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Abstract

Human-object interaction (HOI) and temporal dynamics
along the motion paths are the most important visual cues
for egocentric action anticipation. Especially, interaction
regions covering objects and the human hand reveal sig-
nificant visual cues to predict future human actions. How-
ever, how to incorporate and capture these important visual
cues in modern video Transformer architecture remains a
challenge. We leverage the effective MotionFormer that
models motion dynamics to incorporate interaction regions
using spatial cross-attention and further infuse contextual
information using trajectory cross-attention to obtain an
interaction-centric video representation for action antici-
pation. We term our model InAViT which achieves state-of-
the-art action anticipation performance on large-scale ego-
centric datasets EPICKTICHENS100 (EK100) and EGTEA
Gaze+. On the EK100 evaluation server, InAViT is on top of
the public leader board (at the time of submission) where it
outperforms the second-best model by 3.3% on mean-top5
recall. The code is available1.

1. Introduction
In egocentric action anticipation, the model needs to pre-

dict the immediate next human action that is going to hap-
pen, usually 1 second into the future [11]. Action anticipa-
tion is a challenging task due to various reasons such as the
uncertainty in future actions, diversity of execution of ac-
tions, and the complexity of human-object interactions pre-
sented when executing those actions. A way to reduce the
uncertainty in predicting the next action is to develop mod-
els that may be able to infer information about probable fu-
ture objects and interactions that will be used in the future.
As the observed and next actions are causally related, it is
highly likely that information about observed interactions
may possess possible cues about future actions.

1https://github.com/LAHAproject/InAViT

Some prior works use hand-object interactions to exploit
those cues for action anticipation [48, 32], yet do not exploit
the visual changes in human and object appearance caused
by the execution of actions. We hypothesize that modeling
of change in the appearance of regions containing objects
and hands may reveal vital information about the probable
execution of future actions. The work in [32] focuses on
predicting manually annotated interaction hotspots without
accounting for the specific objects associated with the inter-
action. However, it is challenging to automatically recog-
nize the most important image regions that reveal what is
going to happen next from egocentric videos. We develop
an approach that attends to the most informative patches
among the entire interaction region in every observed frame
and make use of those modeled changes in appearances to
predict future actions.

In particular, we propose to model the interaction region
containing the hands and the interacted objects. We model
the interaction regions as how hand and object appearance
change due to the execution of the action and use those
changes in appearance. Furthermore, we infuse the inter-
action regions with contextual cues from the background
of the current action to obtain additional visual information
about the area in which the interactions are performed. Fi-
nally, we propose an effective way to incorporate context-
infused hand-object interaction regions to a video Trans-
former to create a richer interaction-centric video represen-
tation. Specifically, we use effective MotionFormer [43] as
it aggregates important dynamic information along implic-
itly determined motion paths. This simple yet effective idea
improves the action anticipation performance outperform-
ing many dedicated video Transformer models.

Leveraging on the MotionFormer [43], we design a
spatio-temporal visual transformer denoted as human-
object Interaction visual transformer (InAViT) for action an-
ticipation that refines image patches from the interaction re-
gions in every frame which we term as interaction tokens.
The interaction tokens are obtained from the refined object
and human tokens and the refinement is influenced by ob-
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jects, hands, and the anticipated action. We incorporate the
visual context of the interaction’s surroundings into the in-
teraction tokens by proposing a trajectory cross-attention
mechanism based on trajectory attention [43]. Finally, we
infuse interaction tokens into the observed video to build
an interaction-centric video representation for effective ac-
tion anticipation. InAViT provides a way to extract visual
changes in interaction regions across observed frames us-
ing trajectory cross-attention while in [48], human and ob-
ject visual features are simply concatenated frame-wise to
represent interactions.

Human-object interactions in actions are expressed as re-
lations in spatio-temporal graphs in [24, 55, 36, 53, 42].
We are inspired by these approaches, especially the pro-
gression of human-object relationships for action recogni-
tion tasks [42]. We model interaction regions explicitly as
spatio-temporal visual changes in hands and objects rather
than implicitly as edges between hands and objects [42].
Furthermore, authors in [22, 60] make use of only object
dynamics, and do not treat human hands as a separate en-
tity [36, 42]. On the other hand, our interaction-centric
video representation recognizes hands as a separate entity
from objects that affect visual change on objects and vice-
versa. The change in the hand’s visual appearance when
interacting with objects also gives a clue about the observed
action. Hence, modeling interaction regions by capturing
visual changes in both hands and objects is better than mod-
eling the change in objects alone [22]. Therefore, we postu-
late that interaction-centric representations are better suited
for action anticipation than object-centric approaches.

