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Abstract

The advent of vision-language pre-training techniques en-
hanced substantial progress in the development of models for
image captioning. However, these models frequently produce
generic captions and may omit semantically important im-
age details. This limitation can be traced back to the image-
text datasets; while their captions typically offer a general
description of image content, they frequently omit salient
details. Considering the magnitude of these datasets, man-
ual reannotation is impractical, emphasizing the need for an
automated approach. To address this challenge, we leverage
existing captions and explore augmenting them with visual
details using “frozen” vision experts including an object
detector, an attribute recognizer, and an Optical Character
Recognizer (OCR). Our proposed method, FUSECAP, fuses
the outputs of such vision experts with the original captions
using a large language model (LLM), yielding comprehen-
sive image descriptions. We automatically curate a training
set of 12M image-enriched caption pairs. These pairs un-
dergo extensive evaluation through both quantitative and
qualitative analyses. Subsequently, this data is utilized to
train a captioning generation BLIP-based model. This model
outperforms current state-of-the-art approaches, producing
more precise and detailed descriptions, demonstrating the
effectiveness of the proposed data-centric approach. We
release this large-scale dataset of enriched image-caption
pairs for the community.

1. Introduction

The generation of image captions that effectively cap-
ture essential descriptive elements has been a longstanding
goal in computer vision [7, 32, 34, 36, 49, 55]. In recent
years, image captioning tasks [3, 44] have gained signifi-
cant research attention and interest due to the success of
Vision Language (VL) models. This achievement mainly
stems from the ability to efficiently harness the massive
amount of image-caption pairs accessible online, using Vi-

Original: Two men with eye glasses
looking at something

Ours: Two bespectacled men, one with 
black glasses and a black and brown 
beard, the other with silver glasses 
and short brown hair, sit together 
with an open blue laptop on a table 
in front of them. A gray cat lounges 
nearby

Original: Mhmm, some clouds in the 
sky

 
Ours: A woman wearing dark 
sunglasses stands next to a red car 
with a black license plate reading 
166882, PRI. The car has off and 
round headlights, a chrome and 
silver bumper, a black tire, and a 
red door. The cloudy and white sky 
is visible in the background.

Original: save yourself the expense 
of a professional arrangement . 

Ours: Floral Arrangement: A colorful 
assortment of sunflowers, yellow, 
white, orange, and purple flowers, 
and green leaves arranged on a black 
and wood table.

Ours: A woman with blond, long hair 
wearing a black belt and pants 
attends the premiere of The Little 
Stranger in 2018.

Original: <PERSON> 2018 : <PERSON>: 
The Little Stranger Premiere -01

Figure 1. FUSECAP captions. An illustration comparing our
FUSECAP enriched captions with the original ground-truth captions
before the fusing process. The examples are from COCO, SBU,
CC, and CC12 datasets, displayed from top to bottom.

sion Language Pre-training (VLP) [15, 40, 53], followed
by task-specific fine-tuning. However, despite remarkable
advancements in image captioning, current state-of-the-art
models [14, 28, 37, 38, 68, 70, 73, 81] produce captions that
often overlook key semantic elements. As images are rich
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sources of information containing intricate and complex con-
tent, providing precise descriptions requires highly detailed
textual captions.

We hypothesize that the current unsatisfactory captioning
results are attributed to the image-caption datasets used for
training. Captions in these datasets frequently fail to capture
essential elements within images and often omit fine details.
For example, consider the original caption of the top image
in Figure 1. The caption is missing details such as the laptop
and cat. Since these datasets contain a massive number of
image-caption pairs, manual re-annotation is unfeasible.

