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Figure 1. The proposed MuSHRoom dataset includes 10 rooms captured by consumer devices Kinect and iPhone, and each room provides
ground-truth mesh models obtained by a Faro scanner. Both Kinect and iPhone capture one long and one short RGB-D sequence for
simulating a typical VR/AR use case. The MuSHRoom dataset provides camera poses and point clouds for Kinect and iPhone sequences.
The dash lines demonstrate the rough capture trajectories. This dataset is intended for benchmarking room-scale 3D reconstruction and
novel view synthesis.

Abstract

Metaverse technologies demand accurate, real-time, and
immersive modeling on consumer-grade hardware for both
non-human perception (e.g., drone/robot/autonomous car
navigation) and immersive technologies like AR/VR, requir-
ing both structural accuracy and photorealism. However,
there exists a knowledge gap in how to apply geometric re-
construction and photorealism modeling (novel view syn-
thesis) in a unified framework. To address this gap and
promote the development of robust and immersive model-
ing and rendering with consumer-grade devices, first, we
propose a real-world Multi-Sensor Hybrid Room Dataset
(MuSHRoom). Our dataset presents exciting challenges
and requires state-of-the-art methods to be cost-effective,
robust to noisy data and devices, and can jointly learn 3D
reconstruction and novel view synthesis instead of treat-
ing them as separate tasks, making them ideal for real-
world applications. Second, we benchmark several famous

pipelines on our dataset for joint 3D mesh reconstruction
and novel view synthesis. Finally, in order to further im-
prove the overall performance, we propose a new method
that achieves a good trade-off between the two tasks. Our
dataset and benchmark show great potential in promoting
the improvements for fusing 3D reconstruction and high-
quality rendering in a robust and computationally efficient
end-to-end fashion. The dataset and code are available at
the project website: https://xuqianren.github.
io/publications/MuSHRoom/.

1. Introduction
An effective way for artificial intelligence to understand

and interact with the tangible realm is to simulate and ex-
trapolate physical objects into a digital environment with
the help of sensory input signals, such as RGB images or
RGB-D images captured by cameras. To realize the task
of creating virtual representations of tangible entities, geo-
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metric reconstruction (3D reconstruction) and photorealism
modeling (novel view synthesis, NVS) tasks have been pro-
posed, and both of them play a significant role in the de-
velopment of VR/AR [13, 17]. Nonetheless, current room-
scale datasets do not support evaluating the two tasks jointly
in a quantitative way, which hinders the state-of-the-art
methods applied to VR/AR applications that require both
geometry accuracy and photorealism.

Most of the current room-scale datasets [4, 32] either
only contain RGB/RGB-D inputs without ground truth
meshes for 3D reconstruction comparison, or are over-
cleaned [2,33] and cannot fully reflect the challenges in the
real world. Redwood Scan Dataset [25] provides RGB-D
inputs of real-world room scenes and industrial laser scans
for mesh reference. However, it only uses a single-capturing
device in each room to capture a single sequence, which is
not enough for simulating the real VR/AR use case.

Considering the lack of proper benchmark and datasets,
we propose a real-world Multi-Sensor Hybrid Room
Dataset (MuSHRoom). Our dataset focuses on indoor
room-scale scenarios and raises interesting real-world chal-
lenges on occlusion, motion blur, reflection, transparency,
sparseness, illumination diversity, etc. Each room is cap-
tured with the Azure Kinect and iPhone consumer device
for RGB-D sequences as inputs and an industrial laser scan-
ner as geometry ground truth reference. For each consumer
device, we capture two sequences: one long capture with
most of the details inside the room and another shorter se-
quence captured with an independent trajectory.

Based on the MuSHRoom dataset, we propose a new
benchmark, aiming to evaluate both the reconstruction and
NVS ability of methods. Furthermore, we also propose a
new protocol for practical NVS evaluation. When evaluat-
ing NVS, previous methods [4, 32] usually uniformly sam-
ple frames from the whole sequences as the test set, which
does not reflect the real case in VR/AR. In our comparison
protocol, we use the long sequences as the training set and
the short sequences as the test set, which raises challenges
in robustness since the camera positions and view directions
have a large gap between these two captures when observ-
ing the same objects. This evaluation protocol is common
in AR/VR applications where the users will scan the whole
room for the first time, and then VR glasses will render
the reality according to the positions and view directions
of users.

Most existing pipelines are designed to either perform
excellent geometry modeling or photorealistic rendering.
Based on the proposed MuSHRoom dataset and benchmark,
we provide an extensive comparison of previous pipelines
for both reconstruction and rendering quality. Moreover,
we propose a new method, employing a two-head structure
and enriching the training dataset through data augmenta-
tion. Our method can obtain a trade-off between geometry

and synthesis accuracy. The comparison also shows that the
need for achieving both reconstruction and NVS tasks at the
same time is clear and a long way.

