This WACYV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

Recognition of Unseen Bird Species by Learning from Field Guides

Andrés C. Rodriguez! *  Stefano D’ Aronco !

Rodrigo Caye Daudt! Jan D. Wegner!?

Konrad Schindler!
! EcoVision Lab - Photogrammetry and Remote Sensing, ETH Zurich, Switzerland
2 Institute for Computational Science, University of Zurich, Switzerland

Abstract

We exploit field guides to learn bird species recognition,
in particular zero-shot recognition of unseen species. Il-
lustrations contained in field guides deliberately focus on
discriminative properties of each species, and can serve as
side information to transfer knowledge from seen to unseen
bird species. We study two approaches: (1) a contrastive
encoding of illustrations, which can be fed into standard
zero-shot learning schemes; and (2) a novel method that
leverages the fact that illustrations are also images and as
such structurally more similar to photographs than other
kinds of side information. Our results show that illustra-
tions from field guides, which are readily available for a
wide range of species, are indeed a competitive source of
side information for zero-shot learning. On a subset of
the iNaturalist2021 dataset with 749 seen and 739 unseen
species, we obtain a classification accuracy of unseen bird
species of 12% @top-1 and 38% @top-10, which shows the
potential of field guides for challenging real-world scenar-
ios with many species. Our code is available at https :
//github.com/ac-rodriguez/zsl_billow.

1. Introduction

Fine-grained species recognition is essential for biodi-
versity monitoring. Identifying the species of observed an-
imals and plants is the basis for several important biodiver-
sity indicators, e.g., the number of different species in an
area, the abundance of individual species, and their geo-
graphical distribution. Many species are locally or globally
threatened by human activities, making it all the more im-
portant to monitor their distributions and support conserva-
tion efforts [10].

A bottleneck for automatic species recognition in the
wild has long been the collection of enough observations.
There are different modalities for automatic species recog-
nition. Perhaps the two most prominent ones are acous-
tic recognition from sound recordings and visual recogni-
tion form images. While the focus of this work remains

on the latter, acoustic recognition is especially relevant for
bird species identification. It is a popular way to do abun-
dance estimation and was explored in early works with
Support Vector Machines [11]. Abundance estimation via
sound recordings remains an active research area, where
new datasets and competitions are being published [33, 38].
For visual recognition, in the last years, the cooperation of
experts and nature enthusiasts has enabled the emergence of
community science projects. Volunteers record and share
images and locations of their observations, which experts
can curate and organise to obtain large-scale databases for
biodiversity monitoring. Examples include the iNatural-
ist [20] and eBirds [39] projects. The eBirds platform alone
has accumulated >34 million images for bird species, from
~800’000 contributors. Those databases make it possible to
train automatic species recognition systems, which would
be a valuable asset for scalable biodiversity monitoring.

In principle, automatic species identification can capi-
talise on the recent advances in computational object recog-
nition. It now achieves human-level performance, and is far
more scalable than manual labelling of images; especially
in cases where specialized expertise might be needed. '

Provided a large volume of labelled training data, one
can resort to a supervised learning scheme: A model learns
to classify a specific bird species from many images of the
bird of interest in many expected natural conditions and
backgrounds. This usually means that a large volume of la-
belled images is needed for training. Due to the sheer num-
ber of species in most ecosystems, many of which are rare
or at least rarely spotted, it can be extremely challenging
to gather a sufficient number of training samples for every
one of them. For example, the iNaturalist 2021 dataset [43]
comprises 1’486 bird species, yet the Birds of the World
collection [7] reports over 10’000 known bird species.

When data collection is limited, one can resort to ma-
chine learning strategies other than supervised learning that
may still be able to deliver acceptable recognition results,

'E.g., on ImageNet computers outperform most humans when it comes
to recognising different dog breeds, as well as different species of mush-
rooms.
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Figure 1. Zero-shot learning with field guides via prototype align-
ment. Class prototypes (depicted here as different colored vec-
tors) are learned using a shared feature extractor F' between pho-
tographs and illustrations. At inference time the class with the
largest dot-product to 2™ is predicted.

although these typically do not attain the same performance
of a model supervised with enough data. For instance, one
can use few-shot learning if only few labelled examples
are available for certain classes [46]. In the extreme case,
Zero-Shot Learning (ZSL) refers to the scenario where
no training samples are available at all for some target
classes [1, 13,26,48]. This requires class-wise character-
istics (side information) rather than labelled data, since la-
belled examples are not available for training.