In this work, our primary objective is to develop a frame-
work that produces richer, more accurate captions for im-
ages. To achieve this, we introduce FUSECAP, a novel
approach designed to automatically augment captions in ex-
isting datasets, thereby enhancing training data of the model.
This contrasts with methods that primarily focus on improv-
ing the caption generator model architecture and resonates
with the recently surveyed data-centric artificial intelligence
(AI) paradigm [79, 80], which underscores the significance
of improving both the quality and quantity of data, rather
than merely concentrating on the advancement of model de-
sign. We leverage the capabilities of vision experts such as
object detectors [4], attribute recognizers [82], and Optical
Character Recognition (OCR) models [1, 2, 8]. The visual
information extracted by these models is intended to provide
complementary details to the original simplistic captions. By
harnessing the reasoning capabilities of a dedicated LLM,
the outputs from the vision experts are fused with the original
image caption. This results in a coherent, meaningful nat-
ural description of images that is more comprehensive and
detailed than the original caption, as illustrated in Figure 1.
Specifically, we leverage ChatGPT [11] to generate “fusing”
examples which are then used to fine-tune a pre-trained Flan-
T5 model [54]. We apply this method to enrich captions
of a human-annotated dataset (COCO [44]) and large-scale
datasets collected from the web (CC12 [12], CC [58], and
SBU [65]). This process produces an enriched collection
consisting of 12M image-text pairs. To confirm the quality
of our generated dataset, we first show that humans favor
the fused captions, perceiving them as more descriptive and
accurate than the original captions. Furthermore, we demon-
strate that the fused captions score higher on CLIPScore [26]
– a reference-free metric that evaluates text-image alignment
without using reference captions — compared to the origi-
nal ones. To further emphasize their effectiveness, we also
assess the captions through image-to-text and text-to-image
retrieval tasks.

To illustrate the benefits of the proposed data-centric ap-
proach we capitalize on these fused captions to train a cap-
tion generator. We use the augmented dataset both for pre-
training and for the fine-tuning of an image captioning BLIP
model [38]. Despite having fewer parameters and using less

training data, our model surpasses existing state-of-the-art
methods [37, 38, 46, 69, 70] in generating comprehensive
captions. This superiority is evident both in its higher CLIP-
Score and its improved performance in the retrieval tasks.
The performance advantage is further illustrated by numer-
ous examples.

Our contributions are as follows:

• Introducing FUSECAP- a novel approach to automati-
cally enrich existing image-captions datasets by fusing
outputs from visual experts using an LLM.

• Providing a large dataset of 12M caption-enriched text-
image pairs for future research.

• Showcasing that an enriched dataset leads to models
capable of generating detailed captions that effectively
incorporate previously overlooked key semantic ele-
ments.

2. Related Efforts
Image-Caption Generation. Image captioning has been a
widely researched topic at the intersection of computer vision
and natural language processing. Early strategies for caption
generation made use of retrieval-based methods [23, 27] and
template-based methods [35], which were limited in their
expressiveness [6]. The advent of deep learning marked a
shift in this field, as multimodal neural networks enabled
the generation of higher quality captions [31]. Subsequently,
the encoder-decoder framework, which essentially translates
an image into a sentence, became one of the favored ap-
proaches [20,66]. Later advancements incorporated attention
mechanisms for focusing on key image aspects [76,78]. Cur-
rent best captioning techniques are transformer-based archi-
tectures [63], which combine vision [21] and language [63]
transformers. The recent advancements in the effectiveness
of image captioning can largely be credited to the introduc-
tion of visual language pre-training (VLP).

VLP uses large-scale image-text pairs to pre-train vision-
text models, which are later fine-tuned for downstream tasks,
with image captioning as one of the central tasks [25,37,38].
VLP can be categorized [13] into single-stream [16, 41] and
dual-stream architectures [22, 24, 29, 53], aiming to merge
visual and textual modalities into a shared embedding space.
Efforts exploring integrating text generative tasks for pre-
training [17, 72] have fueled the development of models like
BLIP [38] and recent BLIP-2 [37]. OFA [70] proposed uni-
fying multiple unimodal and multimodal pre-training tasks,
which led to a significant performance improvement.

Dense captioning can be seen as a task related to ours in
generating comprehensive text for images [30,77]. However,
it produces multiple captions for various regions within an
image, as opposed to a single descriptive caption for the
whole image. Previous approaches to generating more com-
prehensive captions have consistently identified a common
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a woman is holding a 
tennis racket at a game

 
 

A woman wearing a yellow 
Nike shirt and black shorts 

holds a white and black 
tennis racket while playing 

against a blue wall with 
Emirates Airline branding. 
She accessorizes with a 

gold necklace and raises her 
hand in excitement.
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OCR NIKE
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(a) Fusing Enriched Captions
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A woman wearing a yellow 
Nike shirt and black shorts 

holds a white and black 
tennis racket while playing 

against a blue wall with 
Emirates Airline branding. 
She accessorizes with a 
gold necklace and raises 
her hand in excitement.

 
 

A man with a gray beard 
and dark sunglasses 
stands next to a green sign 
with various golf course 
information. He holds a 
yellow frisbee in his hand. 
A tall tree stands in the 
background.