In summary, our contributions are twofold: (1) We pro-
pose a novel human-object interaction module that com-
putes appearance changes in objects and hands due to the
execution of the action and models these changes in appear-
ances to refine the video representations of Video Trans-
former models for effective action anticipation. (2) On
the EK100 evaluation server, our model InAViT is top
of the public leaderboard and outperforms the second-
best model by 3.3% on mean-top5 recall. Leveraging on
MotionFormer, we also obtain massive improvement in
EGTEA Gaze+ dataset.

2. Related Work
Anticipating human actions has gained interest in the re-

search community with large datasets [19, 38, 6] and in-
novative approaches [11, 51, 17, 56, 9, 20, 57, 52, 47, 1,
44, 58, 26, 13, 12]. In [11], rolling and unrolling LSTM
(RU-LSTM) is proposed to predict the next action. The
authors in [51] increase RU-LSTM’s temporal context us-
ing non-local blocks to combine local and global temporal
context. In [17], spatio-temporal transformers called An-
ticipative Video Transformers (AVT) are proposed for ac-
tion anticipation. In [56], MemViT extends AVT for long-

range sequences by memory caching multiple smaller tem-
poral sequences. RAFTformer [16] proposes a real-time
action anticipation transformer using learnable anticipation
tokens to capture global context trained using masking-
based self-supervision. In [18, 40, 34, 41], present the prob-
lem of long-term anticipation (LTA). In [7], motion primi-
tives called therbligs are introduced for decomposing ac-
tions which are then used for action anticipation. The au-
thors in [49, 50] use goal representation for next action an-
ticipation while [35] focuses on discovering intentions for
LTA. The audio information is used to augment video rep-
resentation for next-action anticipation in [62] and [39] uses
only audio for LTA. Other approaches consider past and
future correlation using Jaccard vector similarity [9], self-
regulated learning [44], transitional model [37], and coun-
terfactual reasoning [61].

There are a variety of approaches for Human-Object In-
teractions (HOIs) modeling in images [4, 15, 30, 14, 59, 5,
27, 28, 31] and videos [32, 29, 33, 25, 8]. In [29], human-
object interaction regions are detected in videos using verb-
object queries describing the action. Observed action labels
are not available during testing in action anticipation and
hence, we cannot predict the interaction region. In [25], re-
lationships between humans and objects are modeled and
verified using relationship labels. Relationship labels are
not available for the observed video and so our model at-
tends to all interactions and discovers their importance in
predicting the next action.

Another related area is interaction hotspot prediction
where future hand-trajectory and interaction spots need to
be estimated. Interaction prediction approaches [32, 33]
learn future hand motion distribution conditioned on the
video representation using an encoder (LSTM [32] or
Transformer [33]). Object interaction anticipation [45] re-
quires predicting the next active object bounding box along
with the next action. However, these approaches require ex-
plicit annotations of hand trajectories in future, object tra-
jectories in the observed frames and location of interaction
spots. Our interaction modeling approach obviates the need
for hand and object trajectory annotations that are difficult
to obtain in videos as shown in [10].

3. Preliminaries

3.1. Basic video representation

We extract a set of 3-D cuboids or video ”tokens” from
a video as existing video transformers [2, 43, 3]. The set
of all the video tokens from a single fixed length video-
clip is denoted by X ∈ RTHW×d wherein each of the
THW cuboids is linearly projected to a d-dimensional vec-
tor. Here, T is the number of frames in the fixed-length
video clip and H,W is the number of vertical and horizon-
tal patches respectively. Let xst ∈ Rd denote a video token
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from the set X at spatial location s ∈ {1, · · · , H × W}
and temporal location t ∈ {1, · · · , T}. Similar to [43],
we add separate learnable positional encoding for spatial
and temporal dimension for each video token denoted as
ess ∈ Rd and ett ∈ Rd, respectively. The resultant video
token after spatial and temporal embedding is given as
xst = xst + ess + ett. A classification token xcls is ap-
pended for anticipating the next action from X resulting in
THW+1 tokens in Rd. We exclude the classification token
hereafter for clarity.

