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Abstract

Situation Recognition is the task of generating a struc-
tured summary of what is happening in an image using an
activity verb and the semantic roles played by actors and
objects. In this task, the same activity verb can describe a
diverse set of situations as well as the same actor or ob-
ject category can play a diverse set of semantic roles de-
pending on the situation depicted in the image. Hence a
situation recognition model needs to understand the con-
text of the image and the visual-linguistic meaning of se-
mantic roles. Therefore, we leverage the CLIP foundational
model that has learned the context of images via language
descriptions. We show that deeper-and-wider multi-layer
perceptron (MLP) blocks obtain noteworthy results for the
situation recognition task by using CLIP image and text em-
bedding features and it even outperforms the state-of-the-
art CoFormer, a Transformer-based model, thanks to the
external implicit visual-linguistic knowledge encapsulated
by CLIP and the expressive power of modern MLP block
designs. Motivated by this, we design a cross-attention-
based Transformer using CLIP visual tokens that model
the relation between textual roles and visual entities. Our
cross-attention-based Transformer known as ClipSitu XTF
outperforms existing state-of-the-art by a large margin of
14.1% on semantic role labelling (value) for top-1 accuracy
using imSitu dataset. Similarly, our ClipSitu XTF obtains
state-of-the-art situation localization performance. We will
make the code publicly available*.

1. Introduction
Situation recognition was first introduced to computer

vision in pioneering work [34]. Situation recognition is an
important problem in scene understanding, activity under-

*These authors contributed equally to this work
*https://github.com/LUNAProject22/CLIPSitu

standing, and action reasoning as it provides a structured
representation of the main activity depicted in the image.
The key component in situation recognition is the task of
semantic role labeling. Semantic role labeling is complex as
the same activity verb may have different functional mean-
ings and purposes depending on the context of the image.
For example, the verb “spray” can be used to describe a
firefighter spraying water on a fire, someone spraying oil on
salad, someone spraying perfume on their face, and some-
one spraying hairspray on their hair. Hence, semantic role
labeling requires a detailed understanding of the event in
the image using contextual information from the image and
how it relates to the linguistic definition of the event in terms
of the activity (verb) and activity-specific roles.

Multimodal Foundation Models such as CLIP [23] and
ALIGN [11] provide context as they are trained on many
millions of image/text pairs to capture cross-modal depen-
dencies between images and text. In these millions of ex-
amples, CLIP model might encounter different usages of
the same verb that describe visually different but semanti-
cally similar images. Hence, CLIP is an excellent multi-
modal foundation model for solving image semantic role
labeling tasks as it provides a grounded understanding of
visual and linguistic information. In [7], CLIP is shown to
be trainable for complex vision and language tasks termed
Structured Vision and Language Concepts. Another way
to leverage multimodal foundation models is to apply an
MLP on top of the image encoder in works such as VL-
Adapter [26], AIM [32], EVL [19] and wise-ft [29]. These
approaches can be applied for predicting the main activity in
the image i.e. for image classification [29] or action detec-
tion [32]. However, semantic role labeling is a conditional
classification task that needs verb and role along with the
image. Therefore, in [16], authors convert situation recog-
nition to a text-prompt-based prediction problem by fine-
tuning a CLIP image encoder with the text outputs from a
large language model – GPT-3 [2] called CLIP-Event. The
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verbs are ranked using the prompt “An image of 〈verb〉”
based on image CLIP embeddings. After predicting the
verb, each noun is predicted using another text prompt “The
〈name〉 is a 〈role〉 of 〈verb〉”, i.e. “The firefighter is an agent
in spraying”. Even with the world knowledge in GPT-3,
CLIP-Event performs worse on semantic role labeling than
state-of-the-art CoFormer [3] which is directly trained on
the images. The reason is that finetuning CLIP on seman-
tic role labeling is not effective as the dataset imSitu [34]
is not massive containing only 126,102 images yet it con-
tains a massive amount of nouns (11,538) that are related
to 190 unique roles. Therefore, the mapping between roles
and nouns becomes an extremely challenging task.

We show that a well-designed multimodal MLP that con-
sists of a modern MLP block design is able to solve seman-
tic role labeling using CLIP embeddings and it outperforms
the state-of-the-art without finetuning the CLIP model. This
multimodal MLP is trained on a combination of image and
text embedding from the verb and the role obtained from
the CLIP model. Multimodal MLP predicts the entity cor-
responding to the role using a simple loss function. Moti-
vated by the effectiveness of CLIP-based multimodal MLP,
we adopt a Transformer encoder to leverage the connec-
tion across semantic roles in an image. Each semantic role
is represented using a multimodal input of image and text
embedding of the verb and the role. We show that shar-
ing information across semantic roles using a Transformer
leads to slightly improved performance. Through the multi-
modal MLP and Transformer we find that CLIP-based im-
age, verb and role embeddings are effective for role predic-
tion and predicting all roles for a verb by sharing informa-
tion across them further improves the efficacy. Motivated
by these two findings, we design a cross-attention Trans-
former to learn the relation between semantic role queries
and CLIP-based visual token representations of the image
to further enhance the connection between visual and tex-
tual entities. We term this model as ClipSitu XTF and it
obtains state-of-the-art results for Situation Recognition on
imSitu dataset outperforming state-of-the-art CoFormer [3]
by 14.1% on top-1 value performance. Similarly, we lever-
age the cross-attention scores to localize the role in the im-
age. Using ClipSitu XTF, we obtain state-of-the-art results
for situation localization.