Our contributions can be summarized as follows:

• We make one of the first attempts to construct a
dataset collected with multiple sensors for joint 3D
reconstruction and novel view synthesis. We provide
a detailed pipeline and program codes for capturing
and processing the data, including information on the
hardware setup, data acquisition, and post-processing
steps. Our pipeline serves as a comprehensive guide
for researchers interested in creating similar datasets.

• We provide an extensive comparison of our proposed
method with previous methods based on our new
benchmark. Our evaluation provides insights into the
strengths and limitations of each pipeline and their ap-
plicability to real-world scenarios.

• Our dataset raises new real-world challenges and prac-
tical evaluation protocol for the state-of-the-art meth-
ods to apply to real applications and encourages fur-
ther exploration of the challenges and opportunities
presented by our dataset.

2. Related Work

There are numerous datasets for the 3D reconstruction or
novel view synthesis tasks. Therefore, we limit our discus-
sion to the most related scene-level datasets and introduce
benchmarks used for modeling and rendering.
3D Room-Level Datasets. Redwood Scan [25] captures
five real-world rooms with one single RGB-D camera and
Faro scanner. It is the most similar dataset to ours, but it
only used one device to get the color and depth images.
Neural RGB-D Synthesis Datasets [2, 33] are unified syn-
thesized datasets that can be used for joint 3D reconstruc-
tion and novel view synthesis comparison. To simulate real-
world captures, noise and artifacts are manually added to
the depth images, and BundleFusion [12] is used to gen-
erate the estimated pose annotations. However, real-world
noise caused by motion blur, shaking, reflection, etc., can-
not be easily simulated. Thus, the domain gap between
these datasets and real scenes still remains. ETH3D [30] re-
leases ground truth laser scans with registered images cap-
tured by multiple devices. However, they only provide high-
resolution RGB images without depth, and the other de-
vice only provides grayscale low-resolution images. Scan-
Net [11] is targeted for 3D scene understanding. It con-
tains a large volume of RGB-D sequences and is a valu-
able dataset for room-scale 3D reconstruction. However,
the evaluation can only be conducted qualitatively due to
the lack of ground truth mesh models.
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Figure 2. The process pipeline. We use a Faro Scanner to obtain point clouds of the room from different locations and stitch them to create
a complete model of the room, compensating for occluded areas. We use spectacular AI SDK to extract the undistorted RGB-D and camera
pose for Kinect sequences and use the z-buffer to project point clouds into pixel coordinates to in-paint the raw depth. iPhone sequences
are processed and registered by Polycam pose. Long/short captures of each consumer device are registered with global registration and
further refined by COLMAP [29] bundle adjustment.

With the rapid prosperity of research on NeRF [21],
new datasets are proposed for novel view synthesis. Nerf-
studio Dataset [32] contains object-scale and room-scale
scenes captured with a mobile phone or mirrorless cam-
era. Mip-NeRF 360 Dataset [4] includes five outdoor scenes
and four indoor scenes, among which only one sequence
is captured in the room-scale scenario. Note that only
RGB images are provided in the last two datasets. Some
datasets [6,8,20,31,36] are commonly used for scene recon-
struction and rendering. However, they are either synthetic
datasets [8,31] or lack ground truth meshes [20,36]. [6] pro-
vides real RGB-D images with ground truth meshes but is
only captured by a single device.

3D Reconstruction and NVS Methods. Commercial soft-
ware applications, such as Pixel4D [26] and Reality Cap-
ture [28], can be used for image-based reconstruction. How-
ever, they require dense input sequences to guarantee preci-
sion and inevitably suffer significant performance degrada-
tion when the inputs are very sparse, limiting their appli-
cability in room reconstruction with commercial devices.
Traditional methods like volumetric fusion [10], BundleFu-
sion [12], KinectFusion [22] reconstruct 3D models from
image sets based on geometric vision and graphics princi-
ples, but they are lack robustness of some complex scenes.
Based on volumetric rendering, Nerf++ [41], MipNeRF
360 [4], Nerfstudio [32], and zip-NeRF [5] extend original
NeRF [21] to real-scene applications. NICE-SLAM [45]
and NICER-SLAM [44] combine NeRF with simultaneous
localization and mapping (SLAM) method, enabling real-
time dense RGB-D SLAM system that can be applied to
large-scale scenes. NeuS [34], VolSDF [38], Neural RGB-
D [3], GO-Surf [33], and BakedSDF [39] combine trun-
cated signed distance function (TSDF) and volumetric ren-
dering to minimize the geometry ambiguity. Many of these

pipelines prioritize either geometric accuracy or synthesis
enhancement. This specialization can limit their effective-
ness in VR/AR applications, which demand both structural
accuracy and realistic immersion. Therefore, we propose a
new method that provides a trade-off between the recon-
struction and rendering quality and further improves the
performance by overcoming one of the challenges provided
by our dataset.

3. The MuSHRoom Dataset
This section first presents the procedures for record-

ing real-world indoor room data using the Kinect, iPhone,
and Faro scanner. Then, we describe the post-processing
steps we applied to the captured data before the evalua-
tion. Lastly, we highlight the key challenges of the obtained
dataset.