Traditionally, professional as well as amateur observers
rely on field guides to recognise animal and plant species in
nature. This works remarkably well. Even if new formats of
field guides arise, such as interactive maps and mobile apps
to aid species recognition [12], the basic principle remains
the same: the field guide provides a clear, representative vi-
sual example that emphasises the distinctive properties and
visual cues needed to identify a species and to discriminate
it from similar ones.

The question we explore in this paper is: Can we exploit
illustrations from field guides to compensate for the lack of
training data for some classes? Field guides are easily ac-
cessible, cover a broad range of species, and although they
normally contain only few images of a species — sometimes
only a single illustration — they allow humans to identify it
in most cases. One can think of a field guide as a collec-
tion of manually created, discriminative class prototypes:
the artists who create the illustrations are highly specialised
professionals, and they make a conscious effort to render
each species such that the illustration not only faithfully re-

produces attributes like colour and shape, but optimally typ-
ifies its peculiarities and makes it distinguishable from other
species. Moreover, illustrations are available also for rare,
endangered and even for extinct species.

Although naturalistic illustrations resemble photographs
in many ways, joint supervised training without additional
regularisation leads to biases towards photographic textures,
such that the classifier tends to recognise only seen classes.
To tackle this problem, we propose to interpret illustrations
as species-specific attribute information and leverage them
in a zero-shot setting. At this point, a technical difficulty
arises: Existing ZSL algorithms ingest attributes in the form
of low-dimensional vectors, and we observe that the high di-
mensionality of illustrations, compared to conventional bi-
nary attributes (e.g., belly shape, or eye colour), challenges
existing ZSL algorithms. In this work we tackle this prob-
lem and demonstrate how illustrations from birding field
guides can be exploited for zero-shot learning.

We make the following contributions: (1) We introduce
the Bird Illustrations of the World (Billow) dataset for fine-
grained zero-shot classification of bird species at an un-
precedented scale; (2) we propose a contrastive embedding
of the illustrations that enables existing ZSL algorithms to
leverage the high-dimensional side information contained
in Billow; and (3) we propose a novel zero-shot learning
scheme better suited for side-information in the form of il-
lustrations. Its fundamental principle is to train a model that
can process either illustrations or photographs and in both
cases arrives at the same predictions and aligns the class
prototypes from the illustrations with the photographs, as
depicted in Figure 1.

We use Billow in conjunction with commonly used
datasets with natural images commonly used in fine-grained
classification. With the help of those datasets we compare
our method to the state-of-the-art in ZSL as well as domain
adaptation. The experiments show that Billow matches the
performance of other, more structured forms of side infor-
mation, confirming the hypothesis that field guides are a
valuable auxiliary source of information for species recog-
nition. We hope that our work will encourage further re-
search into biodiversity mapping, and may serve as a first
step towards unlocking the treasure trove of biological field
guides, beyond Billow.

2. Related Work

Zero-Shot Learning. Early work on ZSL focused on
defining class embedding spaces and visual spaces, then
measuring some matching metric to predict a class [1, 13,

]. The embedding space used for matching plays a cru-
cial role [37, 52]. Mapping to a space closer to the class
embedding can lead to a hubness problem, where a classi-
fier is strongly biased to predict only a subset of labels.

Current state-of-the-art methods rely on generative mod-
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els to map class embeddings into a visual embedding space
to avoid such a problem. They use a generator to create
synthetic samples that attempt to emulate real samples from
unseen classes. These samples are then used to supervise
the training of a machine learning algorithm along with the
examples from the seen classes. One of the first studies
to use a generative approach in ZSL is [49]. They use a
Generative Adversarial Network (GAN) to synthesize vi-
sual examples of the unseen classes using class descriptions
as conditional information. An additional classification loss
ensures that the generated features have sufficient discrim-
inative information. TFVAEGAN [29] models the embed-
ding space using a variational formulation. The method also
has a feedback network that modulates the latent representa-
tions to further improve performance. Invertible Zero-shot
recognition flows [36] use invertible layers in order to learn
a mapping from the class description to the visual features.
Counterfactual ZSL [51] exploits “sample attributes” from
the training classes to create synthetic samples with class
attributes from the unseen classes. CE-GZSL [17] uses a
contrastive loss that results not only in class-wise but also
instance-wise supervision. LsrGAN [45] propose a novel
semantic regularized loss which promotes visual features
that reflect the semantic relationships between seen and un-
seen classes.

Side-information in ZSL. ZSL requires a sort of side-
information to guide the learning and transfer knowleged
from the seen classes to the unseen classes. The use of il-
lustrations for ZSL is not new. Early work has attempted
to use digital characters as side information for character
recognition [27]. In [4], authors use user generated pose
graphics as side information for action recognition in a ZSL
setting. Sketches of objects have been used for image re-
trieval tasks [35].

