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Figure 1. Images generated using the text-to-image model Midjourney. On the left, we present images depicting strong fog conditions. In
the middle, we showcase images with intense rain conditions. On the right, we display images capturing the scenario of heavy snowfall.

Abstract

The detection of vehicles, pedestrians, and obstacles
plays an important role in the decision-making process of
autonomous vehicles. While existing methods achieve high
detection accuracy under good environmental conditions,
they often fail in adverse weather conditions due to lim-
ited visibility, blurred contours, and low contrast. These
”edge-case” scenarios are not well represented in existing
datasets and are not handled properly by object detection
algorithms. In our work, we propose a novel approach
to synthesising photorealistic and highly diverse scenarios
that can be used to fine-tune object detection algorithms in
adverse weather conditions such as snow, fog, and rain.
The approach uses the Midjourney text-to-image model to
create accurate synthetic images of desired weather condi-
tions. Our experiments show that training with our dataset
significantly improves detection accuracy in harsh weather

conditions. Our results are compared to baseline models
and models fine-tuned on augmented clear weather images.

1. Introduction

The rapid progress in autonomous vehicle technology
has brought us closer to a future of safe and efficient trans-
portation. To achieve reliable autonomous driving, accu-
rate object detection algorithms are essential, enabling ve-
hicles to perceive and understand their surroundings. Cre-
ating high-quality training datasets plays a crucial role in
the development of these algorithms, ensuring their ability
to detect objects even under extreme environmental condi-
tions.
Adverse weather conditions pose significant challenges for
autonomous driving systems, as they can severely im-
pact visibility and introduce dynamic environmental fac-
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tors. Object detection algorithms must be robust and adapt-
able to effectively detect and recognise objects in these chal-
lenging scenarios. Current computer vision models rely on
large-scale, diverse datasets [4–7, 9, 40, 46] to effectively
learn robust features that enable detection in limited visi-
bility conditions. Therefore, it is crucial to train algorithms
using datasets that comprehensively capture the complexi-
ties and variations associated with adverse weather condi-
tions. However, collecting these datasets can be expensive
and time-consuming, especially for the adverse weather do-
main. A total of 1.4 million frames were collected in the
dense project [4], yet only a minor amount of these frames
include adverse conditions (2.3% in fog and 1.6% in rain).
As a result, current large-scale image datasets used for train-
ing algorithms in the field of autonomous driving are heav-
ily biased towards clear weather conditions (see Table 1).
The advancement of synthetic data generation techniques
has revolutionised the field of computer vision, enabling
the creation of highly diverse and photorealistic images at
an unprecedented scale. Among these techniques, text-to-
image models have emerged as powerful tools for generat-
ing high-quality images based on textual descriptions [31].
In the realm of autonomous vehicles, where training data
plays a vital role in developing robust object detection algo-
rithms, synthetic data generation has become a promising
avenue for creating comprehensive and versatile datasets.
In this paper, we present a method to create camera image
datasets to fine-tune object detection algorithms in a wide
variety of different environmental conditions. By leverag-
ing the generative AI Midjourney (MJ) [1], we were able to
collect a diverse range of camera images that encompassed
foggy, snowy, and rainy conditions, replicating the chal-
lenges faced by autonomous vehicles operating in adverse
weather. The dataset includes camera images obtained from
multiple viewpoints. This multi-perspective approach en-
ables a comprehensive understanding of the objects present
in the environment, facilitating accurate detection and lo-
calisation.
The integration of images synthesised in adverse weather
domains into the training process offers promising results
across multiple object detection models. Fine-tuning ob-
ject detection models using the synthesised dataset allows
the algorithms to adapt and learn from the complexities and
variations present in adverse weather scenarios. By expos-
ing the models to a wide range of adverse weather con-
ditions, including fog, snow, and rain, they become more
adept at detecting and recognising objects under challeng-
ing visual circumstances. In this work we show that the
fine-tuned object detection models exhibit improved per-
formance in adverse weather conditions compared to their
counterparts trained solely on traditional datasets.