3.2. Obtaining hand and object tokens

We obtain hand and object representations from video to-
kens X . We obtain object and hand bounding-boxes using
Faster R-CNN [46]. In every frame, we use one bounding
box for the hand and N bounding boxes for objects closest
to the hand. SORT algorithm is used over the detections to
obtain sequences of detections where each sequence repre-
sents a hand or an object [42]. Now, given the video tokens
corresponding to a frame Xt and the bounding box of the
hand Bh,t, we obtain a hand token ht ∈ Rd. We make use
of RoIAlign [21] layer on Xt to obtain hand region crops
similar to [22]. We then use MLP and max-pooling to ob-
tain the final hand representation or the hand token. We
apply this to every frame to obtain T hand tokens denoted
by H ∈ RT×d where H = [h1, · · · ,hT ]. Similarly, for
each of object i, we obtain a T object tokens oi,1, · · · ,oi,T

and we denote it as Oi ∈ RT×d. In total, for the N objects,
we end up with O ∈ RT×N×d where O = [O1, · · · ,ON ].

4. Our method
4.1. Overview of our method

We hypothesize that in egocentric action anticipation,
hands and objects play a key role in anticipating actions.
Hands and objects change the appearance of other objects
causing visible state changes, such as human cutting tomato
with knife or human emptying a pan using spatula. Change
in the state of the objects reveals cues about the possible
next action. We capture these changes using newly designed
interaction tokens by refining the original hand and object
representations (tokens) with respect to each other.

As the objects affect the appearance of hand regions, we
refine the hand tokens using all object tokens in the frame
using Eq. (1). Similarly, as hand and objects affect the ap-
pearance of other objects when executing the action, we
model this by refining every object token using hand tokens
and other object tokens in the frame using Eq. (2).

H̃ = ϕH(H|O) (1)

Õi = ϕO(Oi|H,Oj) ∀j ̸= i, i ∈ 1, · · · , N, (2)

Here ϕH and ϕO are attention-based functions that will be
discussed in detail in Secs. 4.2.1 to 4.2.3. Refined object
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Figure 1: Block diagram of our interaction region model-
ing based action anticipation (InAVIT). Ellipses represent
processing mechanisms. Trajectory attention ×12 refers to
MotionFormer.

tokens for all objects are denoted as Õ = [Õ1, · · · , ÕN ].
Together, the refined hand and object tokens constitute the
interaction tokens I = [H̃, Õ].

We also hypothesize that the context or the background
of the current action may provide useful information when
predicting the next action. For example, picking a tomato
next to the cutting board (context) informs that the next
probable action is cut tomato. Therefore, we enrich the in-
teraction tokens (I) using the information coming from the
context and vice-versa. We use Trajectory Cross Attention
function (ϕI ) inspired by [43] to obtain the context-infused
interaction tokens Ĩ

Ĩ = ϕI(I|X). (3)

The final video representation is interaction-centric where
we first concatenate context-infused interaction tokens to
the video tokens. Then, we assimilate the interaction re-
gions into the video using self-attention (ϕX ). We choose
the refined tokens corresponding to the original video
tokensX as the interaction-centric video representation XI

XI = ϕX([Ĩ , X]). (4)

We predict the next action using the interaction-centric
video representation with multiple layers of Trajectory At-
tention as in MotionFormer [43]

anext = ϕ(XI). (5)

Next action anticipation is defined as observing 1, · · · , T
frames and predicting the action that happens after a gap of
Ta seconds. It is important to note that a new action starts
after Ta seconds that is not seen in the observed frames. Our
overall approach is shown in Fig. 1.

4.2. Human-Object interaction region modeling

Now we discuss how we implement Eq. (1) and
Eq. (2). We model spatiotemporal interaction regions be-
tween hands and objects in three ways encapsulating differ-
ent types of interaction information to obtain interaction to-
kens I = [H̃, Õ]. These three types of interaction modeling
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Figure 2: Modeling interaction region tokens using Spatial
Cross Attention. In every frame, hand tokens act as query
and object tokens as key and value to compute refined hand
tokens. Refined object tokens are computed with object to-
ken as query, and hand and other object tokens as key and
values (not shown here to avoid clutter). Interaction tokens
consist of refined hand and object tokens.

will be evaluated in the experiments. Reader may refer to
the supplementary material section 1 for the common defi-
nition of cross-attention and self-attention. Next, we present
three ways to obtain interaction tokens.

4.2.1 SCA: Spatial cross-attention

We implement Eq. (1) and Eq. (2) using spatial cross-
attention. In every observed frame, there is a hand to-
ken and multiple object tokens. We model the change in
hands by cross-attention [54] as shown in Fig. 2. We use
the hand token ht as the query and compute the atten-
tion with respect to every object token in the same frame
o1,t, · · · ,oN,t. The query, key, and value are denoted as
qh,t = htWq, ki,t = oi,tWk, and vi,t = oi,tWv , re-
spectively. We use cross-attention to get the refined hand
tokens, h̃t. Cross attention implicitly seeks the object to-
ken that has the most impact on the hand token by pooling
all the object tokens in the frame and weighing each by its
probability.