2. Related Work
Situation Recognition. To understand the relationship

between different entities in an image, tasks such as image
captioning [13, 15, 10], scene graph generation [31, 5], and
human-object interaction detection [9, 18] have been pro-
posed in the literature. In situation recognition [34], the
situational verbs and their roles are obtained based on the
meaning of the activity in each image from FrameNet [8].
The entities for each role are populated using the large ob-

ject dataset ImageNet. Recently, situation recognition has
also been extended to videos with the VidSitu dataset [24]
where each video spans multiple events each of which is
described using a situational verb, semantic roles, and their
nouns. The VidSitu dataset is extended with grounded enti-
ties in [14] while [30] proposes a contrastive learning objec-
tive framework for video semantic role labeling. We limit
the scope of this work to situation recognition in images.

One-stage prediction approaches predict the situational
verb from the image and then the nouns associated with the
roles of those verbs. In [34], a conditional random field
model is proposed that decomposes the task of situation
recognition into verb prediction and semantic role label-
ing (SRL). For SRL, they optimize the log-likelihood of
the ground-truth nouns corresponding to each role for an
image over possible semantic role-noun pairs from the en-
tire dataset. In [33], a tensor decomposition model is used
on top of CRF that scores combinations of role-noun pairs.
They also perform semantic augmentation to provide ex-
tra training samples for rarely observed noun-role combina-
tions. In [20], a predefined order for semantic roles is de-
cided to predict the nouns for an image, and a recurrent neu-
ral network is used to predict the nouns in that order. Au-
thors in [17] propose a gated graph neural network (GGNN)
to capture all possible relations between roles instead of a
predefined order as in [20]. In [25], a mixture kernel is ap-
plied to relate the nouns predicted for one role with respect
to the noun predicted for another role. These relations pro-
vide a prior for the GGNN [17] to predict nouns.

In [22], imSitu is extended with grounded entities in each
image to create Situations With Grounding (SWiG) dataset.
They propose two models – Independent Situation Local-
izer (ISL) and Joint Situation Localizer (JSL). Both ISL and
JSL use LSTMs to predict nouns in a predefined sequential
order similar to [20] while RetinaNet estimates the loca-
tions of entities. A transformer encoder-decoder architec-
ture is proposed in [4] where the encoder captures semantic
features from the image for verb prediction and the decoder
learns the role relations. In [12], situational verbs are pre-
dicted using a CLIP encoder on the image and the detected
objects in the image.

Two-stage prediction approaches introduce an addi-
tional stage to enhance the verb prediction using the pre-
dicted nouns of the roles. In [6], transformers are used
to predict semantic roles using interdependent queries that
contain the context of all roles. The context acts as the key
and values while the verb and the role form the query to
predict the noun. They also consider the nouns of two pre-
defined roles along with the image to enhance the verb pre-
diction using a CNN. In [28], a coarse-to-fine refinement
of verb prediction is proposed by re-ranking verbs based on
the nouns predicted for the roles of the verb. CoFormer[3]
combines ideas from [28] and [4] with transformer encoder

445



and decoder predicting verbs and nouns, respectively. They
add another encoder-decoder to refine the verb prediction
based on the decoder outputs from the noun decoder.

3. CLIPSitu Models and Training

In this section, first, we present how we extract
CLIP [23] embedding (features) for situation recognition.
After that we present the verb prediction model. Then, we
present three models for Situation Recognition using the
CLIP embeddings. Afterward, we present a loss function
that we use to train our models.

3.1. Extracting CLIP embedding

Every image I has a situational action associated with it,
denoted by a verb v. For this verb v, there is a set of seman-
tic roles Rv = {r1, r2, · · · , rm} each of which is played by
an entity denoted by its noun valueN = {n1, n2, · · · , nm}.
We use CLIP [23] visual encoder ψv(), and the text en-
coder ψt() to obtain representations for the image, verb,
roles, and nouns denoted byXI ,XV ,XRv

and,XN respec-
tively. Here XRv = {Xr1 , Xr2 , · · · , Xrm} for m roles and
XN = {Xn1 , Xn2 , · · · , Xnm} for corresponding m nouns
where Xri = ψt(ri) and Xni

= ψt(ni) are obtained using
text encoder. Similarly, the XI = ψv(I) and XV = ψt(v)
is obtained using vision encoder. Note that all representa-
tions XI , XV , Xri and Xni

have the same dimensions. In
imSitu dataset[34], we have 504 unique verbs, 190 unique
roles, and 11538 unique nouns. We extract CLIP text em-
beddings each verb, role, and noun separately.