Generative approaches work very well in cases where
the side information has low dimensional embedding, and
can be used as a deterministic condition by the generator
to synthesize samples from unseen classes. While there are
currently many types of side information used in ZSL, all
of them are rather low-dimensional. In [3], authors evalu-
ate different supervised and unsupervised embeddings for
ZSL. Such types of side information include manually cre-
ated binary attributes per class [2], visual descriptions [34],
automatic embeddings from Wikipedia descriptions [3], and
more recently learned embeddings of DNA sequences for
fine-grained species classification [5]. However, it remains
unclear how to use the previously discussed methods if the
side information is high-dimensional, as is the case for field
guide illustrations, without a low-dimensional embedding
step as preprocessing.

Domain adaptation. Given that illustrations and photo-
graph are similar in nature (as opposed to images and text
embeddings or DNA sequences, for instance) we also draw

Dumetella carolinensis ® Seen
Unseen 1-hop

Unseen 2-hop

Figure 2. Hierarchical representation of the Passeriformes order
of the iNat2021 dataset for Seen and ¢-hop unseen classes.

from literature regarding Domain Adaptation (DA). Such
studies aim to improve the performance of a model trained
on the source domain in which enough data are available
for supervision and applied on a target domain in which the
available data are not enough for supervision.

The most versatile form of DA is Unsupervised Domain
Adaptation (UDA), in which no supervision signal is avail-
able for the target domain. Most methods aim to match the
distributions of the source and target domains in a latent
space, either explicitly or implicitly [21,40,41]. [15] pro-
pose using a gradient reversal layer which aims to make
the samples from both domains statistically indistinguish-
able in a representation space. Since, many other meth-
ods have been proposed that use adversarial training of a
discriminator to enforce alignment of the domains in a la-
tent space [16,42, 53]. These methods have been shown
to work well in established domain adaptation benchmarks,
but use cases for fine-grained classification are somewhat
unexplored.

Other studies focus on the case where some supervised
samples are available in the target domain. Well established
methods exist to combine source and target data to improve
a ML system’s performance on target domain data [9]. [28]
propose a unified framework for domain adaptation of deep
models using a Siamese architecture to align different vi-
sual domains. Notably, [24,50] use memory banks of latent
representations of instances from both source and target do-
mains in a few-shot learning setting, which are then used to
create class prototypes for each domain.

However, applying these methods directly for ZSL is not
straightforward, as seen classes tend to dominate predic-
tions from the target domain if no additional regularization
is done. Our novel method aims to close the domain gap
from illustrations and photographs in a ZSL setting.
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3. Bird Illustrations of the World Dataset

We introduce the Bird Illustrations of the World (Bil-
low) dataset for Generalized Zero-Shot Learning (GZSL)
in fine-grained classification. The dataset consists of illus-
trations from the Birds of the World project [7] collected
and organized by the Cornell Lab of Ornithology. Bil-
low includes 22’351 illustrations covering 10’631 different
species, 2’279 genera, 249 families, and 41 orders.

All illustrations in the dataset share a standardized
graphical style: side view in front of white background, in
neutral pose. Most species have illustrations for a male and
a female specimens, some also include a close-up of the
bird’s head.

The original artworks may be accessed with a valid sub-
scription to the Birds of the World project, and are subject
to a licence of use.

For reproducibility and to support further research and
comparisons, we describe here how to access all illustra-
tions from Billow. We have used all the images available by
November 1st 2021. The encoded dataset, after contrastive
embedding with our method, is available along our code
on Github. To download the raw illustrations we provide a
python script. Note though that any further use is subject to
the licensing conditions of [7].

3.1. Illustrations for Zero-Shot Learning

We use Billow with three widely used datasets in
Computer Vision, namely Caltech-UCSD Birds-200-2011
(CUB) [47] and the bird subsets of iNaturalist 2017 [44] and
iNaturalist 2021 [43]. The list of species included in Billow
covers almost all species of the CUB dataset (196 out of
200), and also the overwhelming majority of bird species
from iNaturalist 2017 (895 out of 954) and iNaturalist 2021
(1485 out of 1486). Note that the opposite is not true: even
the 1485 bird classes of iNaturalist 2021 are only a small
fraction of the 10’631 species present in Billow. This raises
the question of whether we can leverage the rich informa-
tion contained in the Billow dataset and combine it with
a dataset of photographs, to advance the state-of-the-art in
fine-grained (bird) species recognition.