Similarly, we use cross-attention to refine each object
token using the hand token and other object tokens in the
frame. Every object token oi,t acts as a query, and hu-
man and other object tokens act as keys and values. Let
zt represent either hand or other object tokens in the frame
t. There are N such tokens in each frame for each ob-
ject query oi,t. The query, key, and values are obtained as
qi,t = oi,tWq, kj,t = ztWk, and vj,t = ztWv , re-
spectively. The refined object token õi,t are obtained using
cross-attention. We call the refined hand and object tokens
as interaction tokens It = [h̃t, õ1,t, · · · , õN,t]. We perform
spatial cross-attention (SCA) over every frame to obtain all
the interaction tokens I ∈ RT×(N+1)×d.

4.2.2 SOT: Self-attention of hand/object over time

We model interaction tokens as the change in hands
or objects individually over time as shown in Fig. 3 us-
ing self-attention. Hand token ht is refined using only

Self Attention over object tokens

Object token

Tokens across frames

Frames

Interaction
tokens frame-wise

Hand token

Object token

Hand token
Self Attention over hand tokens

Figure 3: Modeling interaction tokens using Self-attention
Over Time. We compute self-attention over hand tokens in
all the frames to obtain refined hand tokens. We repeat this
for every object region across frames. The refined hand and
object tokens at every frame are the interaction tokens.

other hand tokens from all frames. The query, key, and
value are obtained from all hand tokens across all frames
qh,t = htWq, kh,t = htWk, vh,t = htWv to ob-
tain refined hand token h̃t using self-attention. We refine
object tokens oi,t of every object i separately over frames
using self-attention. The query, key, and value for object
i are computed from its own tokens over all the frames
qi,t = oi,tWq, ki,t = oi,tWk, vt = oi,tWv to obtain
refined object token õi,t using self-attention. We call this
method Self-attention Over time SOT and SOT interaction
tokens It = [h̃t, õ1,t, · · · , õN,t] consist of refined hand and
object tokens.

4.2.3 UB: Union Box of hand and nearest object

We obtain the third type of interaction token using the
hand and the nearest object in every frame. We compute
the union bounding box from the hand and the nearest ob-
ject bounding boxes in every frame. Here the hand and ob-
ject union box is similar to the union of objects and hu-
man regions for interaction detection [29]. We then obtain
the union tokens U ∈ RT×d using the method described in
Sec. 3.2. Unlike the previous two approaches, the union re-
gion consists of both human and object features together.
We refine the T union tokens in U ∈ RT×d using self-
attention to obtain interaction tokens It ∈ RT×d. We de-
note this approach as UB for short. Next, we describe
how to obtain context-infused interaction tokens in Sec. 4.3.
Then, in Sec. 4.4, we describe how context-infused interac-
tions are used to obtain interaction-centric video represen-
tation for action anticipation.

4.3. CI: Context-infused interaction tokens

Here we discuss how we implement Eq. (3). The context
plays an important role along with interaction in deciding
what are the possible next actions. For example, washing a
plate in kitchen sink suggests that the next action is probably
close the tap. Hence, we infuse context into interaction to-
kens by proposing Trajectory Cross Attention (TCA) based
on trajectory attention [43]. TCA maintains temporal corre-
spondences between interaction tokens and context tokens
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of a frame as shown in Fig. 4.
Our TCA formulation seeks the probabilistic path of an

interaction token between frames. The interaction tokens
act as the query on the video tokens X that is representa-
tive of the context. Let the video patch at spatial location
s in frame t be given by xst ∈ Rd. The key and value are
obtained from the video patch. We have N + 1 interaction
tokens2 in every frame. For each interaction token yt ∈ It,
we obtain a set of trajectory tokens ŷtt′ ∈ Rd,∀t′ ≥ t that
represents pooled information weighted by the trajectory
probability. The pooling operation implicitly looks for the
best location s at frame t′ ≥ t by comparing the interaction
query qt = ytWq to the context keys kst′ = xst′Wk using
q, k, v-attention. Attention is applied spatially and indepen-
dently for all the interaction tokens in every frame. This is
complementary to our previously computed cross attention
(Eq. (1) and Eq. (2)) where hand/object query tokens are
refined with respect to other object/hand key and value to-
ken. In TCA, we seek to infuse interaction tokens with the
visual context of the video which is similar to [23] where
cross-attention is used to infuse query tokens with informa-
tion from key and value tokens.