3.2. ClipSitu Verb MLP

The first task in situation recognition is to predict the
situational verb correctly from the image. We design a sim-
ple MLP with CLIP embeddings of the image XI as input
called ClipSitu Verb MLP as follows:

v̂ = ϕV (XI). (1)

where ϕV contains l linear layers of a fixed dimension with
ReLU activation to predict the situational verb. Just before
the final classifier, there is a Dropout layer with a 0.5 rate.
We train ClipSitu Verb MLP with standard cross-entropy
loss.

3.3. ClipSitu MLP

Here we present a modern multimodal MLP block de-
sign for semantic role labeling for Situation Recognition
that predicts each semantic role of a verb in an image. We
term this method as ClipSitu MLP. Specifically, given the
image, verb, and role embedding, the ClipSitu MLP pre-
dicts the embedding of the corresponding noun value for
the role. In contrast to what has been done in the literature,
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Figure 1. Architecture of the ClipSitu MLP and TF models. We
use pooled image embedding from the CLIP image encoder for
ClipSitu MLP and TF. In ClipSitu TF, all the roles for the verb are
predicted simultaneously.

ClipSitu MLP obtains contextual information by condition-
ing the information from the image, verb, and role embed-
dings. While the image embedding provides context about
the possible nouns for the role, the verb provides the context
on how to interpret the image situation.

We concatenate the role embedding for each role ri to
the image and verb embedding to form the multimodal in-
put Xi where Xi = [XI , Xv, Xri ]. Then, we stack l MLP
blocks to construct CLIPSitu MLP and use it to transform
the multimodal inputXi to predict the noun embedding X̂ni

as follows:
X̂ni = ϕMLP (Xi). (2)

In ϕMLP , the first MLP block projects the input feature
Xi to a fixed hidden dimension using a linear projection
layer followed by a LayerNorm [1]. Each subsequent MLP
block consists of a Linear layer followed by a Dropout layer
(with a dropout rate of 0.2), ReLU [21], and a LayerNorm
as shown in Fig. 1(a). We predict the noun class from the
predicted noun embedding using a dropout layer (rate 0.5)
followed by a linear layer which we name as classifier ϕc as

ŷni
= argmax ϕc(X̂ni

) (3)

where ŷni is the predicted noun class. We use cross-entropy
loss between predicted ŷni

and ground truth nouns yni
as
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Figure 2. Architecture of ClipSitu XTF. We use embeddings from
each patch of the image obtained from CLIP image encoder.

explained later in Section 3.6 to train the model.

3.4. ClipSitu TF: ClipSitu Transformer

The role-noun pairs associated with a verb in an im-
age are related as they contribute to different aspects of
the execution of the verb. Hence, we extend our ClipSitu
MLP model using a Transformer [27] to exploit the inter-
connected semantic roles and predict them in parallel. The
input to the Transformer is similar to ClipSitu MLP (i.e.
Xi = [XI , Xv, Xri ]), however, we build a set of vectors
using {X1, X2, · · · , Xm} where m denotes the number of
roles of the verb. Each vector in the set is further processed
by a linear projection to reduce dimensions. We initialize
a Transformer model ϕTF with l encoder layers and multi-
head attention with h heads. Using the Transformer model,
we predict the value embedding of the m roles as output
tokens of the transformer

{X̂n1
, X̂n2

, · · · , X̂nm
} = ϕTF ({X1, X2, · · · , Xm}).

(4)
Similar to the MLP, we predict the noun classes using a clas-
sifier on the value embedding as ŷi = argmax ϕc(X̂ni

)
where i = {1, · · · ,m} as shown in Fig. 1(b).

3.5. ClipSitu XTF: Cross-Attention Transformer

Each semantic role in a situation is played by an object
located in a specific region of the image. Therefore, it is

important to pay attention to the regions of the image which
has a stronger relationship with the role. Such a mechanism
would allow us to obtain better noun prediction accuracy.
Hence, we propose to use the encoding for each patch of the
image obtained from the CLIP model. We design a cross-
attention Transformer called ClipSitu XTF to model how
each patch of the image is related to every role of the verb
through attention as shown in Fig. 2.

