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Figure 1. We introduce TriCoLo, a trimodal contrastive loss for text to 3D shape retrieval. We take objects represented by 3D colored
voxels, text descriptions, and multi-view images and jointly use these three modalities to train a trimodal embedding space. This trimodal
embedding allows us to perform fine-grained text to shape retrieval.

Abstract

Text-to-shape retrieval is an increasingly relevant prob-
lem with the growth of 3D shape data. Recent work on
contrastive losses for learning joint embeddings over mul-
timodal data [45] has been successful at tasks such as re-
trieval and classification. Thus far, work on joint represen-
tation learning for 3D shapes and text has focused on im-
proving embeddings through modeling of complex attention
between representations [53], or multi-task learning [25].
We propose a trimodal learning scheme over text, multi-
view images and 3D shape voxels, and show that with large
batch contrastive learning we achieve good performance
on text-to-shape retrieval without complex attention mecha-
nisms or losses. Our experiments serve as a foundation for
follow-up work on building trimodal embeddings for text-
image-shape.

1. Introduction

There has been a dramatic increase in the availability of
3D content in recent years. Improved scanning hardware
and reconstruction algorithms are democratizing 3D con-
tent creation. The growth in virtual and augmented reality

applications has also driven demand for more synthetic (i.e.
human-designed) 3D content. It is no wonder that operating
systems now natively support viewing and editing 3D con-
tent (e.g., iOS/MacOS and Windows). In addition to curated
3D object datasets for research [5, 14, 20, 46, 60], large
repositories of 3D shapes provide both synthetic [49, 55, 56]
and scanned objects [16, 43].

As 3D assets become more pervasive, we need tech-
niques that allow users to easily and rapidly search through
large 3D collections. In recent years, text to image search
has seen renewed interest due to improved architectures [9,
34, 37, 45] and objectives [17, 32, 45, 63] for joint repre-
sentation learning. In contrast, there has been little research
on text-driven 3D content search.

Early work by Min et al. [39] compared the text query
with text associated with the shape (essentially text-text re-
trieval). Chen et al. [7] were the first to jointly embed text
and 3D shapes for text-to-shape retrieval. They learned the
embedding space using triplet loss combined with learn-
ing by association [24]. Leveraging the ‘chairs and tables’
dataset [7], followup work investigated improved methods
for text-to-shape retrieval [25, 53].

So far, prior work on text-to-shape retrieval has not pro-
vided a systematic investigation of: 1) whether 3D infor-
mation is necessary for text-to-shape retrieval (or whether
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single view images to represent a shape are sufficient);
2) whether there are benefits to incorporating information
across three modalities; and 3) what contrastive learning
setup and loss should be used for constructing joint text-
shape embeddings. In our work, we present a systematic
study of what is important for improved text-to-shape re-
trieval. We conduct experiments to examine the effect of
input representation (single-view vs multi-view vs 3D vox-
els), loss function, batch size, and resolution. We show that
recent contrastive learning algorithms [63] are sufficient to
achieve good performance while avoiding more complex
mechanisms, such as combining metric learning with learn-
ing by association [7] or training using part-based segmen-
tation of the 3D shapes [53].

In addition, we propose a joint embedding that leverages
the multiple modalities offered by 3D data. Specifically, we
learn a joint embedding in a trimodal setting: voxel, multi-
view images and text. Prior work on text-to-shape retrieval
either learns a joint representation with voxels and text, or
multi-view images and text, both of which are bimodal set-
tings. We use all three modalities to learn the joint embed-
ding space in an end-to-end fashion and show that trimodal
works better than bimodal embedding for text-to-shape re-
trieval. In summary, our contributions are:

• We introduce a trimodal training scheme with con-
trastive loss that jointly embeds multi-view images,
voxels, and language. We show the trimodal embedding
is effective for text to 3D shape retrieval.

• We release ShapeNet c13, a dataset of paired shapes and
captions for 13 object categories from ShapeNet [5].

• We present extensive experiments and analysis to pro-
vide guidelines on effective settings for applying con-
trastive loss for text-to-shape retrieval.

• We establish a high-performing baseline for text-to-
shape retrieval. Our simple but effective approach out-
performs more complex techniques from prior work.
Since we introduced TriCoLo in 2022, several follow-
up works [53, 57] have used it as a comparison baseline.

2. Related work
There has been growing interest in connecting language

to 3D representations for several tasks: identifying 3D ob-
jects in scenes [2, 6, 28, 47, 62, 64], describing 3D ob-
jects [10, 26], using 3D augmentation in caption-driven im-
age retrieval [59], generating [7] and disambiguating [1, 54]
3D shapes using natural language.
3D shape retrieval. Min et al. [39] was one of the first
to address text to 3D shape retrieval by comparing the text
query with textual information associated with the shape.
Their approach was based purely on text, and relied on each
shape having an associated description. Chen et al. [7] was
the first work to create a joint embedding of text and 3D