Once trajectories are computed, we pool them across
time to reason about connections across the interaction
regions in a frame given the environment. For tempo-
ral pooling, the trajectory tokens are projected to a new
set of queries, keys, and values q̂tt′ = ŷtt′Wq, k̂tt′ =
ŷtt′Wk, v̂tt′ = ŷtt′Wv , respectively. The new query
q̂tt′ has information across the entire trajectory that extends
across the entire observed video frames. We perform tem-
poral pooling using 1D attention across the new time (tra-
jectory) dimension to obtain refined interaction tokens. We
term these refined interaction tokens as context-infused in-
teraction tokens Ĩ = [ỹ1, · · · , ỹT ].

4.4. ICV: Interaction-centric Video Representation

Here we discuss how we implement Eq. (4). The next
action is dependent on interactions and context. Therefore,
our goal is to obtain a video representation that incorpo-
rates information from the context-infused interaction to-
kens. We concatenate the video tokens X and the context-
infused interaction tokens Ĩ to form the augmented video
representation Xa

3. Then we perform self-attention over
the augmented video tokens xa

r ∈ Xa wherein video tokens
attend over the interaction regions tokens and vice-versa.
After self-attention, we obtain refined augmented video to-
kens x̃a

r . We construct the interaction-centric video repre-
sentation XI using x̃a

r that corresponds to the original video

21 in case of UB interaction modeling
3Xa ∈ RT×(H×W+N+1)×d (for SCA and SOT) or Xa ∈

RT×(H×W+1)×d for UB

t = 2

Context
(Original Video

Patches)

T

Interaction
tokens

K

Spatial Cross Attention

<,>

A

X

Temporal Attention

t = 1

t = T Tem
poral C

ross
Attention

T Context-infused
Interaction tokens

V

Q

Figure 4: Context infusion into interaction region tokens us-
ing Trajectory Cross Attention. We compute spatial cross-
attention (SCA) to find the best location for interaction tra-
jectory by comparing the interaction query to context keys.
Next, we pool the interaction trajectories across time to
form connections across the interaction tokens in a frame.

tokens.

XI = x̃a
r ,∀r, if xa

r ∈ X. (6)

We call XI as interaction-centric video representation in the
same vein as object-centric video representation [22].

Till now, we have only applied a single attention layer
for interaction modeling, context infusion for interaction,
and interaction-centric video representation. In literature,
video transformer approaches [43, 42, 2] have shown ex-
cellent performance with multiple layers of attention. We
apply 12 layers of Trajectory Attention following Motion-
Former [43] on the interaction-centric video representation
to obtain the final video representation X̃I . The reason for
choosing MotionFormer is that it performs best empirically.
The classification token xcls obtained at the end of multiple
trajectory attention layers is used to predict the next action,
i.e., ânext = ϕ(x̃cls) where ϕ is a linear layer.

Loss function. We use cross-entropy loss for the next
action label to train our model. We compare the model’s
prediction ânext with the ground truth one-hot label anext
for the next action as follows

Lant = −
∑

anext ⊙ log(ânext). (7)

It should be noted that as we train our model with the cross-
entropy loss to predict the next action, the interaction tokens
are optimized for finding the most influential interactions
when predicting the next action (see Fig. 5).

5. Experiments and Results
5.1. Datasets and Implementation Details

We evaluate and compare our methods on two
large unscripted action anticipation datasets EPIC-
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KITCHENS100[6] (EK100) and EGTEA Gaze+[38]. For
EK100, we report results on the test set evaluation server
that uses mean-top5 recall as the metric. For EK100 and
EGTEA, anticipation gap (Ta) is 1s and 0.5s, respectively.

We follow MotionFormer [43] and use 16-frame long
clips of resolution 224 × 224 uniformly sampled from an
observed video of 64 frames ( approximately 2s). Every
3D video token is extracted from a video patch of size
2 × 16 × 16. We extract hand, object, and union to-
kens following the strategy explained in Sec. 3.2. Then,
to implement InAViT(SCA) (Sec. 4.2.1), we use a single
cross-attention layer with 12 attention heads. Similarly, In-
AViT(SOT) and InAViT(UB) are implemented with a self-
attention layer with 12 heads. We set the number of objects
per frame as 4 for EK100 and 2 for EGTEA based on em-
pirical performance (this also makes sure batch processing
is efficient). We report the results of varying the number
of objects per frame in Supplementary material section 3.
If there are fewer objects (less than 4 or 2 respectively),
then we zero pad them using null tokens and mask them,
which will not impact the model. The same configuration
of objects is used for training other baseline models such as
ORViT-MF [22].