Let the patch embedding of an image be denoted
by XI,p = {X1

I , X
2
I , · · · , X

p
I } where p is the num-

ber of image patches. These patch embeddings form
the key and values of the cross-attention Transformer
while the verb-role embedding is the query in Trans-
former. The verb embedding is concatenated with each
role embedding to form m verb-role embeddings Xvr =
{[XV ;Xr1 ], [XV ;Xr2 ], · · · , [XV ;Xrm ]}. We project each
verb-role embedding to the same dimension as the image
patch embedding using a linear projection layer. Then the
cross-attention operator in a Transformer block is denoted
as follows:

Q =WQXvr,K = V =WIXI,p

X̂ = softmax
QKT

√
dK

V (5)

whereWQ andWI represent projection weights for queries,
keys, and values and dK is the dimension of the key to-
ken K. As with ClipSitu TF, we have l cross-attention
layers in ClipSitu XTF. The predicted output from the fi-
nal cross-attention layer contains m noun embeddings X̂ =
{X̂n1

, X̂n2
, · · · , X̂nm

}. Similar to the transformer in Sec-
tion 3.4, we predict the noun classes using a classifier on the
noun embeddings as ŷi = ϕc(X̂ni) where i = {1, · · · ,m}.

Next, we use ClipSitu XTF to perform localization
of roles that requires predicting a bounding box bi for
every role ri in the image. The cross-attention scores
from the first layer of ClipSitu XTF Am×p are rearranged
into m score vectors {A1, · · · , Am}. Each score vector
Ai is p-dimensional and shows how each patch in the
image is related to the verb and role. To incorporate
the verb and role context to the score, we concatenate
each score vector to its corresponding verb-role embed-
ding from Xvr to obtain input for localization Xl =
{[XV ;Xr1 ;A1], [XV ;Xr2 ;X2], · · · , [XV ;Xrm ;Xm]}.
We pass Xl through a single MLP block (designed for
ClipSitu MLP) followed by a linear layer and a sigmoid
function to obtain the predicted bounding box b̂i ∈ [0, 1]4

for every role ri. The four elements in the predicted
bounding box indicate the center coordinates, height and
width relative to the input image size. Though ClipSitu
XTF uses cross-attention as CoFormer [3], the verb role
tokens in the query and the image tokens are obtained
from CLIP and not learned. Leveraging the power of
CLIP embeddings allows us to design a simpler one-stage
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ClipSitu XTF compared to the two-stage CoFormer [3].

3.6. Losses

Minimum Annotator Cross Entropy Loss. The im-
Situ dataset employs three annotators to label each noun for
a role. In some instances, annotators may not provide the
same annotation. Existing approaches [6, 3] make multi-
ple predictions instead of one to tackle this issue. How-
ever, this can confuse the network during training as for
there are multiple annotations for the same example. Fur-
thermore, the loss function should not penalize a prediction
that is close to any of the annotators’ ground truth but fur-
ther away from others. We propose minimum cross-entropy
loss that considers the ground truth from each annotator.
For a prediction ŷi, ground truth from all the annotators
A = {A1, · · ·Aq} is used to train our network as follows

LMAXE = min
A

−
C∑

c=1

y
(Aj)
i,c log(ŷi,c) where ∀Aj ∈ A.

(6)
Here, C denotes the total number of classes and LMAXE

stands for Minimum Annotator Cross Entropy Loss. To
train ClipSitu XTF for localization of roles, we employ L1
loss to compare the predicted and ground-truth bounding
boxes

LL1 =
1

m

m∑
i=1

∥bi − b̂i∥1. (7)

We train ClipSitu XTF for noun prediction and localization
using the combined loss L = LMAXE + LL1.

4. Experiments
4.1. Evaluation Details

We perform our experiments on imSitu dataset [34] and
the augmented imSitu dataset called SWiG [22] for situ-
ation recognition and localization, respectively termed as
grounded situation recognition. The dataset has a total of
125k images with 75k train, 25k validation, and 25k test
images. The metrics used for semantic role labeling are
value and value-all [34] which predict the accuracy of noun
prediction for a given role. For a given verb with k roles,
value measures whether the predicted noun for at least one
of k roles is correct. On the other hand, value-all mea-
sures whether all the predicted nouns for all k roles are cor-
rect. A prediction is correct if it matches the annotation of
any one of the three annotators. Situation localization met-
rics grnd value and grnd value-all compute the accuracy of
bounding box prediction [22] similar to value and value-
all. A predicted bounding box is correct if the overlap with
the ground truth is ≥ 0.5. The metrics value, value-all,
grnd value and grnd value-all are evaluated in three settings

based on whether we are using ground truth verb, top-1 pre-
dicted verb, or top-5 predicted verbs. For our model ab-
lation on semantic role labeling and situation localization,
we use the ground truth verb setting for measuring value,
value-all, grnd value, and grnd value-all. All experiments
are performed on the dev set unless otherwise specified.