3.1. Data Collection

To create a diverse dataset, we selected rooms with vary-
ing shapes, colors, and indoor objects. We have chosen 10
real-world rooms while further details on the selected rooms
can be found in the supplementary material. Prior to record-
ing, we take measures to ensure that any personal privacy
concerns are addressed and that the rooms do not reveal any
confidential information. During the recording process, we
ensured that objects within the rooms remained stationary
to maintain consistency across devices and that the objects
recorded by each device were in the same position.

3.1.1 Raw data capturing

In Figure 2, we briefly illustrate the data-capturing pipelines
for the three devices. Comparisons of our dataset with oth-
ers can be found in Table 1. Compared with other datasets,
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Dataset Nroom Device RGB-D Nseq Resolution
Pose estimation

method
Geometry ground

truth format

Tanks&Temples [19] 4
FARO scanner X330 [15];

Sony A7SM2 camera 4 1920×1080 COLMAP [29] point cloud

Redwood Scan [25] 5
FARO scanner X330;

Asus Xtion Live camera ✓ 5 640×480 color ICP [25] point cloud

ETH3D [30] 7
FARO scanner X330;

Nikon D3X DSLR camera;
Global-shutter camera

9
high-res: 6048×4032;

low-res: 752×480 COLMAP [29] point cloud

Neural RGB-D
synthesis dataset [2] 10 Synthetic camera ✓ 10 640×480 BundleFusion [12]

Blender [7]
mesh

Mip-NeRF 360 [4] 1 Fujifilm X100V camera 1 3114×2075 COLMAP [29] -
Nerfstudio [32] 1 mobile phone 1 994×738 Polycam [27] -

MuSHRoom 10
Faro scanner X130;
Azure Kinect v2;

iPhone 12 Pro Max
✓ 40

Kinect: 1280×720
iPhone: 994×738

Kinect: Spectacular AI [1] & COLMAP [29]
iPhone: Polycam [27] & COLMAP [29] mesh

Table 1. Comparison between 3D reconstruction datasets. We only counted the number of indoor rooms from each datasets. MuSHRoom
dataset provides the most indoor scenes captured by multiple sensors.

MuSHRoom provides the most indoor scenes captured with
multiple RGB-D devices and has expert-cleaned reference
meshes. All the raw color/depth images, in-painted depth,
the estimated pose and point cloud extracted by Spectacular
AI SDK [1] and Polycam [27], and the expert-cleaned ref-
erence mesh will be provided for further research. We use
three devices to record each room. A faro scanner is used
for high-precision point cloud collection for geometry com-
parison, and consumer device Azure Kinect and iPhone are
used to collect RGB-D sequences.
Kinect. We use an Azure Kinect depth camera to get syn-
chronized depth and color images at 30 Hz with a lap-
top. The depth images are captured with a resolution of
512x512, and color images at 1280x720 pixels. We use the
wide FoV mode of the depth camera with 2x2 binning to in-
crease the field of view for better room reconstruction. Iner-
tial Measurement Unit (IMU) data was recorded at 1.6kHz.
For color image capturing, we fixed the white balance for
each room and the auto-exposure for 8 rooms except the
sauna and olohuone room, which have large illumination
variations inside the room. During capturing, to increase
the possibility of capturing all the details of the room for
the long capture, we use a visualization system developed
by Spectacular AI SDK [1] to inspect the integrity of the re-
constructed point cloud extracted from the captured RGB-D
images in real-time.

When evaluating the novel view synthesis, most of the
previous methods [4, 32] select keyframes from the se-
quences uniformly. However, this may not reflect the real
case in AR/VR. It is common in real-world applications for
users to first scan an entire room with a device and then wear
AR glasses to interact with the environment from random
positions and directions. Our goal is to simulate this sce-
nario in order to create a more realistic evaluation method.
We recorded two sequences inside each room. For the long
capture, we try to include all the parts of the whole scene,
and when capturing the short one, we attempt to follow a

different motion trajectory.
iPhone. We use an iPhone 12 pro max to record iPhone
data with the Polycam app [27]. During capture, a UI sys-
tem provided by Polycam is also used to guarantee all the
objects, ceiling, floor, and walls have been covered within
one capture video. Auto-exposure and auto-white balance
are used by default. To ensure the stability of the iPhone,
we fix it on a DJI OSMO Mobile 3 handle [14]. Follow-
ing the same pattern with the Kinect device, we collect the
second sequence with the iPhone as a test dataset.
Faro scanner. To obtain the geometry ground truth refer-
ence mesh of each room, Faro Focus 3D X130 Laser Scan-
ner [15] fixed on a tripod is used to collect a high-resolution
XYZRGB point cloud. The reach of the laser ranges from
0.6m to 130m. We have selected the indoor capture mode,
which has a range of more than 10 meters and a ranging
noise of 0.15 millimeters. Each scan was set with 360◦

horizontal, 170◦ vertical (-60◦ to 90◦) with 1/5 resolution,
which takes around 9 minutes to record. The resolution of
each scan is 8192x3414 pixels, with a maximum of 28 mil-
lion points. We opt for the horizontal weighted metering
mode for the camera, which utilizes the light from the hor-
izontal direction to determine the optimal exposure setting.
This mode is particularly well-suited for indoor rooms with
bright ceiling lights. In order to capture a comprehensive
view of the room’s interior surface, we perform scanning
from 4-5 positions for regular rooms and 7-10 positions for
larger rooms. Each position was strategically selected to
maximize the coverage of areas that have not been scanned.