EK100 provided hand detections do not contain hand
annotations for 20% of the frames. Since our aim is not
localize hands accurately, we reduce the threshold to 0.05
from 0.1 used by EK100 to get hand detections in all
frames. Lowering the threshold introduces bounding-boxes
that cover the region around the hand that is useful for
interaction region modeling and anticipation as shown in
Fig. 6. The number of hand regions per-frame is set to 1 as
both hands are not visible in most frames. If there are two
hands in a frame, we randomly pick one and track it using
SORT. Some analysis and statistics about detected objects
in frames are shown in Supplementary material section 2.

We use one layer of trajectory cross-attention with 12 at-
tention heads and a temporal resolution of 8 to obtain the
context infusion of interaction tokens (Sec. 4.3). We then
concatenate the refined interaction and original video to-
kens to form the augmented video tokens. We use a single
self-attention layer with 12 heads on the augmented video
tokens to obtain interaction-centric video tokens (Sec. 4.4).
Finally, we apply MotionFormer on the interaction-centric
video tokens to predict the next action (Sec. 4.4). We use
a batch size of 16 video(clips) to train on 4 RTX A5000
GPUs with 24 GB memory each and the learning rate is set
to 1e−4 with AdamW optimizer. We will release our code.

5.2. Ablation on InAViT

Component-wise validation. In Tab. 1(a), we show
the contribution of each component of InAViT - interaction
modeling using SCA (Eqs. (1) and (2)), Context Infusion
of interaction tokens (CI) (Eq. (3)), and Interaction-

Method Overall Unseen Tail
Action(%) Action(%) Action(%)

SCA 12.66 15.49 06.03
SCA + CI 14.21 14.26 09.12
SCA+ICV 22.21 20.85 17.07
SCA + CI + ICV 23.75 23.49 18.11

(a) Component-wise validation of InAViT
UB+CI + ICV 22.75 22.14 17.04
SOT+CI + ICV 22.48 20.56 17.46

(b) Comparing interaction modeling methods
SCA-(Hand) + CI + ICV 23.27 23.21 17.57
SCA-(Obj) + CI + ICV 22.49 22.23 16.73

(c) Comparing refined hand vs. object as interaction tokens

Table 1: Ablation of InaViT on EK100 evaluation server
[Test set]. Verb and Noun results are in Supplementary.

Centric Video representation using trajectory attention
(ICV) (Eq. (4)). Context infusion improves overall perfor-
mance but we see the biggest improvement when we add
the interaction-centric video representation (i.e. Eq. (4)).
So, we conclude that interactions and the interaction centric
video representations are important for action anticipation.

Comparing different interaction regions. In Tab. 1(b),
we compare the three models for interaction region model-
ing - spatial cross attention (SCA+ CI + ICV), spatial atten-
tion over time (SOT+ CI + ICV), and union boxes (UB + CI
+ ICV) described in Sec. 4. In our comparison, SCA per-
forms the best on overall, unseen, and tail classes compared
to both SOT and UB. SCA contextualizes the visual change
of each hand/object better using other objects compared to
SOT which computes visual change individually. UB’s fo-
cus is narrower than SCA as it only considers the nearest
object and potentially leaves out other objects that can be
used in the next action. SCA performs much better in tail
classes where few examples are available and the model re-
lies on visual information for anticipation. As SCA uses all
the objects to model interactions, it extracts the most visual
information from every frame to make better predictions.

Only Hand/Object as interaction regions. The best-
performing SCA interaction model involves both refined
hand and refined object tokens as interaction region to-
kens. In Tab. 1(c), we compare the contribution of only re-
fined hand (SCA(Hand)+CI + ICV) and only object tokens
(SCA(Obj)+CI + ICV) by using either of them as interac-
tion region tokens. As in SCA formulation, we refine hand
tokens with objects and object tokens with hand and other
objects. Refined hand tokens perform better than refined
object tokens as the position of the hand is vital in deter-
mining what object(s) can be used next. Still, interaction
region tokens containing both refined hands and object to-
kens (SCA+ CI + ICV) perform the best. We conclude that
modeling the changes in hand and object tokens provides
useful information to improve action anticipation.