4.2. Implementation Details

We use the CLIP model with ViT-B32 image encoder
to extract image features unless otherwise specified. The
input to ClipSitu MLP is a concatenation of the CLIP em-
beddings of the image, verb, and role, each of 512 dimen-
sions leading to 1536 dimensions. For both ClipSitu TF
and XTF, we set the sequence length to be 6 which refers
to the maximum number of roles possible for a verb fol-
lowing [6]. Each verb has a varying number of roles and
we mask the inputs that are not required. For ClipSitu TF,
each input token in the sequence is the concatenated image,
verb, and role CLIP embedding same as the MLP above
which is projected to 512 dimensions using a linear layer.
For the patch-based cross-attention Transformer (ClipSitu
XTF), we obtain the embedding for input image patches
from CLIP image encoder (ViT-B32 model) which results
in 50 tokens (224/32 × 224/32 + 1 class) of 512 dimen-
sions that are used as key and value. The query tokens are
concatenated verb and role CLIP embeddings that are pro-
jected to 512 dimensions using a linear layer. Unless other-
wise mentioned, we train all our models with a batch size of
64, a learning rate of 0.001, and an ExponentialLR sched-
uler with Adamax optimizer, on a 24 GB Nvidia 3090.

4.3. Analysis with CLIP Image Encoders

In Table 1, we compare the proposed ClipSitu Verb MLP
model against zero-shot and linear probe performance of
CLIP. We also compare against a state-of-the-art CLIP fine-
tuning model called weight-space ensembles (wise-ft) [29]
that leverages both zero-shot and fine-tuned CLIP mod-
els to make verb predictions. We compare ClipSitu Verb
MLP and wise-ft using 4 CLIP image encoders - ViT-B32,
ViT-B16, ViT-L14, and ViT-L14@336px. The image clip
embeddings for ViT-B32 and ViT-B16 are 512 dimensions
and for ViT-L14, and ViT-L14@336px are 768 dimensions.
These four encoders represent different image patch sizes,
different depths of image transformers, and different input
image sizes. The hidden layer is 1024 dimensional in the
ClipSitu Verb MLP. Zero-shot performance of CLIP sug-
gests that CLIP image features are beneficial for situation
recognition tasks. Increasing the number of hidden layers
does not improve performance for ClipSitu Verb MLP as it
obtains the best top-1 and top-5 verb prediction even with
a single hidden layer. ClipSitu Verb MLP performs better
than wise-ft and linear probe for all image encoders which
shows that MLP based finetuning on CLIP image features
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Image
Encoder Verb Model Hidden

Layer Top-1 Top-5

ViT-B32

zero-shot - 29.20 65.21
linear probe - 44.63 78.35
wise-ft - 46.51 74.30

ClipSitu Verb MLP
1 46.69 76.11
2 46.51 76.08
3 44.51 74.15

ViT-B16

zero-shot - 31.90 67.89
linear probe - 49.27 78.76
wise-ft - 48.77 83.45

ClipSitu Verb MLP
1 50.91 89.57
2 50.83 89.40
3 48.63 88.55

ViT-L14

zero-shot - 38.18 79.34
linear probe - 52.39 87.67
wise-ft - 51.51 84.30

ClipSitu Verb MLP
1 56.70 84.61
2 56.63 84.49
3 53.80 82.44

ViT-L14
@336px

zero-shot - 39.70 79.21
linear probe - 53.40 81.45
wise-ft - 52.22 82.95

ClipSitu Verb MLP
1 57.86 86.11
2 56.22 84.55
3 54.35 82.85

Table 1. Comparing performance of ClipSitu Verb MLP with zero-
shot and finetuned CLIP (linear probe and wise-ft [29]).

Image
Encoder Model Top-1 Top-5 Ground truth

value v-all value v-all value v-all

ViT-B32
MLP 45.65 27.06 66.27 37.55 76.91 43.22
TF 45.67 27.33 66.28 37.98 76.77 42.97
XTF 44.54 25.94 64.93 35.56 75.25 40.79

ViT-B16
MLP 46.33 28.29 67.37 39.45 77.88 44.78
TF 46.41 28.65 67.39 39.75 77.23 43.82
XTF 45.67 27.44 66.09 37.42 75.43 40.58

ViT-L14
MLP 46.46 28.39 67.61 39.71 77.63 43.94
TF 46.95 29.56 68.19 41.22 78.02 45.25
XTF 46.95 29.49 68.08 40.61 77.84 44.54

ViT-L14
@336px

MLP 46.74 29.06 67.90 40.54 77.93 44.88
TF 46.97 29.66 68.27 41.41 78.30 45.79
XTF 47.17 30.06 68.44 41.66 78.49 45.81

Table 2. Comparison of CLIP Image Encoders on noun predic-
tion task using top-1 and top-5 predicted verb from the best-
performing Verb MLP model obtain from Table 1. All models’
performance improves by increasing the number of patch tokens
either by reducing patch size (32→16→14) or increasing image
size (224→336). v-all stands for value all.

works better than finetuning the CLIP image encoder itself
or using regression (linear probe) for situational verb pre-
diction. Our best performing ClipSitu Verb MLP outper-
forms linear probe by 4.46% on Top-1 and wise-ft by 3.2%
on Top-5 when using the same ViT-L14 image encoder.