3.1.2 Post-processing

Kinect. After acquiring the raw data, we used Spectacular
AI SDK to extract the 6-degree-of-freedom (6DoF) pose in
the OpenCV coordinate system [23]. Spectacular AI SDK
fuses data from RGB-D cameras and IMU sensors and out-
puts a robust and accurate 6DoF pose for the keyframes
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extracted from the whole sequence. It also exports a re-
constructed point cloud registered with multi-view informa-
tion. To address the issue of raw depth images containing
multiple holes with invalid depth values, we utilize the z-
buffer [16] to render depth images from the point cloud and
then perform hole in-painting. We perform global registra-
tion by using COLMAP [29] to re-calculate the poses for
all the images from the long and short capture with bundle
adjustment, and then we re-scale and rotate the COLMAP
pose to align with the original Spectacular AI pose. Pose
and point cloud optimized by bundle adjustment are used
as estimated pose and estimated point cloud for reconstruc-
tion.
iPhone. The raw images have a resolution of 1024×768
and a raw depth of 256×192 pixels. We use Polycom to
extract poses for each keyframe with global optimization.
Then, we use scripts in Nerfstudio [32] to pre-process the
RGB-D images to get cropped color images as well as up-
scaled aligned depth images with a resolution of 994×738
pixels. To register long and short sequences, we also use
COLMAP to re-calculate the COLMAP pose as estimated
pose and align them to the Polycam pose coordination.
Faro Scanner. We register scans captured inside one room
with FARO SCENE Software. To further reduce the size
of the point cloud without excessive loss of accuracy, we
down-sample 3x for each registered point cloud. When
getting mesh from these high-resolution point clouds, most
of the previous datasets [25, 30] utilize Poisson reconstruc-
tion [18], which is not suitable for our scenes with complex
objects and high occlusion. To ensure the quality of the
mesh, we use Reality Capture [28] to triangulate mesh from
point clouds. However, there are still artifacts in the refer-
ence mesh due to occlusion and complex reflective surface,
which are detrimental to the evaluation. These artifacts
are again manually refined by removing wrong vertices and
completing holes in MeshLab [9, 24] and Blender [7], and
will not contribute to the final comparison.

When comparing different benchmarks, the recon-
structed mesh needs to be aligned with the ground truth ref-
erence meshes. We use the estimated point cloud of each
room and each device to register the reference mesh auto-
matically. For other pipelines that can expose camera poses,
we align the predicted result to the estimated point cloud.
Similar to the alignment procedure proposed in Tanks and
Temples [19], we first initialize a global scaling and align-
ment with RANSAC and then refine the registration with
color ICP to get the final alignment T.

3.2. Challenges of the MuSHRoom dataset

The MuSHRoom dataset introduces several practical
challenges, including sparse occlusion, motion blur, reflec-
tion, transparent objects, and significant illumination vari-
ations, which are detrimental to the training of the recon-

Sparse Input Occlusion Motion blur

Reflection Transparent Surface Large illumination variation

Figure 3. The challenges observed in the MuSHRoom dataset.

struction and rendering models. In Figure 3, we illustrate
examples of the challenges observed in our dataset.
Sparseness To ensure the accuracy of the entire room re-
construction, we only optimize the poses for keyframes with
specific view gaps. As a result, the extracted keyframes of
each device and room are relatively sparse. This character-
istic is not ideal for methods such as Neural Radiance Fields
(NeRF), which benefit from dense images as input.
Occlusion The layout of objects within each room often in-
cludes narrow spaces, making it challenging to capture the
backside of many objects. As a result, artifacts can occur
during the reconstruction process, as the NeRF models are
required to guess the appearance of unseen areas randomly.
Motion Blur Unsteady walking patterns and shaky hands
can cause images to appear blurry, which will influence the
training process.
Reflection Reflection usually occurs on metal surfaces, like
the stove, TV, or mirror, where depth is hard to capture. The
invalid depth is detrimental to the learning for both recon-
struction and synthesis tasks.
Transparency Transparency is a difficult attribute to learn
because of the wrong depth value. These regions are usually
completely missing from the mesh model.
Large illumination variations Due to uneven light con-
ditions inside one room, the illumination may vary signif-
icantly, making it hard to learn the illumination circum-
stances and synthesize images as close as possible to the
real images.
Evaluation gap When training and testing models with dif-
ferent captures and trajectories, the directions and positions
of the camera in the training and test set may have large pose
differences, which stimulates the pipelines to be robust.