Effect of infusing context. We evaluate the effect
of context infusion on interaction tokens in Tab. 2. For
this comparison, we change either the input or mecha-
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Method Overall Unseen Tail
Action(%) Action(%) Action(%)

SCA + CI + ICV 23.75 23.49 18.11
SCA + CI(Mask FG) + ICV 08.05 05.92 05.84
SCA+ Concat + ICV 22.14 23.47 17.24

Table 2: Effect of infusing context in different ways.
CI(Mask FG): Context Infusion with foreground hands and
objects masked out, Concat: Context infusion by concate-
nating context tokens with interaction tokens. Results are
on evaluation server [Test set].

nism of context infusion(Sec. 4.3). Interaction modeling
is done using SCA and interaction-centric video representa-
tion is computed using the original video tokens. For CI
(Mask FG), we mask the foreground i.e., hands and ob-
jects from the context. We crop the objects and hands
based on the bounding boxes and apply a Gaussian filter
to soften the edges. We call this masked foreground con-
text and use it to refine interaction tokens. The perfor-
mance of (SCA+CI(Mask FG)+ICV) is quite poor which
means that the complete context with foreground objects
(SCA+CI+ICV) is better for refinement. We also find
that the concatenation of context (video tokens) to interac-
tion tokens (SCA+Concat+ICV) is worse than our proposed
(SCA+CI+ICV) approach.

5.3. Comparison with state-of-the-art

We now compare our best-performing InAViT
(SCA+CI+ICV) model against state-of-the-art approaches.
On EK100 evaluation server, InAViT significantly out-
performs other approaches as seen in Tab. 3. InAViT’s
performance is much better than AVT [17], MeMViT [56],
and RAFTformer [16] on EK100 which also use visual
transformers for representing the video. We also compare
InAViT against the baseline MotionFormer (MF) [43] and
object-centric video representation ORViT-MF [22]. As
ORViT and MF are not trained for action anticipation, we
train them using the official repositories.

We are the first to show the effectiveness of MF and
ORVIT-MF for action anticipation which alone outper-
forms prior state-of-the-art methods. Our approach InAViT
performs even better than both MF and ORVIT-MF and
achieves significantly better results than the previous best
results, the Abstract Goal [50] on EGTEA (Tab. 4) and AVT
[17] on EK100. In fact, InAViT outperforms [50] by 18%
in mean accuracy and 20.8% in top-1 accuracy on EGTEA.
It also outperforms the human-object interaction method in
[32] by 30% and 35% on mean and top-1 accuracy, respec-
tively. Similarly, InAViT outperforms AVT [17] by 22%,
17%, and 7%, in the overall verb, noun, and action anticipa-
tion on EK100 which is impressive given the large number
of actions (3805), nouns (300), and verbs (97). On EK100,
InAViT outperforms AVT on unseen and tail action antici-

Set Method Overall (%) Unseen (%) Tail (%)
Verb Noun Action Verb Noun Action Verb Noun Action

Val

RU-LSTM [6] 23.20 31.40 14.70 28.00 26.20 14.50 14.50 22.50 11.80
T. Agg. [51] 27.80 30.80 14.00 28.80 27.20 14.20 19.80 22.00 11.10
AFFT [62] 22.80 34.60 18.50 24.80 26.40 15.50 15.00 27.70 16.20
AVT [17] 28.20 32.00 15.90 29.50 23.90 11.90 21.10 25.80 14.10
TrAc [20] 35.04 35.49 16.60 34.64 27.26 13.83 30.08 33.64 15.53
MeMViT [56] 32.20 37.00 17.70 28.60 27.40 15.20 25.30 31.00 15.50
Rformer [16] 33.80 37.90 19.10 - - - - - -
MF∗ 47.14 46.92 21.52 42.33 47.22 21.99 40.47 38.66 16.36
ORViT-MF∗ 46.71 47.91 23.54 38.99 45.32 23.60 37.28 37.81 17.10
InAViT (Ours) 52.54 51.93 25.89 46.45 51.30 25.33 45.34 39.21 20.22

Test

RU-LSTM [6] 25.25 26.69 11.19 19.36 26.87 09.65 17.56 15.97 07.92
T. Agg. [51] 21.76 30.59 12.55 17.86 27.04 10.46 13.59 20.62 08.85
AFFT [62] 20.70 31.80 14.90 16.20 27.70 12.10 13.40 23.80 11.80
AVT [17] 26.69 32.33 16.74 21.03 27.64 12.89 19.28 24.03 13.81
Abs. goal [50] 31.40 30.10 14.29 31.36 35.56 17.34 22.90 16.42 07.70
TrAct [20] 36.15 32.20 13.39 27.60 24.24 10.05 32.06 29.87 11.88
Rformer [16] 30.10 34.10 15.40 - - - - - -
MF∗ 45.14 45.97 19.75 40.36 45.28 19.49 39.17 35.91 14.11
ORViT-MF∗ 43.74 46.61 21.53 38.99 45.32 21.47 37.28 35.78 15.96
InAViT (Ours) 49.14 49.97 23.75 44.36 49.28 23.49 43.17 39.91 18.11

Table 3: Comparison with state-of-the-art on EK100 val-
idation (Val) and evaluation server (Test). InAViT sig-
nificantly outperforms other Transformer-based approaches
such as AVT, MotionFormer and object-centric Motion-
former (ORViT-MF). ∗We trained MF and ORViT-MF for
action anticipation using their official repositories.