Enriched
Image-Caption

Pair

(b) Training a Captioning Model

Figure 2. Our Approach Illustration. Figure 2a illustrates the automated process of enriching existing image captions using the proposed
FUSECAP approach. Visual experts extract meaningful information from images, which is then fused with the original captions by an LLM
Fuser, producing rich captions. Following this, Figure 2b illustrates the utilization of image datasets, paired with these augmented captions,
in both the pre-training and fine-tuning phases of a comprehensive image-captioning model.

challenge – the unsatisfactory capability of existing image
captioners of providing detailed and accurate textual descrip-
tions of images [45, 47, 48]. These approaches focus on
improving captions discriminability, whereas our method
seeks to enrich captions with additional, meaningful infor-
mation extracted from the images.

Image-Caption Datasets Current datasets for image-
caption pairs fall into two primary categories: specifically
human-annotated datasets like COCO [44], and web-crawled
datasets such as CC, CC12, and SBU Captions [12, 50, 58].
The conjunction of the datasets serves as the foundation for
the VLP, subsequently followed by downstream tasks fine-
tuning. In general, the first category of datasets is smaller in
size yet exhibits substantially lower noise levels compared
to the second category. Both categories, however, are char-
acterized by relatively short and concise captions. Specific
examples of these characteristics can be seen in Figure 1.

Data-centric AI underscores the importance of refining
data quality to boost model performance rather than fine-
tuning model designs. It prioritizes curating, labeling, and
cleaning data for superior training datasets [61] as well as
automating its processing [79, 80]. This new emphasis sug-
gests that with high-quality data, even basic algorithms can

deliver impressive results. [59] identified the need to enrich
image-text datasets. To this end, they harnessed natural lan-
guage inference (NLI) to fuse multiple existing ground-truth
captions into a single one. However, this approach can oper-
ate only on datasets with multiple ground-truth captions and
cannot be applied to large-scale ones with a single caption
(e.g., CC, CC12, and SBU). In contrast, our method can be
applied to any image-caption dataset.

Large Language Models Large language models (LLMs)
have been shown to be effective in a wide range of tasks,
including natural language inference, question answering,
and code generation [18,19,74]. Further, LLMs such as GPT-
3 [11] exhibit impressive zero and few-shot performance on
a variety of tasks, including translation, text summarization,
and common sense reasoning, without further fine-tuning.
Few-shot abilities allow researchers to use LLMs as a tool
for data generation. [10] used GPT-3 to generate instructions
and edited captions dataset, which is then used to train model
for image editing. [57] presented an approach for training
LLMs to use external API calls. For example, when the
LLM is been asked to solve a mathematical problem, it
can use an API of a calculator, instead of generating the
output by itself. [57] used GPT-3 few-shot ability to curate

5691



a dataset of external API calls which is then been used to
fine-tune another LLM. [52] used GPT-4 outputs to create
an instruction-following dataset that can be used later to fine-
tune other LLMs in a supervised learning fashion. To fuse
together the original caption and the visual expert outputs, in
this work, we harness the impressive zero-shot capabilities of
OpenAI’s ChatGPT [11]. We employ it to generate a small
“fusing” dataset. To establish an open-source framework that
scales cost-effectively, we fine-tune Flan-T5 [19], a widely
recognized open-source LLM, using this data.

Vision Experts in VLP Several works attempted to im-
prove VLP by incorporating object detectors or other ex-
perts [46] as part of their initialization [17, 41], architec-
ture [46], pre-training data [67] or pre-training objectives
[42, 60, 62, 82]. In image captioning, such models demon-
strate limited capabilities in generating rich captions and
have not fully capitalized on the information provided by
vision experts. We hypothesize that this limitation stems
directly from the succinct captions in existing image-text
datasets. In our data-centric approach, we focus on im-
proving such datasets and overcoming this limitation. An
example that highlights our approach is the contrast with
Prismer [46]. Unlike our method, Prismer augments its
model architecture with object detectors and OCR for cap-
tion generation but relies on traditional captioning datasets.

A recent concurrent paper [71] proposed an LLM-based
model that merges captions of image segments into text. In
contrast, we adopt the LLM from a data-centric perspective
to enhance existing caption datasets, an approach that is fol-
lowed by extensive evaluations for quality and consistency.