4. Benchmark
We propose a new benchmark for developing unified

frameworks that focus on realizing both immersive and
structurally accurate modeling under real-world constraints.
These frameworks are optimized for consumer-grade hard-
ware and operate in an end-to-end fashion. They take as
input RGB-D sequences captured by consumer devices and
output both accurate 3D mesh models and photorealistic im-
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ages synthesized from novel views. We compare the meth-
ods for both the mesh reconstruction and novel view syn-
thesis quality quantitatively and qualitatively.

4.1. Evaluating Geometric Reconstruction

Metrics. We evaluate the predicted mesh models with the
reference mesh from both accuracy and completeness as-
pects. Following the mesh evaluation protocol introduced
in GO-Surf [33], we measure accuracy (Acc), comple-
tion (Comp), Chamfer distance (C- ℓ1), normal consistency
(NC) and F-score metrics when evaluating reconstruction
results. The comparison is conducted between the point
cloud sampled from the predicted mesh and reference mesh
at a density of 1 point per cm2. The threshold for comput-
ing the F-score is 5 cm. More details can be seen in the
Supplementary Materials.
Mesh Culling. In previous methods [2, 33], the mesh will
be culled according to whether the surfaces have been ob-
served, occluded, or have valid depth before evaluation. We
follow this protocol for Kinect sequences, and we also cut
the predicted mesh outside the silhouette of the reference
mesh. Because in MuSHRoom some rooms are unbounded
or non-square scenes, which cannot be simply culled by
square-style bounding boxes and previous assumptions. We
project the predicted mesh and reference mesh to the xy,
yz, and xz planes separately and remove vertices and their
corresponding triangles of the predicted mesh that out of
the contours of the projection of the reference mesh. After
getting a predicted mesh that is not influenced by the out-
side surface, we only compare the parts owned by reference
mesh. For iPhone sequences, we only apply this cutting
method, and the details about the culling strategy can be
seen in the Supplementary Materials.
Training and evaluation strategy. To compare mesh qual-
ity, we utilize frames from the long capture of each device
and room as inputs and compare the resulting mesh with the
cleaned ground truth mesh.

4.2. Evaluating Novel View Synthesis

We test novel view synthesis with two comparison meth-
ods: testing within a single sequence and testing with a dif-
ferent sequence. When comparing with the testing within
a single sequence method, we extract keyframes from one
sequence as test data and training methods on the other
frames of the same sequence. However, the uniform sam-
pling method usually used in previous methods [4,32] is not
practical in VR/AR applications that require random trajec-
tories. Thus, we propose a new evaluation protocol, test-
ing with a different sequence, which uses one sequence for
training and the other individual sequence for testing. The
distances and directions of the camera from the same object
will be significantly different in the two sequences, which
poses a great challenge to the rendering robustness of the

(𝑥, 𝑦, 𝑧)

𝑀!"#

𝑀$%&

(𝜃, 𝜙)

𝑀'

𝑑(

𝑒"
𝑐

𝑐

𝜎(

𝑒'

𝑐(
𝐿)*+*$

𝐿!"#

𝐿,(-*./+

𝐿",012

𝐿#!

Figure 4. The visualization of the structure of our method. Data
augmentation (DA) generates pseudo images/depth to enrich the
training set. Our structure predicts SDF and density in an end-
to-end fashion, which adds flexibility to the density and further
composite background content. (x, y, z) and (θ, ϕ) is the position
and direction of the sampling point along the camera ray. di, ci,
σi is the predicted signed distance, color, and density values of
each sampling point correspondingly. ed, eσ is the corresponding
signed distance and density embedding feature.

pipelines.
Metrics. We compare images synthesized from novel views
with PSNR, SSIM [35], and LPIPS [43] evaluation metrics.
Training and evaluation strategy. When testing within a
single sequence, we select 10% frames from the long se-
quence uniformly as the test set, and others are used as
training datasets. When testing with a different sequence,
we use the long capture for training and the short capture
for testing based on the MuSHRoom dataset.

5. Proposed Method

We develop a new method for joint estimating 3D recon-
struction and novel view synthesis. Currently, NeRF [21]
utilizes volume rendering to achieve impressive fidelity for
novel view synthesis, but its intense focus on photorealis-
tic rendering tends to compromise geometric accuracy. On
the other hand, pipelines based on SDF prediction can accu-
rately capture surfaces. However, when directly synthesiz-
ing RGB images from these pipelines, density transformed
from SDF will lose color fidelity and flexibility, leading to
underfitting in appearance learning.

