users’ op-
erations and complexity and serves as an automated pipeline
for common users needless of any instructions in prac-
tice. In addition to this, our model can also be applied
to more downstream applications including exemplar-based
and language-guided color editing, as well as still provide
diversified and content-adaptive results.

5.1. Latent Space Inversion

An invertible diffusion probabilistic model encoder
(DPM-Encoder) is proposed by [27] for denoising diffusion
probabilistic models (DDPMs). It maps generated images
back into their full latent space including all timesteps. We
apply this idea to our latent conditional diffusion models

Table 1. Quantitative results of our models and variants. Ours
Baseline refers to the vanilla LDM version and Ours Joint refers
to upgrades with auxiliary tasks and joint training as checked for
each item. Our models outperform the state-of-the-art methods
on both generative fidelity and diversity. The auxiliary tasks are
denoted by their input data format, for example, xY refers to col-
orization on target images and yUV the chrominance to luminance
completion on raw images.

Approach Auxiliary Tasks FID↓ LPIPS↑ σ×10−2 ↑
xY yY xUV yUV

SpaceEdit 7.752 0.159 1.289

SpaceEdit Joint ✓ ✓ ✓ ✓ 11.715 0.163 1.082

Ours Baseline L1 7.103 0.096 0.518
Ours Joint L1 ✓ 7.075 0.101 0.610
Ours Joint L1 ✓ ✓ 7.055 0.125 0.847
Ours Joint L1 ✓ ✓ ✓ 7.043 0.147 1.180
Ours Joint L1 [main] ✓ ✓ ✓ ✓ 6.988 0.153 1.205

Ours Baseline L2 7.644 0.189 1.621
Ours Joint L2 ✓ ✓ ✓ ✓ 7.815 0.220 2.052

Ours L1 Perturb Aug 6.538 0.069 0.353

Table 2. The quantitative results of the proposed Content-
Awareness Metrics (CAMs). Our main model with joint auxiliary
tasks outperforms other competitors on these metrics. More de-
tails, including the self-validations for the metrics design, are in
the appendix.

Approach CAM-1↑ CAM-2 CAM-3

F-stat↑ p-val F-stat↑ p-val

SpaceEdit (60k data) 0.2467 15.093 0.0181 2.4619 0.0243
SpaceEdit 0.2816 16.257 0.0122 2.9985 0.0253
Ours LDM baseline 0.3571 21.553 0.0148 4.9446 0.0204
Ours Joint L1 [main] 0.5767 28.343 0.0142 7.1684 0.0278

Table 3. User study results.

Approach 5-star Ratings↑ Binary Choice↑
SpaceEdit 3.523 226

Ours Joint L1 [main] 4.062 361

with a latent encoder E and additional input conditions. For
our models that translate raw images y to edited images x,
the complete latent noise is zt = ϵt ⊕ E(y) at timestep t,
and the full noise space {ϵt}t=T,...,1 can be inverted by

x1, ..., xT−1, xT ∼ q(x1:T |x0),

ϵt = (xt−1 − µθ(xt, E(y), t))/σt ⊖ E(y),
(2)

where ⊖ denotes splitting as inverse concatenation.

5.2. Exemplar-Based Color Editing

Given a pair of raw and edited images, our model can
invert them to acquire the editing style in the latent diffusion
model’s noise space following the above inversion method,
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and then apply it to another new input image to transfer the
color style editing. The results can be viewed in Figs. 4
and 5, where both the style preservation and the content-
awareness of our model during the transfer is highlighted.

5.3. Language-Guided Color Editing

Without being trained with text captions describing the
specific color editing style, our model can also perform
open-vocabulary language-guided image color editing by
leveraging the CLIP-guided diffusion inference process.

[2] introduced classifier-guidance for diffusion model
inference, and [1] extended it by replacing the conventional
classifier with a pretrained CLIP [17] model to apply lan-
guage guidance on the sampling steps of diffusion models.
To demonstrate the full capacity of our model, we follow
the pipeline to perform CLIP-guided image color editing.
In particular, with a pretrained CLIP model consisting of an
image encoder Eimg and a text encoder Etxt, and the input
text prompt c for instruction, the new µ for each denoising
step will be updated with the gradient of the CLIP loss w.r.t.
the predicted image of that step:

µ̂θ((yt, E(x), t)|c) = µθ(yt, E(x), t) + s · σt∇ytLCLIP ,

LCLIP = Eimg(D(yt)) · Etxt(c),

(3)

where s is the guidance scale.