Contribution: This work makes a contribution by generat-
ing and annotating a synthetic adverse weather dataset using

Dataset Clear Fog Snow Rain
Waymo [40] * * * *
Argoverse [6] * * * *
Dense [4] 47.2 14.7 35.9 2.1
ACDC [38] 25.0 25.0 25.0 25.0
NuScenes [5] 80.6 0.0 0.0 19.4
Cityscapes [7] 100.0 0.0 0.0 0.0
KITTI [9] 100.0 0.0 0.0 0.0
BDD100K [46] 82.8 0.2 8.9 8.0
Ours 0.0 33.3 33.3 33.3

Table 1. Amount of adverse weather images in large-scale image
datasets for autonomous driving in percent. ’*’ indicates that no
emphasis was put into adverse weather labelling by the creators.

Midjourney. Our evaluation demonstrates the utility of syn-
thetic adverse domain data for fine-tuning object detection
models that were pre-trained on the coco dataset. We intro-
duce image corruption models and evaluate their effective-
ness for fine-tuning purposes. To ensure a comprehensive
evaluation, we test the models on various publicly available
benchmark datasets in adverse domains, as well as curate
a dataset containing more intense weather conditions. Ab-
lation studies are conducted to further validate our findings
and strengthen the significance of our results.

2. Related Work
Object Detection in Adverse Weather. Detecting ob-

jects in adverse weather conditions poses a significant chal-
lenge in the field of automated vehicles [11, 21, 22]. Over
the past decade, extensive efforts have been dedicated to
enhancing object detection algorithms for such scenarios
[20, 21, 23, 42, 47] and to enhancing image quality by de-
hazing and de-raining [26, 44, 45]. However, a key limita-
tion lies in the existing datasets, which predominantly ex-
hibit a bias towards favourable weather conditions and lack
the inclusion of severe disturbance factors like fog, snow, or
rain. Although recent endeavours have aimed to address this
imbalance by collecting more balanced datasets, their scale
remains relatively small, hindering comprehensive analysis
and evaluation [4, 37, 38]. Other approaches that has gar-
nered attention is the fusion of multimodal sensor streams
to enhance object detection capabilities [4]. By integrat-
ing information from diverse sensors, such as cameras, lidar
and radar, a more holistic understanding of the surrounding
environment can be achieved, potentially improving object
detection. In our work we aim to improve camera-based
detection algorithms by extending the underlying database
with diverse synthetic data in a variety of adverse weather
conditions. [8]

Adverse Weather Augmentation. Simulating adverse
weather conditions on real images originally captured un-
der clear weather conditions is a promising research direc-
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tion. Within this area, researchers have explored two pri-
mary approaches. The first approach involves utilising mod-
els grounded in real-world physics to realistically simulate
weather effects [30, 37, 42, 43]. The second approach fo-
cuses on domain adaptation techniques, which aim to shift
the data distribution of clear weather images towards ad-
verse weather conditions [14,16,24,27–29,35]. These tech-
niques enable the adaptation of labeled clear weather data
to challenging bad weather scenes, enhancing the perfor-
mance of object detection algorithms in adverse weather
conditions. While these approaches show potential, training
models that can effectively simulate adverse weather con-
ditions remains challenging due to the scarcity of weather-
disturbed data. In our work we address the limitations of ex-
isting datasets by generating highly diverse artificial driving
scenarios in varying weather conditions using Midjourney.
Further, we apply simple augmentation techniques to ren-
der snowflakes, rain-streaks [21] and raindrops [29] on top
of these images.

Synthetic Image Generation. The generation of fully syn-
thetic images has been a topic of extensive research, partic-
ularly within the realm of Generative Adversarial Networks
(GANs) [10]. Notably, recent advancements in text-to-
image models, specifically those based on diffusion models
[39], have demonstrated impressive results [13,31]. Models
such as DALL-E [32] and Midjourney [1] have shown ex-
ceptional capabilities in generating highly realistic images
based on textual descriptions. Text-to-image models have
also been utilised for improving semantic segmentation [3]
and image in-painting and editing tasks [2, 15, 25]. In our
work, we leverage the Midjourney text-to-image model to
create real-world photorealistic driving scenarios specifi-
cally focused on adverse weather conditions. To the best
of our knowledge, we are the first to utilise Midjourney in
generating synthetic driving scenarios with the primary ob-
jective of enhancing object detection algorithms.