We first adopt a two-head structure to provide a trade-off
between rendering quality and reconstruction quality. In-
spired by ResNeRF [37], we reimplement Neus-facto [40]
with a two-head structure that employs both volume den-
sity field for photorealistic rendering and SDF for geometry
accuracy. In Neus-facto, SDF is predicted from the fea-
ture of sampling points and transformed to density for the
background content synthesis [42]. Instead of getting den-
sity from SDF, we directly predict it from multilayer per-
ceptron (MLP), which gives the density much more free-
dom and provides a trade-off between photorealism synthe-
sis and structural accurate modeling.
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Device Methods Reconstruction quality Rendering quality
Test within a single sequence Test with a different sequence

Acc ↓ Comp↓ C-ℓ1 ↓ NC ↑ F-score ↑ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Kinect

Volumetric Fusion [10] 0.0354 0.0341 0.0347 0.8159 0.8439 13.84 0.6628 0.4208 13.10 0.6509 0.4423
GO-Surf [33] 0.0355 0.0367 0.0361 0.8664 0.8620 20.56 0.7708 0.3095 20.01 0.7693 0.2812
Nerfacto [32] 0.0570 0.1485 0.1027 0.6878 0.5715 22.08 0.7971 0.2479 22.60 0.8457 0.1822

NeuS-facto [40] 0.0294 0.0253 0.0274 0.8738 0.9025 20.61 0.7799 0.2760 21.50 0.8285 0.2094
Ours 0.0295 0.0258 0.0276 0.8736 0.8995 22.26 0.8040 0.2608 22.45 0.8423 0.2012

iPhone

Volumetric Fusion [10] 0.0521 0.0207 0.0364 0.7867 0.8050 11.74 0.5519 0.5126 11.80 0.5525 0.5094
GO-Surf [33] 0.0630 0.0305 0.0468 0.8401 0.7818 17.50 0.6292 0.4620 17.64 0.6247 0.4832
Nerfacto [32] 0.0592 0.1450 0.1021 0.6661 0.5973 20.53 0.7555 0.2696 20.72 0.7625 0.2670

NeuS-facto [40] 0.0659 0.0453 0.0556 0.8135 0.7200 17.11 0.6696 0.4501 16.83 0.6504 0.4608
Ours 0.0629 0.0448 0.0539 0.8231 0.7281 19.29 0.7130 0.3898 18.29 0.6819 0.3985

Table 2. The average metrics of reconstruction and rendering quality for all rooms. The best results are highlighted in pink. The second
best results are marked in yellow. Test within a single sequence means we uniformly sample test frames from a single sequence and train
on all left frames. Test with a different sequence means we train on one sequence and test on another individual sequence.

As shown in Figure 4, the camera ray of each pixel start-
ing from the camera position o will travel in the direction
of the camera’s orientation r. Neural networks Mrgb, Mσ

sample N points si = o + dir, si ∈ SN = {s1, ..., sN}
along each ray and predict color ci and density σi. To get
the density, instead of directly transforming from predicted
signed distance di generated from Msdf , we employ another
density prediction MLP Mσ , accepts concatenated di, ed
and (x, y, z) to get the volume density σi and density em-
bedding eσ . (θ, ϕ), the direction of the sampling point, con-
catenated with (x, y, z), ed, eσ are imported to Mrgb to pre-
dict color ci. We utilize the background model [42] for com-
positing appearance, σi is used to accumulate background
color, and the final color Ĉ is a combination of accumu-
lated ci and background color cbg . To control the training
process, we apply SDF loss Lsdf , free space regulation loss
Lfs [3], and eikonal loss Leikonal [33] for predicted SDF.

ℓsdf =
1

|Stri|
∑

x∈Stri

(d(s)− b(s))2 (1)

where b is the observed signed distance, which is truncated
by a distance t = 5cm from the captured depth. Stri =
|D − di| <= t is the set of sampling points between the
front and back truncation surfaces.

ℓfs =
1

|Sfs|
∑

x∈Sfs

(d(s)− t)
2 (2)

Sfs = |D − di| > t is the set of sampling points that are
distributed between the ray start position and truncation sur-
face.

ℓeikonal =
1

|SN |
∑
x∈SN

(1− ∥∇d(s)∥)2 (3)

where ∇d is the gradient of d. RGB loss Lcolor and depth
loss Ldepth are used for color and depth regulation during
training.

ℓcolor = |C− Ĉ|, ℓd = |D− D̂| (4)

where C/Ĉ and D/D̂ are the real/predicted color and depth
of each pixel.

We further apply data augmentation to solve one of the
challenges released by our dataset, sparseness, to further
boost the performance of our baseline. The large content
gap between adjacent frames can destabilize the training
process. This often results in the model initially learning
from diverse directions and becoming unstable. To control
the learning process, we interplate n new poses along the
trajectory between every two successive frames, rendering
corresponding images and depth images from trained mod-
els that can let us get the best synthesis and depth effect
in the experiments to further enrich the training dataset1.
These pseudo-RGB-D images work as a regulation, acceler-
ating the convergence and limiting the inaccuracies caused
by sparse data in the training process.

6. Experiments
We compare our baseline with several representative

pipelines for both reconstruction and rendering quality, and
the detailed instructions for these methods can be found in
the Supplementary Materials.