For ZSL with CUB, there is a default split into 150 seen
and 50 unseen classes [48]. CUB uses common names, not
scientific names. Hence, previous work had to map the
common names to scientific ones, e.g., to leverage the hi-
erarchical label structure [6], or to utilize genetic informa-
tion [5]. We have revised and merged these assignments,
and only retain mappings for which we found a one-to-one
correspondence between the common and scientific name.
In Billow we matched 196 out of the 200 CUB classes.

For the iNaturalist datasets, we propose a seen/unseen
split. Similar to previous ZSL work that uses ImageNet [ 14,

], we construct several groups of unseen classes, which

Dataset Train val
Seen Unseen lhop 2hop 3hop 4hop
iNat2017
N 97,067 8,626 11,073 2,204 3,613 2,175 3,081
K 381 381 514 87 177 110 140
iNat2021
N 211,027 7,490 7,360 1,680 2,860 1,580 1,240
K 749 749 736 168 286 158 124

Table 1. Zero-shot splits of iNaturalist bird classes. N and K
denote the numbers of samples and classes, respectively, in each
set

have different distances to seen classes in the label hierar-
chy. In this way, we can assess the performance of ZSL for
unseen classes that are increasingly distant from the seen
ones. We first randomly select seen species, and from the
remaining species we define the i-hop set as the set of all
classes whose distance to the nearest seen class in the taxo-
nomic tree is equal to ¢ (i.e., they belong to the same super-
class at the i-th taxonomic level). For example, the classes
in the 2-hop set share the family (2™ evel) with at least
one seen class, but do not share the same genus with any
of them. We consider the species, genus, family and order
levels to obtain 0-hop (i.e., seen classes), 1-hop, 2-hop and
3-hop sets. Classes in the 4-hop set do not have members of
the same taxonomic group in any level of the seen set.

The intersection of the Aves super-class from iNaturalist
2017 with Billow contains 895 species. These are randomly
split into 381 seen and 515 unseen classes. From the unseen
ones we construct the 4 different i-hop sets for validation.
We repeat the same procedure with iNaturalist 2021: the
intersection of its Birds super-category with Billow contains
1485 species. These are split into 749 seen and 736 unseen
classes. See Fig. 2 for an illustration of the validation splits,
and Tab. 1 for the sizes of each split.

4. Method

In ZSL we are given a set of classes ) made up of two
disjoint sets Vseen and Vipseen. Side information s is avail-
able for every class in ). In most cases a single instance
of s is available for each class, although this is not a re-
quirement. We can think of s, a (possibly incomplete) de-
scription of the class y € ), e.g., a text, a list of semantic
attributes, or a gene sequence. A training set of pairs (x, y)
is available exclusively for the seen classes. In computer
vision, x typically refers to photographic images. The goal
of ZSL is to use that information to build a classifier F'(x),
which can recognize samples from unseen classes Vunseen-
Similarly, Generalized Zero-Shot Learning (GZSL) meth-
ods aim for good classification performance on test samples
from both the seen and unseen classes ) = Veeen U Vunseen-

The side information s provides cues about similari-
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ties (common features) between classes and serves as a
bridge that enables the recognition of instances of unseen
classes. Commonly the side information comes in the form
of low-dimensional vectors, like for instance binary pres-
ence/absence flags for a number of attributes. On the con-
trary, our illustrations are images of a specific style / do-
main.

In order to utilise these illustration for ZSL, we explore
two different strategies. We start with a two-stage strategy,
where we first learn a Contrastive Encoding of the illustra-
tions, such that the resulting codes can be fed into existing
ZSL methods at a second stage. We then go on to develop a
more advanced method, named Prototype Alignment, where
a single end-to-end network is trained to map both illustra-
tions and photographs to similar latent representations, in
order to better leverage their similar structure.

4.1. Contrastive Encoding of Billow

Standard ZSL methods in literature assume the existence
of class descriptions ¢(y) in the form of low-dimensional
vectors derived from some sort of side information that
should help recognise seen and unseen classes. We must
therefore compute ¢(y) as a first step to use those methods.

Let Dgige be the set of pairs (s, y) where s € S is an il-
lustration associated with class y € ). To turn illustrations
into low-dimensional vectors, we use an encoding network
E that produces an embedding z = FE(s). These embed-
dings should preserve discriminative class information, so
we simply add a classification head y = C'(z) and optimize
E and C with a cross-entropy loss L.s(y:,y:). Here, y
represents the one-hot encoding of y.

However, the ability to discriminate classes is not
enough. The embeddings should also live in a metric space
where pairwise differences between them are meaningful,
so as to handle the zero-shot setting. One way to achieve
this is to model the overall distribution of illustrations in an
embedding space. For instance, one can employ a Varia-
tional Auto-encoder (VAE), that assumes the embedding z
to model a prior distribution in the latent space from which
it is possible to draw samples and decode them to the orig-
inal input space X [8, 19]. This approach, however, risks
reducing the representation power of z if it is too strongly
regularized by the prior distribution (see Supplementary).