6. Experiments
6.1. Datasets and Implementation Details

Datasets. We follow [23] to use the Adobe Discover dataset
collected from the Adobe Discover website, which is all
contributed by Lightroom users uploading their images and
edits. The edits mainly concentrate on color and tone re-
touching, without changing the original content or geom-
etry. We only use one edit per image to form one-to-one
pairs, and we use all data from the community without any
cherrypicking for only higher-quality samples. Compared
to [23] which uses 60k samples, more data are collected to
reach 500k in total. A larger amount of data represents a
richer and more precise real-world distribution, as well as
demands a higher capacity of the model to handle. We split
the full dataset into 400k/50k/50k pairs for train/val/test sets
respectively.
Experiment Settings. All our and compared experiments
are trained with images of resolution 256 × 256 following
[23]. We use a pretrained VQGAN model for E and D in
the LDM with the downsampling factor f = 4. The UNet
in the LDM is trained from scratch.
Metrics. We evaluate all methods with three aspects of
computational metrics: generative fidelity, diversity, and
our proposed content-awareness.

Figure 6. Language-guided editing results with or without masks.
Our edited colors are more realistic and adaptive to the specific en-
vironments in terms of both luminance and chrominance benefited
from our auxiliary tasks. Our vintage portrait maintains the origi-
nal cold color tone as well as slightly lowers the clarity with film
grain effect to simulate analog photography. Our foggy mountain
also preserves the original brightness with saturation faded. For
the Mars desert and red building, our model produces more vibrant
color. In the masked task, our clothing has more accurate and vivid
colors considering its material and the surrounding lighting.

FID [4]: it measures the gap between the distributions of the
generated and ground truth data using features calculated by
Inception Network. It is the lower the better. This number
reflects the generative fidelity of the editing result.
LPIPS [28]: We generate 16 different edited images for
each input image with randomly sampled noise, then we
compute the mean pair-wise LPIPS distance among the out-
put images. It measures the diversity of generated styles
based on the same set of input images.
Variance σ: Similar to LPIPS, given one input image we
generate 16 edited images, and then compute the pair-wise
pixel L1 distance among the output images. The variance of
these L1 distances is used as this metric. This also measures
the generative diversity.

Furthermore, to quantitatively measure and compare the
content-awareness property across multimodal generative
models, we propose a new framework of metrics based on
the correlations between the input image’s content and their
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Figure 7. Illustration of our proposed framework of metrics for
content-awareness in MMI2IT tasks. Conventional diversity is
calculated over each row, measuring the output various given dif-
ferent latent noise for the same image. Our proposed metrics are
calculated over each column to reflect how the same latent noise
have adaptive editing style for different input content. Detailed
definitions and formulas of each metric variant are illustrated in
the appendix.

output editing styles. We name them Content-Awareness
Metrics (CAMs). There are three variants as shown in
Fig. 7, i.e. CAM-1, CAM-2 and CAM-3. It follows the in-
ference settings for calculating the conventional diversity
above, to generate a grid of output images corresponding to
a set of input images and a set of style latents. Then we cal-
culate the diversity of all images generated from the same
style latent and different input images, i.e. along each col-
umn instead of each row, as CAM-1. CAM-2 and CAM-3
further calculate the correlations between the input images’
content and the output images’ styles, or their distributions,
given the same style latent or the same set of style latents.
These reflect how well the model produces content-aware
editing styles in MMI2IT tasks. Please refer to the appendix
for more details.

Following the settings in [18], since FID is dependent
on the amount of samples, all metrics are calculated and
averaged on 16 random sets each containing 5000 random
samples from the test split. Note that this number might
vary among other previous work so we run and test their
models with our uniform settings.

6.2. Diversified Image Color Editing

The quantitative results of our methods and the variants
are listed in Tab. 1. We mainly compared with SpaceEdit,
the previous state-of-the-art approach. We conduct our full
model with both L1 and L2 losses. Our L2 LDM without
auxiliary tasks has already surpassed in both fidelity and di-
versity metrics than SpaceEdit. For the L1 LDM, our fully
jointly trained model shows further boosted fidelity and
comparable diversity. Tab. 2 lists the results of our proposed
CAMs. It also shows that our main model has the leading
positions on all three variants of the content-awareness mea-
surement. And our ablation models also have intermediate
values above previous GAN-based methods. More experi-
ments and results are provided in the appendix.

Fig. 3 shows the qualitative comparison. Although
SpaceEdit has a higher diversity score than some of our
ablation variants, it is traded by the generative quality and
sacrifices aesthetics. Our results are more realistic with de-
tailed shapes and textures faithfully preserved after appeal-
ing editing, as well as comparable and reasonable diversity.

6.3. Content Awareness Analysis

Our model displays clear patterns of content awareness
in color editing. Using the techniques of paired latent
noise space inversion and exemplar-based color editing in
Secs. 5.1 and 5.2, we conduct content-awareness compar-
isons in Figs. 4 and 5.