3. Fusing Enriched Captions
In this section, we introduce FUSECAP, which is illus-

trated in Figure 2a. This novel strategy is designed to au-
tomatically augment existing image captions by integrating
important details and inter-object relations within the image.
These details are often disregarded in traditional image cap-
tioning datasets. First, we elaborate on our use of pre-trained
vision models, referred to as vision experts, for extracting
relevant visual information from images. We then detail how
the information gathered from these expert models is subse-
quently fused with the original caption through a fine-tuned
LLM, resulting in the enhanced captions.

3.1. Vision Expert Models

To enrich the information found in the original caption,
we employ the following vision experts:

Object Detection A key visual expert we rely on is an
object detector model. Following the approach proposed
in [82], we utilize a Faster-RCNN [56] with a ResNeXt152
[75] backbone. This model is initially pre-trained on sev-
eral detection datasets and then fine-tuned on the Visual

Genome (VG) dataset [33]. The data used comprises more
than 100K images with 1.6K classes, enabling strong gen-
eralization abilities. We regard all objects along with their
corresponding bounding boxes as valid detections, provided
they exceed a detection confidence threshold. The presence
and position of objects in the scene provide essential details
to complement the caption.

Attributes Prediction Beyond class identification, we de-
rive a variety of attributes for each object in the image using
features generated by our Faster-RCNN within each bound-
ing box. A classification model proposed in [82] was trained
on annotations from the VG dataset, which covers a broad
array of 400 distinct attributes. These attributes encapsulate
various aspects of the objects, including size, condition, and
color. For each object, we only consider attributes predicted
with a confidence level above the threshold.

Text Detection and Recognition Text within images often
contains critical contextual information, leading to a line
of different text-image tasks [9, 25]. To incorporate textual
information, we utilize robust pre-trained OCR models to
detect and extract characters. We first identify text within
a scene with CRAFT [5], a robust scene-text detector. We
then apply Parseq [8], a state-of-the-art scene text recognizer,
to decode the text within the bounding boxes generated by
the text detector. To avoid contamination, we do not apply
OCR methods on datasets presenting watermarks, such as
the CC [58] and CC12 [12].

3.2. LLM Fuser

To generate natural and coherent captions, which are es-
sential for the caption generation task, we utilize a large lan-
guage model (LLM). We leverage a specifically fine-tuned
LLM to fuse insights from various vision experts into the
original caption, creating a single coherent and fluent de-
scription. The LLM’s advanced reasoning capabilities allow
us to articulate the semantic relationships among objects and
to seamlessly integrate the diverse knowledge provided by
these experts. Consequently, the output captures the essence
of the visual content while the impressive generative capacity
of LLMs ensures these captions remain coherent and natural.
To train the LLM, we create a small “fusing” dataset with
ChatGPT [11], and then use it to fine-tune the open-source
FlanT5-XL model [19].

ChatGPT Annotation We leverage the zero-shot capa-
bilities of ChatGPT to generate a “fusing” dataset of 20K
examples, which is then used to fine-tune an open-source
LLM. By employing this approach, we establish a framework
based on open-source models that can generate a large-scale
dataset at a reasonable cost. To produce enriched captions
with ChatGPT, we first extract information from the visual
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OFA: a surfer in a wetsuit rides 
a wave.

GIT: woman in a wetsuit is 
surfing on a wave

BLIP2: a woman in a wet suit 
riding a wave on a surfboard
Ours: a barefoot surfer with 
long brown hair rides a white 
wave on a white surfboard, 
extending their arm and hand 
for balance

Prismer: A woman riding a wave 
on top of a surfboard

OFA: motorcycle parked on the 
beach

GIT: a red motorcycle parked on 
a road near a beach

BLIP2: a red motorcycle parked 
in a parking lot next to a fence

Ours: a red motorcycle with a 
leather and black seat is 
parked on the side of the road, 
surrounded by a wood fence and 
tall palm trees the clear blue 
sky provides a serene backdrop

Prismer: A red motorcycle parked 
on the side of a road.

BLIP2: a boat is in the water 
and birds are on the shore 
Ours: a serene sunset scene 
with a small boat anchored in 
calm waters, surrounded by a 
flock of birds and a dark cloud 
in the sky

OFA: a flock of birds are 
swimming in the water at sunset

GIT: a large body of water with 
a boat in the distance.

Prismer:   A large body of water 
filled with birds under a 
cloudy sky.

Ours: a snowboarder glides down 
a snow - covered mountain under 
a gray sky, wearing tan and 
khaki pants and casting a dark 
shadow

BLIP2: a group of people on 
snowboards on a snowy slop

OFA: a man riding a snowboard 
down a snow covered slope

GIT: a group of people riding 
snowboards on top of a snow 
covered slope.