An alternative is to use a contrastive loss that promotes
an embedding space with a uniform distribution over the
unit-sphere [23]. We apply a projection and normalization
head z = h(z) to the embeddings before computing the
contrastive loss. Following [23], our contrastive loss func-
tion is

S 1 exp (%Ziip)
LCOnt(Zz) = *HP(W Z log (@)

ety  2oieB XP (72:2;)

where P(7) is a set of samples in the training batch B that

have the same class label as x;, and 7 € R7 is a tunable
temperature parameter. Finally we train F, C' and h with
both classification and contrastive losses: L = Lcs + Lcont-
As final representation of class y, we compute

éy)=n| > E@) |, )
SESy
where S, is the set of all illustrations available for class ¥,
and n(z) = z/||z|| denotes L?-normalization. The embed-
dings ¢(y) derived from illustrations can then be used as
class descriptors in different existing ZSL methods.

4.2. Prototype Alignment

In contrast to other types of side information for ZSL,
illustrations also belong to the visual domain. We lever-
age this property and propose Prototype Alignment (PA) for
ZSL with visual side information, which allows us to bypass
the encoding step required by all previous ZSL-methods.
Inspired by [50], we explore a view of the problem through
the lens of few-shot domain adaptation: The source domain
are illustrations, the target domain are natural, photographic
images.

Let s and x be samples from the source domain S and the
target domain X, respectively. We have access to samples
from all classes ) in the source domain, but only to samples
of the seen classes Vseen 1n the target domain. Furthermore,
we also do not have unlabelled samples of unseen classes in
the target domain.

We train a feature extractor network F' that takes input
samples from either domain and outputs a latent representa-
tion z. The last operation in F is an L?-normalization layer
7(-), as also used in Eq. (2). During training, we keep a
memory bank in each domain, with a prototype z of each
class. For the illustrations in the source domain, that repre-
sentation can be interpreted as the class embedding ¢ (i )(®)
that is used for ZSL. Note that, in contrast to previous ap-
proaches [24,50], we do not keep an instance-wise memory
bank, which would lead to intractable memory demands for
larger datasets.

For the sake of simplicity, we omit the domain indica-
tor from this point on where possible. In every iteration,
we update the memory bank in each domain with the latent
representation of the new samples, with momentum m:

¢(yx) =0 ((1 = m)z +md(yx)) - 3)

To promote compact and discriminative class representa-
tions, we apply a contrastive in-domain loss similar to Eq. 1,
via a projection head h:

exp ($h(z:)h(¢(y:)))
Yrec exp (7h(z:)h(d(yr)))

In contrast to [50] we refrain from applying a cross-domain
contrastive loss to close the domain gap. Instead, we

LC(Zi7 ¢(yz‘)) = —log

“
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sidestep the gap by directly using the class prototypes from
both domains for classification, so as to force the network
F to produce class-discriminative features. To obtain class
logits, we compute the dot-product between an image em-
bedding z and the embeddings ¢())) of the classes from
both domains, y*) = z-¢(Y)®) and ¥*) = z-¢(Yeen) ™.
These serve as input to a cross-entropy loss L5 for super-
vision:

Les (S’(S), S’(x)7}’) = Les (S’(S), Y) + Lejs (S’(m)v Y) N ®)

Eq. 5 encourages sample representations that are discrim-
inative w.r.t. prototypes from the other domain, which in
turn aligns the two domains. Note also that the second term
in Eq 5 is only computed for seen classes, as it depends on
qS(Yseen)(””). The complete loss functionis L = L) 4+ L(®),
such that

LW=%" (Aff”Lc(zi,¢(yi))+/\£fls)Lcls(5’§s)’9%@)’3”))’ ©
icB(d)

where B9 denotes indices of the samples from domain
d € {S,X} in the mini-batch. Hyperparameters A, Acis
are used to balance the different losses. At test time, we can
simply use the logits ¥ = F(x) - $(Y)(®) for classification.

5. Experiments

Experimental Setup. All of our experiments are devel-
oped using PyTorch [32] and trained with Nvidia GTX 1080
GPUs. For our contrastive encoding of illustrations we use
a ResNet-18 [18] pretrained on ImageNet to create the em-
beddings ¢(y) from the illustrations. As is commonly done
in ZSL literature, features from a pretrained ResNet-101
backbone without fine-tuning were used to obtain a 2048-
dimensional vector representation of each image.