6.1. Quantitative Evaluation

We calculate the average metrics of reconstruction and
rendering quality for all rooms and show them in Table 2.
Nerfacto [32] is excellent in rendering quality but is much
worse than others in terms of mesh completeness. GO-
Surf [33] and NeuS-facto [40] predict SDF, which regulates
the mesh without ambiguity, but their synthesis qualities
are worse than NeRF. Nevertheless, our method provides
a good trade-off for the reconstruction and rendering qual-
ity. The results also highlight that the inherent complexities
of our dataset impede the enhancement of rendering fidelity,

1To render pseudo-RGB images, we use Nerfacto for both Kinect and
iPhone. To render pseudo-depth images, we use NeuS-facto to render
depth for Kinect sequences and GO-Surf to render depth for iPhone se-
quences
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Figure 5. The qualitative comparison on Kinect sequences. Test within a single sequence means we uniform sample test frames from a
single sequence and train on all left frames. Test with a different sequence means we train on one sequence and test on another individual
sequence. We also visualize the mesh qualitatively. Please zoom in to see the details.

which requires further advanced methods developed for real
scenarios.

6.2. Qualitative Evaluation

We show the qualitative results of testing within one se-
quence and testing with different sequences, mesh quality
of the Kinect sequences in Figure 5. The images produced
by Volumetric Fusion [10] have a large domain gap com-
pared to real images, as they are directly synthesized from
mesh. Nerfacto provides the most details and fine-grained
images, but they are not very robust when views change dra-
matically, as seen in the third row of Figure 5. NeuS-facto
and our method are relatively much more robust, but they
still lack details. More visualization of Kinect and iPhone
sequences can be found in the Supplementary Materials.

6.3. Ablation Study

We provide the ablation study of the two-head struc-
ture and data augmentation techniques of some rooms in
our dataset by measuring the rendering quality. The two-
head structure contributes to the overall improvement, and
the data augmentation method further regulates the training
process. Data augmentation can work more efficiently for
large rooms that have more obvious sparse frames, like the
activity room. However, directly applying this method is
not very solid. When the sequence is not so sparse, pseudo
images/depth will actually hinder the training process. This
technique requires further research.

7. Conclusion
We have proposed a real-world dataset and a new bench-

mark with multiple sensors for evaluating pipelines on both

Device Room Methods
Test within a

single sequence
Test with a

different sequence
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Kinect

activity
NeuS-facto 19.53 0.7258 0.3356 20.18 0.7707 0.2750

w/o DA 20.30 0.7379 0.3222 21.06 0.7864 0.2531
Ours 20.89 0.7509 0.3221 21.33 0.7919 0.2534

honka
NeuS-facto 19.40 0.7759 0.2658 22.45 0.8505 0.1616

w/o DA 20.70 0.7962 0.2440 24.04 0.8671 0.1401
Ours 20.86 0.8000 0.2584 23.59 0.8683 0.1527

iPhone

computer
NeuS-facto 16.59 0.6636 0.4197 15.83 0.6327 0.4321

w/o DA 19.45 0.7248 0.3661 17.66 0.6769 0.3835
Ours 20.10 0.7411 0.3530 18.10 0.6894 0.3649

sauna
NeuS-facto 17.37 0.6791 0.5354 16.78 0.6585 0.5330

w/o DA 19.31 0.7043 0.4716 18.20 0.6742 0.4760
Ours 19.82 0.7126 0.4700 18.61 0.6805 0.4778

Table 3. The ablation study of two-head structure and data aug-
mentation (DA) in rendering quality. Two-head structure can im-
prove the overall performance. DA is much more effective for
larger rooms.

3D reconstruction accuracy and novel view synthesis qual-
ity. The new dataset poses more realistic challenges and
supports more practical evaluation. With consumer-grade
devices to collect inputs, pipelines are encouraged to be ro-
bust, generalized, and computationally efficient. We also
propose a new method and evaluate it with several popular
pipelines, revealing the aim to realize both geometry accu-
racy and immersion still has a long way to go. Our dataset
can serve as a foundation for the development of a unified
framework training in an end-to-end fashion.
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Izadi, and Christian Theobalt. Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly surface
re-integration. arXiv: Graphics,arXiv: Graphics, Apr 2016.
2, 3, 4

[13] Nianchen Deng, Zhenyi He, Jiannan Ye, Budmonde
Duinkharjav, Praneeth Chakravarthula, Xubo Yang, and Qi
Sun. Fov-nerf: Foveated neural radiance fields for virtual
reality. IEEE TVCG, 28(11):3854–3864, 2022. 2

[14] DJI. Dji osmo mobile 3 handle. https://www.dji.
com/fi/osmo-mobile-3. 4

[15] faro. Faro focus laser scanner. https://www.faro.
com/en/Products/Hardware/Focus- Laser-
Scanners. 4

[16] Xiaoyang Huang, Yi Zhang, Bingbing Ni, Teng Li, Kai
Chen, and Wenjun Zhang. Boosting point clouds rendering
via radiance mapping. In AAAI, volume 37, pages 953–961,
2023. 5

[17] Yi-Hua Huang, Yue He, Yu-Jie Yuan, Yu-Kun Lai, and Lin
Gao. Stylizednerf: consistent 3d scene stylization as styl-
ized nerf via 2d-3d mutual learning. In CVPR, pages 18342–
18352, 2022. 2