3. Synthetic Adverse Weather Dataset

In order to improve the performance of object detection
models in adverse weather conditions, we have generated
a diverse dataset using Midjourney consisting of more than
18.000 images. Our dataset encompasses a wide range of
adverse weather scenarios, including fog, rain, and snow.
A subset of 1538 images was annotated with precise object
labels. It is to note, that only cars are labeled in the dataset,
despite other objects (e.g. pedestrians, buses, traffic signs)
are most often visible in the scene.

3.1. Dataset Creation

Midjourney. Midjourney [1] is an advanced genera-
tive AI model that excels in converting natural language
prompts into highly realistic images. Leveraging the power

Figure 2. Multiple variations of an image depicting snowy weather
conditions, all generated using the same text prompt.

of Midjourney, it becomes feasible to generate high-quality
images from simple text-based descriptions. In the con-
text of our research, we identified a scarcity of datasets
that adequately represent edge-case scenarios in adverse do-
mains. To address this gap, we used Midjourney to generate
synthetic driving scenarios that closely resemble real-world
conditions (see figure 1). In this work we utilise version 5
and version 5.1 of Midjourney. While specific implementa-
tion details are not disclosed by Midjourney, it is worth not-
ing that earlier versions, such as version 4, were based on
stable diffusion techniques. Consequently, it is reasonable
to assume that some form of diffusion process is employed
in generating the results. We decided against open source
alternatives like Stable Diffusion [34], since at the time of
writing the quality of generated adverse weather images was
considerably worse here.

Text prompts. To create driving scenarios using Midjour-
ney, we relied on textual descriptions as input. For this
purpose, we utilised the large language model ChatGPT in
version 3.5. By engaging with ChatGPT, we were able to
generate diverse and detailed textual descriptions of driv-
ing scenarios featuring cars in adverse weather domains.
To ensure a wide range of descriptions, we obtained 300
textual descriptions for each weather domain. Our main
focus was on generating images that prominently show-
cased the weather conditions and included one or multi-
ple cars. To achieve this, we consistently initiated the sen-
tences with the phrase ’A photo of cars ...’ followed by ’in
strong fog/rain/snow conditions.’ We observed that start-
ing a prompt with ’A photo of ...’ led to more realistic re-
sults. Without this specific prompt start, the generated con-
tent sometimes leaned towards being more illustrative rather
than resembling real-world footage. An example prompt
we gave Midjourney to create a driving scene in snow looks
like this (figure 2 shows four different variants of this text-
prompt):

”A photo of cars driving on a downtown street in very
strong snow conditions. The street has shops and restau-
rants on both sides and pedestrians walking with umbrellas.
The cars are honking and the snow is melting on the pave-
ment. A colourful image.”

Selection and Annotation. To ensure a diverse dataset,
each text prompt was used to generate 4 image outputs
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through Midjourney AI. To increase the variety of data for
selection, we repeated the prompts up to 8 times, result-
ing in a multitude of outputs for similar scene descriptions.
In total, we generated a dataset of 18.000 images, evenly
distributed across the fog, snow, and rain domains. From
this dataset, we carefully selected 513 (512 for rain) images
for each weather domain, ensuring their qualitative value.
Annotations in form of 2D bounding boxes were applied
to all cars present in the images. However, due to adverse
weather conditions, annotating cars accurately posed chal-
lenges. Moreover, smaller cars in the distance sometimes
appeared deformed. We chose to annotate deformed objects
as cars if they were still recognisable to a human observer.
Objects that were not clearly identifiable as cars were not
annotated.

Data Distribution. Table 2 presents the distribution of
small, medium, and large size objects in the generated
dataset, with an image size of 1024x1024 pixels. Small
objects are defined as having an area less than 322 pixels,
medium objects have an area between 322 and 962 pixels,
and large objects have an area greater than 962 pixels. Com-
paring this distribution to other benchmark datasets in ad-
verse domains, we observe that the distribution of small ob-
jects is lower in our dataset. This is most likely due to prob-
lems of Midjourney creating small objects that clearly re-
semble cars. We often observe slight deformations of these
objects. For medium, and large size cars the distribution is
consequently slightly higher. Across all datasets, the major-
ity of objects are centered around medium size. Therefore,
our dataset shows a slightly different object size distribution
than the evaluated real-world datasets.