Prismer: A group of people on 
snowboards and skis in the snow.

Figure 3. Image Captioning Results. While top-performing captioning models tend to provide concise and oversimplified captions, our
model outputs rich captions that better describe the images.

experts presented in Section 3.1. The objects and their cor-
responding attributes and detected texts are then ordered
from left to right based on their bounding boxes, providing
basic spatial context. The exact prompt can be found in the
appendix. We generated 20K examples of such enriched
captions from CC, CC12, SBU, and COCO datasets, which
served as training data for the FlanT5-XL model.

LLM Fine-tuning Using the “fusing” dataset we created,
we fine-tuned Flan-T5 [19], a variant of the T5 encoder-
decoder model [54], that has been extensively fine-tuned
on numerous tasks to achieve exceptional performance on
instruction-based tasks. Specifically, we utilized the Flan-T5-
XL checkpoint and fine-tuned it to our curated fuse dataset.
During the fine-tuning process, the original caption was con-
catenated with the output of the visual experts and served as
the model input, while the enriched caption was designated
as the target. The hyperparameters we used for this section
can be found in the appendix. After this phase, the fine-tuned
model can be used to generate an enriched captions dataset.

4. Training a Captioning Model

We apply FUSECAP, presented in Section 3, to the COCO,
SBU, CC, and CC12 datasets, yielding 12 million aug-
mented image-caption pairs. Following our data-centric
approach, and to demonstrate the effectiveness of this aug-
mented dataset, we use it to train a captioning model based
on the BLIP architecture [38] (Figure 2b). Adopting the
training strategy from the original BLIP paper, we first per-
form vision-language pre-training for 20 epochs , optimizing
three objectives: (a) Image-Text Contrastive Loss (ITC)

that aligns visual and textual features by contrasting between
matching and non-matching image-text pairs, (b) Image-
Text Matching Loss (ITM) that classifies image-text pairs
as matched or unmatched, and (c) Generative Language
Modeling Loss (LM) that generates textual captions from
images, which are compared to their ground truth captions.
Following the pre-training phase, adhering to common prac-
tice in VLP [37,38,81], we fine-tune our model for a supple-
mentary 5 epochs on the enriched COCO dataset, utilizing
solely LM loss. To allow the generation of more comprehen-
sive captions, we increase the context length over that used
in the original BLIP model from 30 to 60 tokens. The hyper-
parameters for this section are detailed in the appendix.

5. Experiments
We evaluate two sets of image captions. The first set

consists of the fused captions from the FUSECAP dataset,
described in Section 3. The second set includes captions
generated by the trained captioning model discussed in Sec-
tion 4. The objective for both sets is to produce captions
that are descriptive and accurate. Traditionally, image cap-
tioning methods are assessed with n-gram-based metrics like
BLEU [51], CIDEr [64], and ROUGE [43]. These metrics
compare the tested captions to reference captions, assum-
ing the latter represents the ideal image descriptions that
the tested captions aim for. However, as highlighted earlier,
captions in existing datasets often fail to provide a compre-
hensive description of images. This implies that given our
emphasis on enhancing descriptiveness, relying on broad
and non-specific reference captions for evaluation would be
inappropriate. Consequently, n-gram-based metrics do not
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effectively measure or promote this quality [84].
We, therefore adopt CLIPScore [26], a reference-free met-

ric that measures the alignment between textual and visual
embeddings generated by a pre-trained CLIP model [53].
Since CLIPScore is not dependent on a reference caption, its
score is not restricted by the descriptiveness of the original
captions. Moreover, in terms of accuracy, it has been shown
to exhibit a higher correlation with human judgments than
n-gram-based metrics [26].

Besides evaluating enriched captions with CLIPScore, we
consider the ability to perform image-text retrieval as a perti-
nent metric for caption evaluation. Comprehensive captions
should inherently serve as distinct image descriptors, thereby
improving retrieval precision. To further assess the quality
of captions in the FUSECAP dataset, we conducted a human
evaluation study.

5.1. FuseCap Dataset

In this subsection, we evaluate the enriched captions pro-
duced by the caption augmentation approach introduced
in the Section 3. In particular, we carry out a qualitative
human-study alongside quantitative evaluations. Examples
of enriched captions via FuseCap are showcased in Figure 1.