In Fig. 4, we first select reference editing images for the
sky and landscape input, and acquire identical color styles
by exemplar-based color transfer (2nd and 3rd rows) to each
model. Then the corresponding style latent z is applied to
a new input image, a close shot of a pottery pot in a sim-
ple indoor background for each model (1st and 4th rows).
SpaceEdit insists on applying the identical global color tone
to all raw images regardless of their content, and our model
adapts them according to the major and minor objects while
still preserving the intended editing color style as faithfully
as possible.

In each subfigure of Fig. 5, the first row contains an ini-
tial input image and three output images of SpaceEdit, the
vanilla LDM, and our joint model. In this row, all the refer-
ence output are managed to be visually identical via paired
latent noise space inversions. Then the same color style la-
tent z of each model is respectively applied to new input im-
ages and generates corresponding edited images as paired
color style transfer. Our joint model is shown to have the
advantage of the most consistent color style following the
style latent as well as the most adaptive to various input im-
ages respectively for aesthetics over others.

6.4. User Studies

We conduct two user studies to validate that our model
yields superior images in terms of both generative qual-
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Figure 8. Mode collapse when training with color perturbation
augmentations on the ground truth data. The model easily overfits
on a single data point and significantly sacrifices diversity.

ity and semantic-adaptiveness to previous methods. In the
studies, each user is shown one raw input image, and two
sets of output images edited by our model and SpaceEdit
respectively. Each set is sampled with 16 different ran-
dom noise as an automated recommendation. In the first
study, users are instructed to rate the overall quality of the
two sets of edited images as a whole from the aspects of
aesthetics, realism and diversity out of 5 stars. In the sec-
ond study, users are asked to simply choose one from the
two sets as they think better than the other following the
same criteria. We released 300 different questionnaires of
randomly selected raw images and their editing results on
Amazon MTurk and each questionnaire is performed by 2
users. There are 577 and 587 valid responses for the two
studies. The results are listed in Tab. 3. Our model sur-
passes SpaceEdit with an average rating of 4.062 over 3.523
and 361 choices in total over 226.

6.5. Ablation Studies

Auxiliary Tasks. Our models are dominatingly boosted
by the auxiliary tasks. As listed in Tab. 1, our baseline
model built upon vanilla LDM is progressively enhanced
with each auxiliary task incorporated. According to the re-
sults, the colorization and chrominance to luminance com-
pletion tasks on the target image domain contribute the most
to the lift of the performance. We observed from the ex-
periments that with the colorization task, the chrominance
in generated images becomes more content-adaptive. And
with the chrominance to luminance completion task, the
brightness of output is more dependent on the input image
than the latent noise. The other two tasks also help by de-
composing the whole edit path into multiple segments to
tackle individually. Notably, the chrominance to luminance
completion task substantially increases the generative diver-

sity.
Trivial data augmentation by color perturbations. We
also investigate if traditional data augmentations on chromi-
nance and luminance can seemingly reach similar perfor-
mance as competitive to our auxiliary tasks. We applied
four types of image color perturbations on the input images:
hue, saturation, brightness, and contrast, covering our auxil-
iary tasks’ manipulation of images. The quantitative results
are listed in Tab. 1. It shows that this data augmentation
scheme can significantly elevate the fidelity, i.e. generating
much closer results to the ground truth distribution; how-
ever, the diversity is meanwhile largely lost and it in fact
results in mode collapse. Fig. 8 visualizes the comparison.
It demonstrates that trivial color perturbations are too sim-
ple for the model to tackle and form shortcuts.

6.6. Language-Guided Color Editing

Our results and comparisons on open-vocabulary
language-guided color editing are displayed in Figs. 6. We
performed two downstream tasks, with and without a region
mask respectively. In both tasks, our model generates more
accurate and vibrant colors according to the text prompts.
Our method benefits from the joint auxiliary tasks of col-
orization and luminance completion to adapt the most accu-
rate and attractive color tone and brightness. More results
are shown in the appendix.

7. Conclusion and Future Work

We explored the diversified image color editing task with
diffusion models and auxiliary color restoration tasks. The
diffusion model exhibits outstanding color editing ability
and enables to match better with the target image distri-
bution than GAN-based methods. Joint training with the
colorization and the chrominance to luminance completion
tasks boosts the deeper semantic understanding and content
awareness for the model. Also, the latent of our model rep-
resents a unique color editing style that can be applied to a
different image with adaptive adjustment based on the new
image semantics. We believe that the content-awareness is
an important property for many MMI2IT models and tasks
to measure and has practical meaning to real-world applica-
tions and user interactions.

Our future work is to extend our color editing framework
to support broader color-related tasks, including image har-
monization, composition and etc. Besides, extended auxil-
iary color tasks, especially those whose data are easier to
expand to a larger scale, such as colorization, may further
boost the main tasks with limited and expensive data. We
hope that our work serves as a versatile joint training frame-
work that can not only promote the color editing field but
also facilitate various color-related tasks.
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