Data Variation. The diversity of images within the datasets
is an important characteristic for quality. The proposed
method would be limited in its usefulness if the images
within each prompt show strong visual similarities. To mea-
sure image diversity, we employed the LPIPS score [48]
similar to [14], which serves as a metric for image simi-
larity. A higher LPIPS score suggests greater dissimilar-
ity and distance between images, while a lower score indi-
cates higher similarity. In our evaluation, we computed the
LPIPS score between each pair of images within a domain
(fog, rain, and snow) to assess diversity. We conducted a
comparison of the LPIPS scores between our synthetic data
and other real-world datasets. The LPIPS score for syn-
thetic fog was found to be 0.731, while for rain it was 0.807,
and for snow it was 0.773. In contrast, the averaged LPIPS
scores for NuScenes [5], ACDC [38], and Cityscapes [9]
were 0.603, indicating a higher level of diversity for the syn-
thetic dataset. The Adverse Dataset, with an LPIPS score of
0.680, exhibited slightly greater diversity but still fell short
of the diversity observed in synthetic data. Qualitatively, the
Midjourney dataset displayed a broad range of scenes with

Figure 3. Images from the dataset with image corruptions. The left
image showcases synthetic rain-streaks and raindrops. The middle
image displays a synthetic snow overlay. The right image shows a
clear image transformed with the synthetic fog model.

diverse viewpoints and various adverse conditions.

3.2. Image Corruptions

Controlling the visibility of rain-streaks, snowflakes, or
raindrops in the generated output images using Midjourney
proved to be challenging. To address this, we applied sim-
ple stochastic models to overlay these effects on the gener-
ated images. Specifically, we utilised the image corruption
library proposed in [21] and a raindrop model described
in [29]. These models allowed us to accurately introduce
the desired weather effects onto the images, enhancing their
realism and authenticity. We utilised the fog and raindrops
models as proposed in their respective papers, making mi-
nor adjustments to the raindrop model to optimise it for
GPU usage with a batch size of 4. Additionally, we made
modifications to the snowflakes model by incorporating an
alpha channel. As for the rain-streaks model, it was not
available in the library, so we constructed it based on the
snowflakes model by incorporating motion blur effects. All
models were carefully parameterised by us to closely re-
semble real weather phenomena. Image corruptions have
the capability to be layered on top of each other, allow-
ing for the combination of different effects. For example,
we can overlay a rain-streaks layer with a raindrops layer.
Each image corruption is generated using a random seed,
ensuring a wide range of diversity in each training epoch.
This approach adds variability and realism to the generated
images, enhancing the training process. Examples of the
image corruptions can be seen in figure 3.

4. Experiments
In this section, we conduct an evaluation of multiple ob-

ject detection models that have been fine-tuned on our syn-
thesised dataset. To assess the performance, we utilise a
range of benchmark datasets that encompass various levels
of adverse weather conditions, ranging from light to strong.
Our objective is to demonstrate the effectiveness of fine-
tuning with synthetic data in improving the accuracy of ob-
ject detection to a certain extent. Furthermore, we inves-
tigate the impact of the synthetic weather overlays on the
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Dataset Small Medium Large Total Average(S) Average(M) Average(L)
MJ Fog 337 2097 1187 3621 0.093 0.579 0.328
MJ Rain 409 2475 1976 4860 0.084 0.509 0.407
MJ Snow 585 2517 1696 4798 0.122 0.525 0.353
Baseline 64870 92279 57475 214624 0.282 0.454 0.263

Table 2. Analysis of the size distribution of cars within each weather domain. To assess this distribution, we compute the average
occurrence of small, medium, and large cars across all domains and compare it to the distribution in the evaluated real-world datasets.

training process. We conduct several ablation studies to val-
idate and analyse our findings. For all our results we report
the Average Precision (AP) from 0.5 to 0.95 for the class
car if not stated otherwise.