The PA experiments used a ResNet-101 pretrained on
ImageNet data and used the Adam optimizer [25] with a
base learning rate of 10, and the convolutional layers’
learning rate scaled down by 0.1. All experiments on the
iNaturalist datasets ran for 40.000 iterations and experi-
ments on CUB for 200 epochs. We set 7 = 0.1 in all our
experiments. We retrained all baselines using their respec-
tive original implementations.

Following the convention in GZSL literature, we evalu-
ate the performance of each algorithm using held out sets
of samples of the seen classes (S) and unseen classes (U)
separately. The harmonic mean of these two numbers (H) is
also reported. We will make our all our code available for
reproducibility.

5.1. Zero-Shot Recognition, iNaturalist 2017 and
2021

We introduce the first results with ZSL leveraging the
illustrations from Billow and the images from iNaturalist

datasets. We report experiments using CE with TFVAE-
GAN [29] in a two-stage approach, and experiments us-
ing Billow illustrations directly with PA. On all iNatural-
ist datasets we observed an improved performance of PA
over the CE. This was consistent on all three datasets eval-
uated on all top-k metrics. With PA we observed a har-
monic mean H@top-5 of 35.1% and 35.6% for iNat2021
and its iNat202 1 mini, respectively (see Tab. 2a). For CE we
observed a decreased performance with the larger training
dataset for iNat2021 (H@top-5 19.1% and 24.6%). These
results indicate that further regularization may be needed
for large datasets.

Table 2b shows that the hierarchical distance to the near-
est seen classes correlates strongly with performance on the
unseen datasets. Similar as previously observed, CE had a
decreased performance with respect to PA. This was con-
sistent over all i-hop sets. We also evaluated performance
at different hierarchy levels and found a similar behaviour.
See the Appendix for details and further analysis.  This
is aligned with what has been observed in ImageNet for
ZSL [14,22,31]. However, it seems that ZSL on ImageNet
is more challenging than for iNaturalist, perhaps because
the label distances between ImageNet classes are not as
meaningful as taxonomic distances between species.

Analysis of the number of synthetic samples. Gener-
ative approaches in GZSL generate synthetic examples for
unseen classes, which is usually set to Ngy,, = 100 in works
CUB [17,29,45]. The samples are added to the training
set to supervise the training of a classifier. We investigate
the effect that bigger values of Ny, could have on larger
datasets with higher numbers of unseen classes. We kept
all other hyperparameters constant. Results can be found
in Table 3. We observe that with TFVAEGAN increasing
Ngyn results in better performance for unseen classes in all
the datasets, but at the cost of lower performance for seen
classes.

5.2. Zero-Shot Recognition, CUB

In addition, we compare our CE and PA proposed meth-
ods using CUB 94, which contains 196 CUB classes also
contained in Billow, divided into 148 seen and 48 unseen
classes. We always respect the proposed split by [48]. Class
embedding vectors were generated from illustrations using
our Contrastive Encoding. These embeddings were used in
combination with TFVAEGAN [29], CE-GZSL [17], and
LsrGAN [45] to evaluate their performance as class side
information ¢(y) in a ZSL setting. In Table 4a (top) we
observe that the best results with CE are obtained in combi-
nation with TFVAEGAN.

In Table 4a (bottom) we present an evaluation of vari-
ous supervised and unsupervised domain adaptation meth-
ods for ZSL. This was tested with DANN [16], MDD [53],
MCC [21], ProtoDA [50] and CCSA [28]. Although DANN
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(a) Seen (S), unseen (U) and harmonic mean (H) top-k accuracy. Average of 5 runs =+ standard deviation.

top-1 top-5 top-10

Model S U H S U H S U H
iNat2017

CE 33108 26+02 47+£03 575+13 141£03 22.6+0.3 663+t15 23.6+£02 348+0.3

PA 230+03 88+04 12.8+05 519+04 234+£08 323+0.8 63.8+£05 329+£06 43.5+0.6
iNat202 I mini

CE 242+02 39+02 67+£03 46.3+£0.1 16.7£04 24.6£0.5 564+04 265£04 36.1£03

PA 20.8+04 12.7+04 15.7+0.2 46.1£05 29.0+£04 356=+0.2 56.8+04 385+£05 459+03
iNat2021

CE 36608 21+01 39+£02 61.1+06 113£04 19.1£0.7 69.7+ 03 19.6£03 30.6+04

PA 209+03 122+03 154+0.2 455+02 28.6£0.6 351+0.5 56.6+02 378+ 05 453+04

(b) Unseen n-hop validation sets top-k accuracy. Average of 5 runs.
top-1 top-5 top-10