Qualitative Evaluation We conducted a thorough human
evaluation study to assess the ability of our enriched captions
to be both descriptive and relevant to the images. Specifically,
we randomly sampled 400 pairs from the COCO dataset and
provided 40 participants with (1) the original caption and
(2) the enriched caption. Our study engaged a pool of ran-
dom internet users as participants. To minimize biases and
ensure an impartial evaluation, they completed the survey
unaware of the specific research objectives or goals. The
evaluators were asked the following: “Does caption 2 pro-
vide an additional meaningful and truthful description of
the image compared to caption 1?”. As the enriched cap-
tions are much more detailed, as can be seen in Figure 1, the

Dataset Captions Mean Voting

COCO Original 76.7 31.7%
FUSECAP 80.3 67.6%

SBU Original 71.9 32.1%
FUSECAP 75.5 60.2%

CC Original 72.6 34.7%
FUSECAP 75.4 59.7%

Table 1. FUSECAP data quantitative evaluation. CLIPScore-
based comparison between the original captions of common image-
text datasets with our enriched ones. “Mean” indicated the mean
CLIPScore and “Voting” expresses CLIP’s preference in a one-
vs-one setting. As can be seen, FUSECAP obtains significantly
improved results in both metrics.

question focuses on whether they are accurate. Our study
results indicate that participants find the enriched captions
at least as good as the original ones in 72.9% of the images.
This finding highlights the proposed method’s effectiveness
in enhancing the captions’ descriptiveness while preserving
alignment and relevancy to the images.

Quantitative Evaluation We evaluate the enriched cap-
tions in comparison to the original captions for each dataset
under consideration. To this end, we randomly selected 5000
images from each dataset and report the CLIPScore obtained
with both types of captions. As depicted in Table 1, the
enriched captions generated by our proposed method con-
sistently achieve a higher CLIPScore (Mean) on average by
4.6%. In addition, given an image and two captions (original
and enriched), we utilize CLIP to measure which caption
is preferred. We evaluate this on the different datasets and
summarize it under “Voting”, which our captions outperform
current ones on average by 29.7%. These results demon-
strate the effectiveness of our approach in generating en-
riched captions that better reflect the content of the images.

Image-Text Retrieval To further demonstrate the descrip-
tiveness and accuracy of the FUSECAP data, we assess its
performance in the image-text retrieval task. This task in-
volves matching images to text queries and vice versa. If
the enriched data is descriptive and accurate, retrieval per-
formance should improve since the additional details can
serve as a discriminative factor in establishing these cor-
respondences. Our training methodology aligns with the
original BLIP model. After pre-training the model on a
large-scale dataset as in Section 4, the model is fine-tuned
for image-text retrieval on the COCO training set using both
ITC and ITM losses. For the inference step, we employ the
method proposed by [39], previously integrated into BLIP.
This method involves the selection of K candidates based
on feature similarity, followed by their re-ranking using re-
spective ITM values. We report R@N that corresponds to
the accuracy of retrieving the true text/image among the top
N retrieved results. The details of the competing models
are provided in Section 5.2, with the exception that the ver-
sions discussed here have been fine-tuned for the retrieval
tasks. As illustrated in Table 2, the use of fused captions
contributes significantly to the enhancement of retrieval per-
formance on the COCO test set1. For example, compared to
the model trained on corresponding non-enriched data, the
R@1 score for image-to-text retrieval increased by 22.1%,
and for text-to-image retrieval, it increased by 34.8%.

5.2. Caption Generation

We fine-tune the BLIP model that was pre-trained on
the complete FUSECAP dataset for captioning, using the

1While we used enriched captions for training and testing BLIPFUSECAP ,
for the other baselines we used the original dataset without enrichment.
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COCO Retrieval
img → text text → img

Model R@1 R@5 R@10 R@1 R@5 R@10

BLIP† 75.1 92.7 96.4 58.2 82.4 89.2
BLIP-L 82.4 95.4 97.9 65.2 86.3 91.8
BLIP2 85.4 97.0 98.5 68.3 87.7 92.6

BLIP∗
FUSECAP 97.2 99.5 99.9 93.0 97.4 98.3

Table 2. Image-text retrieval results. Performance on COCO
retrieval (test sets). The “*” symbol indicates that the model was
trained and tested on our enriched dataset. These results attest that
given rich captions, BLIPFUSECAP significantly outperforms existing
methods, which utilize standard captions.

enriched COCO dataset. We refer to this fine-tuned version
as BLIPFUSECAP. To assess the effectiveness of the captioner,
and, by extension, the FUSECAP data it is trained on, we
thoroughly compare our results to various state-of-the-art
captioning models using CLIPScore. In particular, we con-
sider the following baselines:

• BLIP† [38]: An original BLIP model, pre-trained and
fine-tuned on the same image set as BLIPFUSECAP, which
uses original captions, in contrast to BLIPFUSECAP

which uses the enriched captions. To guarantee a fair
comparison, we set configuration parameters identical
to those implemented in BLIPFUSECAP.