[18] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-
face reconstruction. ACM TOG, 32(3):1–13, 2013. 5

[19] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM TOG, 36(4):1–13, 2017. 4, 5

[20] Andreas Meuleman, Yu-Lun Liu, Chen Gao, Jia-Bin Huang,
Changil Kim, MinH. Kim, and Johannes Kopf. Progres-
sively optimized local radiance fields for robust view syn-
thesis. Mar 2023. 3

[21] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 3,
6

[22] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J. Davison, Push-
meet Kohi, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. Kinectfusion: Real-time dense surface mapping
and tracking. In 2011 10th IEEE International Symposium
on Mixed and Augmented Reality, pages 127–136, 2011. 3

[23] opencv. Opencv: Open source computer vision library.
https://github.com/opencv/opencv. 4

[24] Cignoni Paolo, Muntoni Alessandro, Ranzuglia Guido, and
Callieri Marco. Meshlab. 10.5281/zenodo.5114037.
5

[25] Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Colored
point cloud registration revisited. In ICCV, pages 143–152,
2017. 2, 4, 5

[26] Pixel4D. Pixel4D. https://www.pix4d.com. 3
[27] Polycam. Polycam. https://poly.cam. 4
[28] Capturing reality. Reality Capture. https://www.

capturingreality.com. 3, 5
[29] Johannes L. Schonberger and Jan-Michael Frahm. Structure-

from-motion revisited. In CVPR, May 2016. 3, 4, 5
[30] Thomas Schops, Johannes L Schonberger, Silvano Galliani,

Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-
dreas Geiger. A multi-view stereo benchmark with high-
resolution images and multi-camera videos. In CVPR, pages
3260–3269, 2017. 2, 4, 5

[31] Julian Straub, ThomasA. Whelan, Lingni Ma, Yufan Chen,
Erik Wijmans, Simon Green, Jakob Engel, Raul Mur-Artal,
CarlYuheng Ren, Shobhit Verma, Anton Clarkson, Mingfei
Yan, BrianChristopher Budge, Yajie Yan, Xiaqing Pan, June
Yon, Yuyang Zou, Kimberly Leon, NigelP. Carter, Jesus
Briales, Tyler Gillingham, Elias Mueggler, Luis Pesqueira,
Manolis Savva, Dhruv Batra, Hauke Strasdat, RenzoDe
Nardi, Michael Goesele, Steven Lovegrove, and Richard
Newcombe. The replica dataset: A digital replica of in-
door spaces. Cornell University - arXiv,Cornell University
- arXiv, Jun 2019. 3

4516



[32] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, et al. Nerfstudio: A
modular framework for neural radiance field development.
arXiv preprint arXiv:2302.04264, 2023. 2, 3, 4, 5, 6, 7

[33] Jingwen Wang, Tymoteusz Bleja, and Lourdes Agapito. Go-
surf: Neural feature grid optimization for fast, high-fidelity
rgb-d surface reconstruction. In 2022 International Confer-
ence on 3D Vision (3DV), pages 433–442. IEEE, 2022. 2, 3,
6, 7

[34] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
NeurIPS, 2021. 3

[35] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004. 6

[36] Jianxiong Xiao, Andrew Owens, and Antonio Torralba.
Sun3d: A database of big spaces reconstructed using sfm
and object labels. In ICCV, Nov 2013. 3

[37] Yuting Xiao, Yiqun Zhao, Yanyu Xu, and Shenghua Gao.
Resnerf: Geometry-guided residual neural radiance field
for indoor scene novel view synthesis. arXiv preprint
arXiv:2211.16211, 2022. 6

[38] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. NeurIPS, Dec
2021. 3

[39] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
PratulP. Srinivasan, Richard Szeliski, JonathanT. Barron, and
Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-
time view synthesis. Feb 2023. 3

[40] Zehao Yu, Anpei Chen, Bozidar Antic, Songyou Peng Peng,
Apratim Bhattacharyya, Michael Niemeyer, Siyu Tang,
Torsten Sattler, and Andreas Geiger. Sdfstudio: A unified
framework for surface reconstruction, 2022. 6, 7

[41] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radi-
ance fields. arXiv: Computer Vision and Pattern Recogni-
tion,arXiv: Computer Vision and Pattern Recognition, Oct
2020. 3

[42] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radi-
ance fields. arXiv: Computer Vision and Pattern Recogni-
tion,arXiv: Computer Vision and Pattern Recognition, Oct
2020. 6, 7

[43] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 6

[44] Zihan Zhu, Songyou Peng, Viktor Larsson, Zhaopeng Cui,
MartinR. Oswald, Andreas Geiger, and Marc Pollefeys.
Nicer-slam: Neural implicit scene encoding for rgb slam.
Feb 2023. 3

[45] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-
jun Bao, Zhaopeng Cui, Martin R. Oswald, and Marc Polle-

feys. Nice-slam: Neural implicit scalable encoding for slam.
In CVPR, May 2022. 3

4517