Model 1-hop 2-hop  3-hop  4-hop I-hop 2-hop 3-hop  4-hop I-hop 2-hop 3-hop  4-hop
iNat2017

CE 23 3.4 29 1.6 21.3 16.9 11.4 74 35.1 27.8 19.0 13.8

PA 9.1 9.9 9.3 7.0 29.1 253 22.2 18.1 42.3 354 30.5 25.1
iNat202 I mini

CE 52 4.0 3.6 23 22.9 16.6 15.1 10.7 35.0 26.3 24.2 18.6

PA 12.8 13.6 11.5 11.8 33.5 30.3 259 23.8 44.7 40.0 34.7 31.2
iNat2021

CE 2.6 1.9 2.1 1.6 16.5 11.1 9.4 7.1 27.3 19.6 16.4 133

PA 12.3 13.3 114 10.6 339 29.7 25.5 23.0 44.8 39.2 33.6 304

Table 2. GZSL on iNaturalist Datasets with Billow. CE: Contrastive Encoding of illustrations and TFVAEGAN. PA: Prototype Alignment.

Best method is marked in bold.

top-5 top-10
Ngyn S U H S U H S U H
iNat2017
100 340 12 23 577 74 131 66.0 136 225
1000 33.1 26 4.7 575 141 226 66.3 236 348
3000 328 31 5.7 56.8 16.1 25.1 66.1 26.0 373
iNat202 1mini
100 257 1.7 32 48.1 92 154 57.6 167 259
1000 242 39 6.7 463 16.7 24.6 564 265 36.1
3000 23.1 49 8.0 453 18.6 264 554 28.7 378
iNat2021
100 392 08 1.5 62.0 44 82 695 79 142
1000 36.6 2.1 39 61.1 113 19.1 69.7 19.6 30.6
3000 358 3.1 58 61.0 148 238 69.8 24.1 358

Table 3. GZSL on iNaturalist Datasets with Billow. Results with
Contrastive Encoding and TFVAEGAN with different number of
synthetic samples. Average of 5 runs, best method is bold. Seen,
unseen and harmonic mean (H) Top-k accuracy

and ProtoDA did not completely collapse towards the seen
classes, they fail to fully translate knowledge from the
source domain into the target domain. Our PA approach on
the other hand achieves the best performance, well above
that of domain adaptation baselines and the CE approach.
Furthermore, we compared CE encodings of Billow il-
lustrations with other types of side information in Table 4b
using CUBgy, i.e., the subset of 191 CUB classes overlap-

ping with other types of side-information and Billow, di-
vided into 145 seen and 46 unseen classes. As in the previ-
ous experiment, the split proposed by [48] is respected and
the class embedding vectors were generated from illustra-
tions using our Contrastive Encoding. We used these em-
beddings in combination with TFVAEGAN, CE-GZSL and
LsrGAN. We compare Billow with the following sources
of side-information ¢(y): binary attributes [47], visual de-
scriptions [34], DNA [5], and word2vec [3]. These experi-
ments show that the representation power of Billow’s con-
trastive embedding is comparable to that of word2vec and
DNA embeddings. In terms of comparison among the ex-
isting methods we can observe that TFVAEGAN achieves
the best results in both scenarios.

5.3. Ablation Studies

In Table 5 we show the effect of changing different com-
ponents of the PA method. First, we observed that setting
the projection head h to be a small Multi Layer Perceptron
decreased our performance compared to an identity func-
tion (row D). We speculate that the latent space of z is al-
ready too close to the label domain for it to benefit from a
projection head. We computed ¥ with a learned linear clas-
sifier wys instead of using the dot product between domain
embeddings and observed such modification drastically re-
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(a) Experiments with Billow on CUB 9. Top: CE Billow (Contrastive
embeddding of Billow, ours), combined with GZSL methods. Bottom:
End-to-end methods to use Billow, including PA (Prototype Alignment,
ours) and domain adaptation methods. T denotes UDA methods that do not
use target labels

o(y) Model S U H

CE Billow CE-GZSL 42.0+£1.1 252+15 315+£12

(ours) LsrGAN 69.7+03 64405 11.6+09
TFVAEGAN 455 +13.1 315455 358+1.2
DANNT 243 £1.8 175423 203 +£1.6
MDD+ 1.4 +£0.4 0.7 £0.4 0.9 +04

Billow MCCt 6.5+05 58+08 6.1+04

(end-to-end) ProtoDA 13.8£09 13.8£1.8 144+2.0
CCSA 73.5+0.7 0.14+00 0.1+0.1
PA (ours) 69.740.6 36.1+1.5 47.5+1.5

(b) Experiments with Billow on CUB9;. Comparison with other types of
side-information (¢ (y)) used with CUB.