4.1. Benchmark Datasets

Adverse Dataset. This dataset was collected partly on
the photo platform Flickr and shows more extreme weather
conditions. It is based on [36] and was filled with addi-
tional images to obtain 200 images for each of the domains
fog, rain and snow. It is to note that images with rainy
weather conditions were added from the BDD100K dataset
as it was difficult to gather enough valuable data for ex-
treme rain conditions. The images are scaled and cropped
to a size of 1024x1024px if possible, except for the ones
from BDD100K.

ACDC Dataset. The Adverse Conditions Dataset (ACDC)
[38] is a dataset to test perception methods on adverse vi-
sual conditions. For our evaluation we used the splits for
rain, snow and fog conditions which consist of 500 images
each.

NuScenes Dataset. NuScenes [5] is a dataset recorded in
Boston and Singapore incorporating complex driving situa-
tions due to high traffic density in these cities. For the eval-
uation we took a subset of 5710 images in clear weather and
a subset of 5422 images in rainy weather conditions. Since
NuScenes only provides 3D bounding boxes, we converted
them to 2D bounding boxes. These are not as tight-fitting
as 2D bounding boxes, but are sufficient for our evaluation.

Cityscapes Dataset. Cityscapes [7] is a dataset collected in
the streets of 50 different cities in clear weather conditions.
For our evaluation we used 3475 images in total from the
train and validation set. In addition we evaluated the Foggy
Cityscapes Dataset [37] which augments fog in three differ-
ent strengths to the original clear images.

BDD100K Dataset. The BDD100K dataset [46] consists of
100k annotated images with diverse scene types in varying
weather and daytime conditions. For the evaluation we fil-
tered all images recorded at daytime, dawn, dusk and over-
cast and grouped them into the weather conditions clear,
rain and snow. The fog data was not used, as it is very weak
and resembles more clear weather conditions. A subset of
the images were used for the evaluation resulting in 4133

clear weather images, 3301 rainy images and 3794 snowy
images.

4.2. Training Details

Object Detection Models. For the training four differ-
ent object detection models are used: Faster R-CNN [33],
SSD [19], RetinaNet [17] and FCOS [41]. All of these mod-
els were pre-trained on the COCO dataset [18]. The models
use a ResNet FPN-50 backbone, except for SSD which uses
a VGG16 backbone.

Training Parameters. In our training process, we adopt a
common practice of removing the head (classification and
regression) of all algorithms and replacing it with a new
classification head dedicated to car detection. Throughout
all our experiments, we utilise a batch size of 4 and train
the models for 10 epochs. For optimising the model we
use stochastic gradient descent with the learning rate set to
0.005, momentum 0.9 and weight decay of 0.0005. A ran-
dom horizontal flip is applied to each image with a proba-
bility of 0.5.

Training Dataset. Our training dataset comprises a clear
weather dataset, which includes 159 images collected from
Flickr and 353 images from the BDD100K dataset captured
under clear conditions. In our training process, we combine
this dataset with additional extension datasets. Specifically,
when training only with clear weather data we extend the
training set by including another 512 clear images from the
BDD100K dataset. When training with synthetic Midjour-
ney images we extend the training data by 512 images from
the respective domain. Thus we always have 1024 training
images in total for a fair comparison. Additionally, we in-
vestigate the effects of augmenting images with additional
corruptions. These augmentations are applied only to the
extension data (e.g. to 512 clear images or 512 images from
the synthetic data) to further diversify the training data (see
section 3.2). For the detection results in section 4.3 we ap-
ply image overlays with a chance of 25% to the image. The
strength of the intensity is chosen randomly from five dif-
ferent parameterisations.