Next, we study the effect of using different CLIP image
encoders for noun prediction with ClipSitu MLP, TF and
XTF. We compare ViT-B32, ViT-B16, ViT-L14, and ViT-
L14@336px. For ClipSitu XTF, the number of image patch
tokens used as key and value changes based on patch size
and image size. We have 197 tokens (224/16 × 224/16
+ 1 class token) for ViT-B16, 257 tokens for ViT-L14
(224/14 × 224/14 + 1 class token), and 577 tokens for
ViT-L14@336px (336/14 × 336/14 + 1 class token). For
ViT-L14, and ViT-L14@336px image encoders, we obtain
768-dimensional embeddings which are projected using a

linear layer to 512. We choose the best hyperparameters for
ClipSitu MLP, TF, and XTF whose ablations are presented
in Section 4.5.

In Table 2, we observe that the value and value-all us-
ing ground truth verbs steadily improve for all three models
as the number of patches increases from 32 to 16 to 14 or
the image size increases from 224 to 336. For ViT-B32 and
ViT-B16, the best performance is obtained by ClipSitu MLP
but it drops with ViT-L14. On the other hand, the maximum
improvement is seen in ClipSitu XTF i.e. 5.1% for value-
all compared to 1.6% and 2.8% for ClipSitu MLP and TF,
respectively. ClipSitu XTF is able to extract more relevant
information when attending to more image patch tokens to
produce better predictions. To compare noun prediction us-
ing top-1 and top-5 predicted verbs, we use the best ClipSitu
Verb MLP (ViT-L14@336px) from Table 1. For both Top-1
and Top-5 predicted verbs, we observe a similar trend as the
ground truth verb. ClipSitu XTF again shows the most im-
provement in value and value-all to obtain the best perfor-
mance among the three models across ground truth, Top-1
and Top-5 predicted verbs.

4.4. Comparison with SOTA

In Table 3, we compare the performance of proposed
approaches with state-of-the-art approaches on situation
recognition. We use ViT-L14@336px image encoder for all
models – ClipSitu Verb MLP, ClipSitu MLP, ClipSitu TF,
and ClipSitu XTF. ClipSitu Verb MLP outperforms SOTA
method CoFormer on Top-1 and Top-5 verb prediction by
a large margin of 12.6% and 12.4%, respectively, on the
test set, which shows the effectiveness of using CLIP im-
age embeddings over directly predicting the verb from the
images. The comparison with existing works shows that
with a well-designed MLP network, ClipSitu MLP outper-
forms state-of-the-art CoFormer [3] in all metrics compre-
hensively. ClipSitu MLP, TF, and XTF also handily out-
perform the only other CLIP-based semantic role labeling
method, CLIP-Event [16]. ClipSitu XTF performs the best
for noun prediction based on both the predicted top-1 verb
and top-5 verb for value and value-all matrices. ClipSitu
XTF outperforms state-of-the-art CoFormer by a massive
margin of 14.1% on top-1 value and by 9.6% on top-1 value-
all using the Top-1 predicted verb on the test set. Further-
more, on situation localization, ClipSitu XTF performs sig-
nificantly better than state-of-the-art for top-1 grnd value by
11% while showing improvements on all metrics.

4.5. Ablations on hyperparameters

In Fig. 3, we explore combinations of MLP blocks and
the hidden dimensions of each block to obtain the best MLP
network for semantic role labeling. Increasing the number
of MLP blocks and hidden dimensions steadily improves
performance as the number of unique nouns to be predicted
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Top-1 predicted verb Top-5 predicted verb Ground truth verb
Set Method verb value value-all grnd

value
grnd
value-all verb value value-all grnd

value
grnd
value-all value value-all grnd

value
grnd
value-all

CRF [34] 32.25 24.56 14.28 - - 58.64 42.68 22.75 - - 65.90 29.50 - -
CRF w/ DataAug [33] 34.20 26.56 15.61 - - 62.21 46.72 25.66 - - 70.80 34.82 - -
RNN w/ Fusion [20] 36.11 27.74 16.60 - - 63.11 47.09 26.48 - - 70.48 35.56 - -
GraphNet [17] 36.93 27.52 19.15 - - 61.80 45.23 29.98 - - 68.89 41.07 - -
CAQ w/ RE-VGG [6] 37.96 30.15 18.58 - - 64.99 50.30 29.17 - - 73.62 38.71 - -
Kernel GraphNet [25] 43.21 35.18 19.46 - - 68.55 56.32 30.56 - - 73.14 41.68 - -
ISL [22] 38.83 30.47 18.23 22.47 07.64 65.74 50.29 28.59 36.90 11.66 72.77 37.49 52.92 15.00
JSL [22] 39.60 31.18 18.85 25.03 10.16 67.71 52.06 29.73 41.25 15.07 73.53 38.32 57.50 19.29
GSRTR [4] 41.06 32.52 19.63 26.04 10.44 69.46 53.69 30.66 42.61 15.98 74.27 39.24 58.33 20.19
SituFormer [28] 44.32 35.35 22.10 29.17 13.33 71.01 55.85 33.38 45.78 19.77 76.08 42.15 61.82 24.65
CoFormer [3] 44.41 35.87 22.47 29.37 12.94 72.98 57.58 34.09 46.70 19.06 76.17 42.11 61.15 23.09