Method Top-1 Accuracy (%) Mean Class Accuracy (%)
VERB NOUN ACT. VERB NOUN ACT.

FHOI [32] 49.0 45.5 36.6 32.5 32.7 25.3
AFFT [62] 53.4 50.4 42.5 42.4 44.5 35.2
AVT [17] 54.9 52.2 43.0 49.9 48.3 35.2
Abs. Goal [50] 64.8 65.3 49.8 63.4 55.6 37.4
MF∗ 77.8 75.6 66.6 77.5 72.1 56.9
ORVIT-MF∗ 78.8 76.3 67.3 78.8 75.8 57.2
InAViT (Ours) 79.3 77.6 67.8 79.2 76.9 58.2

Table 4: Comparison of anticipation performance on
EGTEA Gaze+. Complete table in Supplementary.

Top-1
Action Acc.

Anticipation gap (Ta in s) GFlops Params
2 1.5 1 0.5

MF 60.2 61.7 64.2 66.6 370 143.9M
ORVIT-MF 62.2 63.6 66.1 67.3 403 172.1M
InAViT 64.1 65.8 66.9 67.8 391 157.2M

Table 5: InAViT performs better even on larger anticipation
gap of 1.5 and 2s (EGTEA). InAViT has better performance
than ORVIT with lower computations and parameters.

pation by 12% and 4%, respectively. This demonstrates that
InAViT is effective at predicting rare actions and generalizes
much better to new environments.

In Tab. 5, we vary the anticipation gap (Ta) for EGTEA.
InAViT performs better in longer anticipation as it uses
human-object interaction information. We analyzed the
computational cost and number of parameters of InAViT.
The baseline MotionFormer requires 370 GFlops with
143.9M parameters, while InAViT requires 391 GFlops
with 157.2M parameters and ORVIT-MF requires 403
GFlops with 172.1M parameters. InAViT is less compu-
tationally expensive and has a lower number of parameters
than ORVIT-MF.
Qualitative Results. In Fig. 5, we visualize the attention
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MF

InAViT

(a) Next action: peel onion

MF

InAViT

(b) Next action: pour sugar

Figure 5: InAViT attends to the location(s) where the next
action will occur in (a) onion and (b) cup and sugar.

map of the xcls token used for action anticipation on all
spatial tokens across the frames. This helps us understand
where InAViT focuses compared to MotionFormer. Mo-
tionformer attention is divided into many areas while In-
AViT attends to the interaction. While anticipating peel
onion (Fig. 5(a)), InAViT pays high attention to the exact lo-
cation the onion is being peeled. Similarly, when anticipat-
ing pour sugar (Fig. 5(b)), InAViT attends to both the cup
and the sugar container. The frames for visualization are
chosen based on the significant motion of hands and objects
during the observed action. In Fig. 6(c)(d), we show that
InAViT anticipates the action correctly even if the bound-
ing box covers the region around the hand. We show more
qualitative results in Supplementary.

6. Discussions and Conclusion

We present an effective method to improve ego-centric
action anticipation by capturing human-object interaction
information using a Transformer architecture. We showed
that our spatial cross-attention (SCA) based human-object
interaction information extraction along with the trajectory
attention-based context infusion (CI) and the interaction-
centric video (ICV) representations are effective in ego-
centric action anticipation. It is interesting to note that our

(a) GT: fill kettle, Pred: fill kettle

(b) GT: wash glass, Pred: wash glass

(c) GT: drink water, Pred: drink water

(d) GT: adjust hob, Pred: adjust hob

Figure 6: Some examples of InAViT’s anticipation where
green is correct. InaViT can anticipate correctly with hand
detections (in blue) that precisely capture the hand (a)(b) or
cover the region around the hand in (c)(d).

model obtains a 6.0% improvement over published results
on EK100 test dataset and a massive 20.0+% improvement
on EGTEA Gaze+ dataset. However, the biggest improve-
ment comes from trajectory attention-based MotionFormer.
We improve MotionFormer by 4.0% and 1.3% on EK100
and EGTEA Gaze+ datasets, respectively. The findings of
this work advance action anticipation research.
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