4.3. Detection Results

Table 3 showcases the evaluation results across the
benchmark datasets introduced in section 4.1, offering an
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average performance assessment within each weather do-
main. The resulting scores are the averaged AP across all
datasets within the respective domains (e.g. all images with
fog in the benchmark datasets). We establish a baseline us-
ing models pre-trained on the COCO dataset with all 80
classes. Although the baseline occasionally outperforms the
fine-tuned models, we acknowledge that comparing it di-
rectly to our fine-tuning dataset would be unfair due to the
vast size difference between the COCO dataset and our own.
Therefore, our focus lies on the results obtained from train-
ing on clear weather and synthetic adverse weather data.
We find that models trained solely on clear weather data
perform best on our clear weather test set. For almost all
other scenarios, the models fine-tuned on the Midjourney
dataset exhibit higher AP. In fog, our best model using
Faster R-CNN achieves an improvement of 8.1% over the
clear weather baseline. In snow, the AP is 5.2% better than
the clear weather model. In the case of rain, we do not ob-
serve a significant performance gain in AP. This may be at-
tributed to the rain scenarios often resembling clear weather
conditions in the test set. However, our ablation studies in
section 4.5 reveal a slight increase in AP on the adverse
dataset with stronger rain conditions.
In our analysis, we explored the combination of data from
different adverse domains by merging the 512 clear images
and all 1538 synthetic images to a new dataset (MJ All).
Additionally, we established the Clear(2x) dataset, com-
prising 2048 clear weather images sourced mostly from
the BDD100K dataset for a fair comparison. The MJ All
dataset yielded an overall performance boost and enhanced
robustness against various weather conditions.
Surprisingly, our evaluation suggests that the utilisation of
synthetic overlays, such as snowflakes, raindrops, and rain-
streaks, did not yield significant benefits. It is worth not-
ing that simple augmentation models have the potential to
occlude portions of the image, leading to invalid bounding
boxes and confusion during the fine-tuning process. Section
4.5 presents further results that emphasise the advantages of
synthetic training data over simplistic image overlays.
Our findings indicate that training object detection models
with fully synthetic images from adverse domains can in-
deed enhance their robustness.

4.4. Dataset Split

During our evaluation, we also considered the propor-
tion of clear and adverse weather data used for training
and illustrate the results in Figure 4. We extend the clear
weather training dataset from section 4.2 by another 512
clear weather images to have 1536 in total in order to match
the synthetic dataset in size. The amount of synthetic im-
ages is gradually increased, starting with only clear weather
images and gradually replacing them with 1538 adverse
weather images in increments of 20%. For instance, an

Figure 4. Evaluation results of different data splits between clear
and adverse domain data for Faster R-CNN. Splits were gradually
increased from adverse weather images to clear weather images in
increments of 20%.

amount of 40% corresponds to 60% clear weather data and
40% adverse weather data. The data was randomly split ac-
cording to the specified proportions. In the clear weather
domain, we observe higher AP when fine-tuning only with
clear weather data, with a gradual decrease as synthetic ad-
verse domain data is added. For fog and snow, we see an in-
crease in AP up to a training split of 80% synthetic data. All
models experience a significant drop in performance when
exposed solely to synthetic adverse domain data. It is to
note that this evaluation is based only on Faster R-CNN.

4.5. Ablation Studies

In this section, we show deeper insights into the bene-
fits of the generated dataset for enhancing object detection
in adverse weather conditions. We aim to examine vari-
ous aspects and gain a comprehensive understanding of the
dataset’s effectiveness in improving detection performance.

Foggy Cityscapes

We assess the robustness of the algorithms on the cityscapes
and foggy cityscapes dataset, where the fog intensity varies
from clear to strong fog. While the models fine-tuned
on clear weather data exhibit the best performance on
cityscapes clear images, our evaluation in Figure 5 re-
veals that all algorithms display enhanced robustness to-
wards fog when trained with synthetic overlays or synthetic
fog images. Notably, algorithms fine-tuned solely on clear
weather deteriorate more rapidly compared to their coun-
terparts trained specifically in fog conditions. We observe
an overall higher robustness towards fog when training with
synthetic fog images.
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Trainset
Faster R-CNN FCOS RetinaNet SSD

Clear Fog Rain Snow Clear Fog Rain Snow Clear Fog Rain Snow Clear Fog Rain Snow
Baseline 0.396 0.500 0.404 0.519 0.359 0.448 0.364 0.462 0.363 0.450 0.361 0.456 0.207 0.218 0.193 0.239