dev

ClipSitu XTF 58.19 47.23 29.73 41.30 13.92 85.69 68.42 41.42 49.23 23.45 78.52 45.31 55.36 32.37
CRF [34] 32.34 24.64 14.19 - - 58.88 42.76 22.55 - - 65.66 28.96 - -
CRF w/ DataAug [33] 34.12 26.45 15.51 - - 62.59 46.88 25.46 - - 70.44 34.38 - -
RNN w/ Fusion [20] 35.90 27.45 16.36 - - 63.08 46.88 26.06 - - 70.27 35.25 - -
GraphNet [17] 36.72 27.52 19.25 - - 61.90 45.39 29.96 - - 69.16 41.36 - -
CAQ w/ RE-VGG [6] 38.19 30.23 18.47 - - 65.05 50.21 28.93 - - 73.41 38.52 - -
Kernel GraphNet [25] 43.27 35.41 19.38 - - 68.72 55.62 30.29 - - 72.92 42.35 - -
ISL [22] 39.36 30.09 18.62 22.73 07.72 65.51 50.16 28.47 36.6 11.56 72.42 37.10 52.19 14.58
JSL [22] 39.94 31.44 18.87 24.86 09.66 67.60 51.88 29.39 40.6 14.72 73.21 37.82 56.57 18.45
GSRTR [4] 40.63 32.15 19.28 25.49 10.10 69.81 54.13 31.01 42.5 15.88 74.11 39.00 57.45 19.67
SituFormer [28] 44.20 35.24 21.86 29.22 13.41 71.21 55.75 33.27 46.00 20.10 75.85 42.13 61.89 24.89
CoFormer [3] 44.66 35.98 22.22 29.05 12.21 73.31 57.76 33.98 46.25 18.37 75.95 41.87 60.11 22.12
CLIP-Event [16] 45.60 33.10 20.10 21.60 10.60 - - - - - - - - -

test

ClipSitu XTF 58.19 47.23 29.73 40.01 15.03 85.69 68.42 41.42 49.78 25.22 78.52 45.31 54.36 33.20
Table 3. Comparison with state-of-the-art on Grounded Situation Recognition. Robustness of ClipSitu MLP, TF, and XTF is demonstrated
by the massive improvement for value and value-all with Top-1 and Top-5 predicted verbs over SOTA.

Heads 1 2 4 8
Layers 1 2 4 6 1 2 4 6 1 2 4 6 1 2 4 6

ClipSitu TF value 75.73 75.78 76.87 24.68 75.80 75.95 75.97 18.28 75.71 76.77 75.87 05.20 75.74 75.93 76.07 75.94
value-all 41.40 41.52 41.84 00.21 41.64 41.60 41.83 00.21 41.43 42.10 41.75 00.00 41.35 41.58 42.97 41.72

ClipSitu XTF value 72.70 74.33 75.27 74.35 53.11 53.17 53.11 53.16 53.18 53.51 53.45 53.49 53.13 53.44 53.38 53.54
value-all 36.61 39.11 40.79 39.06 16.58 16.64 16.38 16.46 16.50 16.77 16.90 16.97 16.42 16.89 16.85 17.02

Table 4. Ablation on Transformer hyperparameters. 1 head with 4 layers is sufficient to obtain best value and value-all performance for
ClipSitu XTF. For TF, 1 head and 4 layers produces best value whereas 8 heads and 4 layers produces best value-all performance.

Figure 3. Effect of the number of MLP blocks and hidden dimen-
sions on value and value-all. We train with very large hidden di-
mensions such as 8192, 16384, and 32768 to obtain state-of-the-art
value and value-all results.

Model Top-1 Top-5 Ground truth
grnd
value

grnd
v-all

grnd
value

grnd
v-all

grnd
value

grnd
v-all

XAtt. L1 39.30 10.54 46.46 19.70 53.87 30.22
XAtt. L4 33.30 09.34 42.55 17.53 51.32 31.32
XAtt. L1 + L4 36.56 09.88 44.23 11.43 54.56 34.71
XAtt L1 +
verb-role emb 41.30 13.92 49.23 23.45 55.36 32.37

Table 5. Comparing different ClipSitu XTF inputs for situation lo-
calization. XAtt. – cross-attention scores. L1 – first XTF layer and
L4 – last XTF layer of best performing model (1 head, 4 layers,
ViT-L14@336px). Concatenating (+) verb role embedding (emb)
improves the performance of cross-attention scores. We use the
best Verb MLP from Table 1. v-all stands for value-all.