• BLIP-L: A large version of BLIP, which was pre-
trained on a dataset comprising 129M images prior
to the captioning fine-tuning. Among all models pre-
sented in the original BLIP paper, this model achieves
superior captioning results.

• BLIP2-G-OPT2.7 [37]: A state-of-the-art captioning
model that integrates a large frozen vision backbone
(ViT G) along with a frozen LLM (OPT [83]), trained
on the datasets considered for BLIP-L.

• OFA [70]: A state-of-the-art image captioning method
trained on unimodal and multimodal pre-training tasks
and fine-tuned for captioning.

• GIT [69]: A state-of-the-art vision-language model,
with an image encoder and text decoder architecture.
It is scaled up in terms of both pre-training data and
model size, and it is fine-tuned for image captioning.

• Prismer [46]: A Vision-Language Model with Multi-
Modal Experts such as an object detector and an OCR
model. Prismer adopts a strategy that could be seen as
dual to ours, integrating vision experts into the model
architecture, as opposed to leveraging them to enrich
the training data.

Model Images Parameters Val Test

BLIP† 12M 247M 75.2 75.3
BLIP-L 129M 470M 76.1 76.0
OFA 20M 470M 76.6 76.4
GIT 800M 700M 77.1 77.0
BLIP2-G-OPT2.7 129M 3.8B 77.8 77.5
Prismer 13M 1.6B 76.7 76.7

BLIPFUSECAP 12M 247M 78.3 78.5

Table 3. Image captioning results. CLIPScore of leading models
and our approach on the COCO captions dataset. Our model outper-
forms much larger models that have pre-trained with significantly
more training data.

Building on the methodology outlined in Section 5, we
evaluate the performance of our models using the mean
CLIPScore metric. As shown in Table 3, our model not only
outperforms the BLIP† model by 4.3% but also surpasses the
best performing among other models by 1.3%. This improve-
ment over models with a considerably larger parameter count
that have been trained on significantly more image-caption
pairs underscores the effectiveness of our data centric ap-
proach. Furthermore, as illustrated in Figure 3, our approach
exhibits clear superiority in the generation of captions, pro-
ducing descriptions with greater semantic detail compared
to those generated by competing models. Our results sur-
passing Prismer indicate that for generating comprehensive
image captions, leveraging vision experts to enrich data can
be more beneficial than incorporating them directly into the
model architecture. Additional examples showcasing the
performance and capabilities of our model can be found in
the supplementary material.

Image-Text Retrieval To further assess the quality of
the generated captions, we once again utilize the image-
text retrieval task, following the method detailed in Sec-
tion 5.1. This time, however, we consider captions not
from the ground truth COCO or the “ground truth” enriched
COCO datasets. Instead, they are produced by the BLIP†
and BLIPFUSECAP caption generators. Captions from BLIP†
and BLIPFUSECAP are assessed using retrieval models fine-
tuned on original and enriched captions, respectively, both of
these retrieval models are the ones discussed in Section 5.1.
Table 4 shows that by using the captions from the captioners
instead of the ground truth captions, BLIPFUSECAP retains
its superiority over BLIP† in both image-to-text and text-
to-image retrievals. Impressively, using the BLIPFUSECAP

captions, the retrieval performance is on par with results
achieved using the ground truth enriched captions in Table 2.
In contrast, BLIP† exhibits a significant performance drop
when compared to its results with the corresponding ground
truth captions.
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COCO Retrieval
img → text text → img

Model R@1 R@5 R@10 R@1 R@5 R@10

BLIP† 56.3 83.0 90.3 54.5 81.2 88.7
-18.8% -9.7% -6.1% -3.7% -1.2% -0.5%

BLIP∗
FUSECAP

95.0 98.8 99.2 94.5 98.7 99.3
-2.2% -0.7% -0.7% +1.5% +1.3% +1%

Table 4. Image-text retrieval results using generated captions.
Performance on COCO retrieval (test sets) using captions generated
by the models presented in Section 4 rather than ground truth
captions. The models used for evaluation are the ones referenced in
Section 5.1. The highlighted percentages indicate the performance
difference when compared to the use of corresponding ground truth
captions in Table 2. Notably, BLIPFUSECAP captions excel over
BLIP†, a trend consistent with ground truth captions. Moreover,
BLIPFUSECAP maintains a performance parity with the ground truth
datasets, while BLIP† shows a noticeable decline in performance.