Clear 0.430 0.492 0.430 0.537 0.355 0.410 0.356 0.419 0.340 0.383 0.336 0.396 0.222 0.224 0.208 0.248
Clear(F) 0.430 0.513 0.437 0.541 0.349 0.414 0.351 0.419 0.344 0.399 0.345 0.406 0.217 0.235 0.209 0.243
Clear(S) 0.431 0.490 0.433 0.538 0.357 0.410 0.358 0.420 0.339 0.381 0.338 0.401 0.224 0.224 0.210 0.245
Clear(R) 0.429 0.489 0.433 0.537 0.357 0.410 0.358 0.420 0.337 0.379 0.336 0.397 0.222 0.225 0.208 0.243
Clear(D) 0.430 0.491 0.435 0.542 0.254 0.259 0.237 0.268 0.342 0.383 0.337 0.398 0.222 0.224 0.212 0.247

Clear(R+D) 0.428 0.486 0.434 0.539 0.354 0.409 0.356 0.416 0.340 0.391 0.341 0.404 0.222 0.223 0.213 0.248
MJ Fog 0.423 0.532 0.436 0.555 0.343 0.421 0.352 0.421 0.331 0.410 0.332 0.403 0.211 0.237 0.198 0.238

MJ Snow 0.422 0.503 0.432 0.561 0.338 0.408 0.341 0.420 0.333 0.408 0.333 0.419 0.212 0.230 0.198 0.258
MJ Snow(S) 0.421 0.502 0.432 0.560 0.337 0.410 0.343 0.426 0.333 0.407 0.333 0.419 0.211 0.228 0.197 0.257

MJ Rain 0.419 0.497 0.434 0.556 0.345 0.417 0.355 0.429 0.334 0.398 0.336 0.414 0.210 0.218 0.204 0.243
MJ Rain(R) 0.418 0.496 0.435 0.556 0.328 0.399 0.339 0.408 0.332 0.398 0.334 0.413 0.212 0.224 0.203 0.246
MJ Rain(D) 0.419 0.499 0.435 0.558 0.337 0.409 0.349 0.421 0.334 0.399 0.335 0.412 0.208 0.223 0.203 0.246

MJ Rain(R+D) 0.421 0.500 0.437 0.559 0.337 0.409 0.346 0.417 0.334 0.400 0.338 0.413 0.210 0.224 0.204 0.247
Clear(2x) 0.429 0.489 0.435 0.539 0.370 0.426 0.374 0.440 0.357 0.398 0.355 0.415 0.239 0.243 0.229 0.266

MJ All 0.419 0.524 0.437 0.561 0.355 0.445 0.366 0.455 0.342 0.433 0.346 0.437 0.217 0.249 0.213 0.270
MJ All(A) 0.420 0.525 0.438 0.565 0.358 0.446 0.370 0.458 0.343 0.433 0.349 0.437 0.220 0.248 0.215 0.274

Table 3. Results of the evaluation of fine-tuned object detection models on the examined benchmark datasets. The datasets are clustered in
the respective domains clear, fog, rain and snow. We report the averaged AP over the respective domains. When indicated the datasets were
augmented with synthetic overlays (F: Fog, S: Snowflakes, R: Rain-streaks, D: Raindrops, A: Snowflakes, rain-streaks and raindrops).

Figure 5. The evaluation results of all object detection models
tested on Cityscapes and Foggy Cityscapes datasets, including
three different fog intensities, are presented. The algorithms were
fine-tuned using three different methods: clear images only, clear
images with a fog overlay (F), and synthetic fog images generated
by Midjourney (M). We observe that our synthetic data consis-
tently demonstrates improved robustness to fog in almost all cases.

Image Corruptions

The focus of this evaluation is to analyse the impact of syn-
thetic overlays when fine-tuning. To accomplish this, we
introduce synthetic rain-streaks, snowflakes, and raindrops
to the images and perform evaluations across all domains.