is 11538. We train MLP with small to very large hidden
dimensions i.e. 128→16384 which results in a steady im-

provement in both value and value-all. No improvement in
value and value-all is seen when we increase the layer di-
mension further to 32768 for 3 MLP blocks which demon-
strates that we have reached saturation. Our best ClipSitu
MLP for semantic role labeling obtains 76.91 for value and
43.22 for value-all with 3 MLP blocks with each block hav-
ing 16,384 hidden dimensions which beats the state-of-the-
art CoFormer [3]. The main reason our ClipSitu MLP per-
forms so well on semantic role labeling is our modern MLP
block design that contains large hidden dimensions along
with LayerNorm which have not been explored in existing
MLP-based CLIP finetuning approaches. We also compare
the performance of ClipSitu MLP with the proposed mini-
mum annotator cross-entropy loss (LMAXE) versus apply-
ing cross-entropy using the noun labels of each annotator
separately. We find that LMAXE produces better value and
value-all performance (76.91 and 43.22) compared to cross-
entropy (76.57 and 42.88).

In Table 4, we explore the number of heads and layers
needed to obtain the best-performing hyperparameters for
semantic role labeling using ClipSitu TF and XTF. We find
that a single head with 4 transformer layers performs the
best in terms of value for both ClipSitu TF and XTF while
for value-all, an 8-head 4-layer ClipSitu TF performs the
best and we use this for subsequent evaluation. For both
ClipSitu TF and XTF, increasing the number of layers be-
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Model # Parameters GFlops Inference Time(ms)
CoFormer [3] 93.0M 1496.67 30.62
ClipSitu Verb MLP 1.3M 0.17 0.08
ClipSitu MLP 580.2M 443.18 32.33
ClipSitu TF 20.2M 8.65 1.55
ClipSitu XTF 45.3M 116.01 11.17

Table 6. Comparison of parameters, flop count and inference time
for CoFormer [3], Verb MLP, ClipSitu MLP, TF and XTF models.

yond 4 does not yield any improvement in value or value-
all when using less number of heads (1,2,4). Similarly, for
ClipSitu XTF, increasing the number of heads and layers
leads to progressively deteriorating performance. Both of
these performance drops can be attributed to the fact that
we have insufficient samples for training larger Transformer
networks [23]. In ClipSitu XTF, we have fixed role tokens
obtained from CLIP. We found this produces better noun
prediction performance than learning the role tokens for
each verb. Details are in Supplementary section 1. In Ta-
ble 5, ablation on situation localization shows that cross-
attention scores from the first XTF layer performs better
than the last XTF layer. We concatenated verb and role em-
beddings to the cross-attention score of first XTF layer to
provide more context about the role which further improves
localization performance.
Complexity. We compare the number of parameters, com-
putation, and inference time for ClipSitu MLP, TF, and XTF
using the ViT-L14-336 image encoder and CoFormer [3] in
Table 6. Please also see supplementary material section.
Qualitative Results. In Fig. 4, we compare the qualitative
results of ClipSitu XTF with CoFormer. ClipSitu XTF is
able to correctly predicts verbs such as cramming (Fig. 4(b))
while CoFormer focuses on the action of eating and hence
incorrectly predicts the verb which also makes its noun pre-
dictions for the container and theme incorrect. CoFormer
predicts the place as table and predicts the verb as dusting
(Fig. 4(c)) instead of focusing on the action of nagging. Fi-
nally, we see in Fig. 4(d) that CoFormer is confused by the
visual context of kitchen as it predicts stirring instead of
identifying the action which is drumming. On the other
hand, ClipSitu XTF correctly predicts drumming and the
tool as drumsticks while still predicting place as kitchen.
More qualitative results are in Supplementary section 2.

5. Conclusion

We propose to leverage CLIP embeddings for seman-
tic role labeling. We show that multimodal ClipSitu MLP
with large hidden dimensions outperforms the state-of-the-
art semantic role labeling approach. We propose a Clip-
Situ XTF model that employs cross-attention between im-
age patch embeddings from the CLIP image encoder and
text embeddings. ClipSitu XTF sets the new state-of-the-
art in semantic role labeling improving the current results
by a large margin of 14.1% on top-1 value and by 9.6% on

(a)

CoFormer ClipSitu XTF

-

(b)

(c)

(d)
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MAN
HAND
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-
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Figure 4. ClipSitu XTF vs. CoFormer [3] predictions. green refers
to correct prediction while red refers to incorrect prediction. ’-’
refers to predicting blank (a noun class) for this role.

top-1 value-all. We also show that our approach of using
CLIP embeddings is much more effective than finetuning
CLIP, given the relatively small size of the dataset. Unlike,
VL-Adapter [26], AIM [32], EVL [19] and wise-ft [29],
our models can handle conditional inputs to solve Situation
Recognition task. Despite the simplicity, our work shows
that a traditional approach of freeze and finetune can be still
relevant when used with modern neural network designs es-
pecially when using Foundational models.
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