5.3. Large-Scale Data Influence

Typical VLP frameworks involve pre-training vision-
language models on image-caption pairs before fine-tuning
them on downstream tasks. Given this structure, one might
argue that the generation of enriched captions could serve
as an additional downstream task. This would suggest using
the standard captions dataset for pre-training, followed by
fine-tuning on a smaller enriched dataset. Yet, as mentioned
in Section 5.2, our approach with the BLIPFUSECAP model
deviates from this by pre-training on enriched datasets in-
stead of the conventional ones. In this section, we evaluate
the impact of this deviation.

We compare the performance of models that are pre-
trained on both the standard and enriched datasets. Both
models are subsequently fine-tuned using the enriched
COCO dataset. Unlike the evaluation method detailed in
Section 5, which is reference-free, this section employs con-
ventional, reference-based evaluation metrics, as both mod-
els are fine-tuned and tested using the same dataset. Table 5
reveals that the model pre-trained on the enriched captions
outperforms its counterpart, which was pre-trained on the
original captions, across all metrics when both are fine-tuned
on the augmented COCO dataset. This outcome underscores
the importance of using large-scale enriched datasets for
pre-training and validates our automated dataset creation
approach. Interestingly, the model that is pre-trained on the
enriched captions and fine-tuned using the standard COCO
dataset performs comparably to the model pre-trained on the
original captions and fine-tuned on the same dataset.

6. Limitations
In the human evaluation study (Section 5.1), a subset of

participants favored the original caption. This may be due to
our fusing process occasionally missing inter-element depen-

Pre-training
Data

Fine-tune
+Test Data B@4 CIDEr SPICE

Standard Standard 37.8 126.5 22.9
FUSECAP Standard 38.4 128.7 23.0

Standard FUSECAP 35.4 111.4 25.0
FUSECAP FUSECAP 37.3 123.1 26.8

Table 5. Influence of Large-Scale Data. Pre-training with the
FUSECAP dataset significantly outperforms pre-training on stan-
dard data when fine-tuned for enriched caption generation. This
underscores the value of the large-scale FUSECAP dataset and its
automated creation approach. Additionally, when fine-tuned for
standard captioning, the FUSECAP pre-trained model is comparable
to, if not slightly better than, the standard data pre-trained model.

dencies, as seen in Figure 1, where the cat’s position between
the man and the laptop was not captured. Future research
might integrate finer visual details, like segmentation, and
refine the LLM fuser accordingly.

Ethical considerations FUSECAP dataset was constructed
using FlanT5-XL model [19], which was trained on unfil-
tered data potentially laden with explicit content or inherent
biases. Consequently, the proposed dataset may replicate
biases from the original model.

7. Conclusions

In this paper, we address the problem of generating highly
descriptive and detailed image captions. We observe that
existing state-of-the-art methods produce short and often
oversimplified captions that fail to capture the intricate de-
tails in images. We hypothesize that this is due to datasets
limitation, i.e., existing training data composed of concise
captions. Thus, the tendency to provide such captions is
distilled into the trained models, regardless of their architec-
ture or training method. Therefore, we introduce a novel and
generic data-centric automated strategy to enrich existing im-
age captions, termed FUSECAP. Specifically, this approach
harnesses visual experts to extract meaningful information
from images and an LLM to fuse such data into the existing
captions, yielding enriched ones. We apply FUSECAP to dif-
ferent widespread datasets and generate 12M image-enriched
caption pairs. The augmented image captions quality is eval-
uated qualitatively using a human evaluation survey, and
quantitatively, using different evaluation methods. Finally,
we demonstrate the effectiveness of the enriched data by
utilizing it to train an image captioning model, which outper-
forms significantly larger state-of-the-art methods. We posit
that our research highlights the marked potential of LLMs
in enhancing powerful data-centric approaches in computer
vision.
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