The results are illustrated in Figure 6. Our findings indicate
that the overlays have minimal effects on the AP of the de-
tection models. It is possible that the test datasets lack suf-
ficient data containing snowflakes, raindrops or streaks. It
might be necessary to increase the intensity of the overlays
to observe a more substantial contribution to the model’s ro-
bustness. Nevertheless, these results indicate that the inclu-
sion of synthetic adverse weather data may offer potential
benefits compared to mere image overlays.

Dataset Correlation

To mitigate the potential influence of object size correlation
between training and test datasets on the observed increase
in AP, we conducted an investigation into the relationship
between object size and AP. The results of this analysis are
presented in Table 4. To this end, we compare the pearson
correlation of AP to the distribution of object sizes (small,
medium, large) of the MJ training set. Our findings indicate
that there is no discernible correlation between the size dis-
tribution derived from the MJ dataset and the resulting AP
values. By examining the relationship between object size
and AP, we can ascertain that the observed improvements
in AP are not solely driven by the size distribution between
training and test data.

Extreme Adverse Weather

As we intended to create strong adverse conditions in the
MJ dataset, we aimed to assess the performance on chal-
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Figure 6. The evaluation presents the results of systematically adding weather corruptions to images. The corruptions are applied with
probabilities of 0.0, 0.25, 0.5, and 1.0 during the fine-tuning of object detection models. The MJ All(A) dataset is used for fine-tuning.

Faster
R-CNN

FCOS RetinaNet SSD

Train(S) -0.003 -0.0593 0.022 0.057
Train(M) 0.050 -0.010 -0.006 0.030
Train(L) -0.044 0.020 -0.005 -0.056

Table 4. Results for the correlation between AP and object size
(small, medium, large) in the MJ training set. The results provide
a quantitative measure of the correlation between these variables.
The closer the number is to 0, the weaker the correlation.

Figure 7. Evaluation results of detection models trained on clear,
augmented or synthetic weather images. The results were evalu-
ated on the Adverse Dataset. Each plot illustrates the outcomes of
fine-tuning and evaluating images in a specific weather domain.

lenging test data. Figure 7 shows the results on the Adverse
Dataset when the algorithms were fine-tuned on synthetic
images specific to their respective weather domains. Each
domain is compared to a model trained on clear weather im-
ages and to a model fine-tuned on data with standard aug-
mentation techniques. We chose the AugMix policy [12] as
it showed highest AP in our experiments. To ensure stabil-
ity amidst variations caused by random transformations, we
averaged results from 5 separate runs for AugMix. We ob-
serve enhanced robustness towards all weather conditions
when fine-tuning on synthetic adverse weather data, com-
pared to fine-tuning solely on clear weather images or aug-
mented images. Faster R-CNN demonstrates a significant
improvement of 13.9% in fog, and an 8.2% improvement in
snow compared to clear weather fine-tuning. The improve-
ments in rain conditions are only minor.

5. Discussion

Our work underscores the importance of synthetic data
generation techniques to enrich existing datasets with ad-
verse weather scenarios. This approach proves beneficial
in fine-tuning object detection models designed to oper-
ate effectively in adverse weather conditions, enhancing the
safety and reliability of autonomous driving.
Through extensive experimentation and evaluation, we pro-
vide empirical evidence that supports the effectiveness of
our technique. The fine-tuned detection models exhibit im-
proved performance in adverse weather compared to mod-
els trained solely on traditional datasets. Further, our ap-
proach offers unlimited possibilities for generating edge-
case scenarios that are challenging or ethically difficult to
produce in reality. Our method presents an alternative to
real-world data collection.
It is important to acknowledge the limitations of our ap-
proach. The generated images may not always adhere to se-
mantic correctness, featuring anomalies such as cars driving
in false directions, deformed objects, or misplaced objects.
Thus the synthesised data may have limited value outside
the realm of computer vision. The single class annotations
may reduce result validity and more studies are required
to prove the effectiveness with multi-class data. Moreover,
annotating synthetic data still requires effort, although it is
likely less time-consuming than real world collection.
Overall, our research demonstrates the potential benefits
and challenges associated with incorporating synthetic ad-
verse weather data, paving the way for advancements in the
field of autonomous driving and computer vision.
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