o(y) Model S U H
Binary CE-GZSL 598+1.9 484+0.7 535+0.7
attributes LsrtGAN 63.6 0.2 204+0.5 309+0.6
TFVAEGAN 634 +22 528+14 57.6+0.2
Visual CE-GZSL 664+03 650+0.6 657+04
descriptions LsrtGAN 587+03 542+0.8 563+04
TFVAEGAN 67.8+2.1 684+21 681+04
CE-GZSL 39.5+1.2 13.5+0.8 20.1 £0.8
DNA LsrtGAN 69.7 +0.1 39402 7.4 +0.4
TFVAEGAN  30.8 £0.4 20.3+1.0 24.5+0.7
CE-GZSL 49.1 £1.7 259+0.7 339405
word2vec LsrGAN 62.0 +£0.5 165404 26.1 £0.5
TFVAEGAN  45.6+1.0 272409 34.1+09
CE Billow CE-GZSL 4277 +15 279408 338+1.0
(ours) LsrtGAN 69.2 +£0.2 7.0+0.2 12.7+04
TFVAEGAN 453 +14.1 31.6 £54 35.6 =1.1

Table 4. GZSL on CUB. Seen, unseen and harmonic mean (H)
Top-1 accuracy. Average of 5 runs £ standard deviation. Best
method for each dataset and ¢(y) is bold.

duces the performance on the unseen classes (row A). The
contrastive in-domain loss A\, proved itself to be essential
for achieving a good performance on the unseen classes
(row C). The classification loss instead seems to be more
important for the recognition of the seen classes: Remov-
ing the term completely barely changes the performance on
the unseen classes while drastically reducing performance
on the seen ones (row B). On the other hand having a larger
A&? tends to boost accuracy in seen classes with a slight re-
duced accuracy in unseen ones (row E). See supplementary
for an ablation with different backbones.

6. Conclusion

Our experiments show that using field guides as side in-
formation for ZSL is feasible, expanding the set of fine-
grained ZSL experiments to datasets with more natural
distributions such as iNaturalist2017 and iNaturalist2021.

Ae h(L) /\Zu Wels Lcls(g/r y) H S Y
A 1 Identity 0.1 Ilearned 147 441 8.9
B 1 Identity 0.1 ¢(Y)® 427 506 370
C 0 Identity 0.1 ¢(Y)® v 235 524 152
D 1 MLP 01 ¢Y)® v 393 501 323
E 1 Identity 10 ¢(Y)® v 463 699 34.6
F 1 Identity 0.1 ¢(Y)® v 475 697 36.1

Table 5. Prototype Alignment experiments with different Hyper-
parameters on CUB dataset

Which are of a much larger scale than those commonly
studied for ZSL (e.g., CUB, Animals with Attributes [48],
Oxford Flowers [30]). They show that the zero-shot recog-
nition of bird species in images is feasible with an accuracy
much better than random chance. The best harmonic mean
so far is obtained by the proposed PA method. Our Experi-
ments show that a naive implementation from domain adap-
tation might not yield the best results, despite a compara-
tively small domain gap w.r.t. photographs. iNaturalist ex-
periments show that, while state-of-the-art ZSL combined
with the contrastive encoded illustrations achieves reason-
able results, our proposed PA consistently outperforms it.
Still, identifying unseen birds across thousands of differ-
ent species remains a challenge. The observed top-10 accu-
racies demonstrate that side-information provided by Bil-
low indeed steers the classifier towards the correct (unseen)
species. This is also reflected by the fact that we observe
better performance for unseen classes that are closer to seen
ones in the taxonomic hierarchy (Tab. 2b).

CUB has been used in combination with many types of
side-information in the past. Our experiments show that
leveraging illustrations in field guides can achieve compara-
ble results to other types of side-information. Although at-
tributes and keywords have higher accuracies on CUB than
with Billow, illustrations are a valid alternative that contains
several decades of knowledge that be realistically exploited.
It appears more natural to describe new bird species using
existing illustrations of them than comparing them to the
test set of CUB to obtain visual descriptions [34], which is
prone to overfit to the rather small dataset.

Species recognition would benefit from further studies
on how to incorporate more side-information, such as by
explicitly modelling species similarity and patristic dis-
tances [22]; or obtain a multi-source embedding using a
mixture of illustrations, text descriptions or other types of
side-information. More fine-grained class representation
for different sexes of the same bird species could be could
further improve the results. While we have focused this
work on illustrations of birds, there are many other field
guides that could be exploited in ZSL. We hope that our
work inspires more research in this direction to assist ef-
forts in biodiversity mapping and conservation.
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