shapes and use that for text-to-shape retrieval. The joint
embedding was constructed using a CNN encoder on voxels
and GRU encoders on text, with a combined triplet loss [51]
and learning by association [24] to align the embedded rep-
resentations. To improve retrieval, Han et al. [25] used a
GRU to encode image features from multiple views to rep-
resent the shape, and use reconstruction losses (both intra
and inter modalities) in addition to triplet loss and classifi-
cation loss to train the joint embedding. In contrast, we use
multi-view and voxel representation for the shape and do
not rely on reconstruction losses. Tang et al. [53] incorpo-
rated part-level information, and used point cloud represen-
tations for the shapes. In their work, semantic part data was
used to compute attention with words to model 3D part rela-
tionship with the descriptions. However, obtaining semantic
part information can be difficult. Following our work, Wang
et al. [57] shows improved performance for text-to-shape re-
trieval by better selection of positive and negative pairs for
contrastive learning, even with just bimodal embeddings of
text and multi-image views.

3D object disambiguation through language. The task
of object disambiguation through language (also known as
a reference game) is related to our text-to-shape retrieval.
The main difference between the two tasks is a matter of
scale. In shape retrieval, we retrieve all objects that match
a textual query from a large set of candidate objects. In
contrast, in 3D object disambiguation, there is a small set
of objects (typically just two or three) from which we se-
lect the one that best matches the description. Reference
games involving images and language have a long his-
tory [13, 18, 21, 30, 40], but there is significantly less work
that takes advantage of the 3D nature of objects. Achlioptas
et al. [1] used a speaker-listener model for selecting the cor-
rect object based on the text description from among three
objects. They showed that combining 3D features (from
point clouds) with 2D features (from images) is better than
just using 3D or 2D features. More recently, Thomason
et al. [54] showed that using multi-view images can im-
prove the disambiguation power of a model. Unlike this
line of prior work, we focus on text-to-3D shape retrieval
and examine the benefit of combining multi-view images
and colored 3D voxel representations. Note that the text-
to-shape retrieval problem has different characteristics and
challenges as it requires selecting from a large number of in-
stances at inference time (vs disambiguating two or three).

Joint embedding. Joint embedding spaces for text and im-
ages [17, 19, 32, 45, 58, 63] have enabled retrieval and gen-
eration between text and 2D images. Most joint embed-
ding approaches use contrastive learning, focusing on one
modality such as images [8, 23, 48, 50], or two modal-
ities [45]. Recently, an increasing number of works ex-
plore combinations of more modalities [3, 4, 36, 38], with
prior work (typically in combining vision, audio, and lan-
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guage) showing that multiple modalities can improve per-
formance [3, 4, 38]. Liu et al. [36] introduce a data augmen-
tation technique where modalities are disturbed to generate
negative samples. These lines of prior work are orthogonal
to our work as we investigate the use of trimodal contrastive
loss on creating a joint embedding with 3D shape, language,
and multiview images for text-to-shape retrieval. Since our
work was introduced in 2022, other works started to investi-
gate trimodal embeddings of text-image-shape [35, 61, 65],
showing it is useful to train 3D encoders to align 3D em-
beddings against frozen CLIP text and vision embeddings.
ULIP [61] and OpenShape [35] demonstrated that such
aligned point cloud embeddings are useful by quantitatively
evaluating on classification, and Zhao et al. [65] showed that
using an aligned space results in more faithful text-to-shape
generation. These works did not focus on evaluating how
well the aligned space works for more fine-grained text-to-
shape retrieval or comparing different encoders.

3. Problem statement
We tackle the problem of 3D shape retrieval given an in-

put query sentence xt. We use the Text2Shape [7] dataset
which contains tables and chairs from ShapeNet [5] paired
with several text descriptions for each object. The text de-
scriptions provide fine-grained information about the ap-
pearance of the objects such as color, texture, shape, and
whether the object has a certain part (e.g. armrest or a cir-
cular base). Accurate retrieval requires learning a good sim-
ilarity measure between text description and 3D shape. To
this end, we learn a shared latent space to facilitate the pro-
cess of text-shape alignment.

4. Approach
Inspired by recent developments in multimodal con-

trastive learning [3, 4, 36, 38], we use 3D voxels, multi-
view images and language to learn a shared embedding us-
ing contrastive learning. Fig. 2 shows how we encode dif-
ferent modalities with per-modality architectures. Embed-
dings of the same object are pulled closer, while those of
different objects are pushed apart using contrastive loss.
Encoder models. We represent the input 3D voxels, text
description and multi-view images as xv, xt and xi respec-
tively. For each modality m ∈ (v, i, t), an encoder fm
takes the input xm and outputs an encoding um ∈ Rd. The
text encoder ft is a Bi-directional Gate Recurrent Unit (Bi-
GRU) [12] which takes a text description xt ∈ RL×et and
outputs the embedding ut ∈ Rd, where L and et are the sen-
tence and word embedding lengths respectively. For voxels,
a 3D CNN model fv takes a 3D input of xv ∈ Rrv×rv×rv×4

and outputs uv ∈ Rd where rv is the voxel resolution.
Finally, the image encoder takes M views of the object
xi ∈ RM×ri×ri×3 through an MVCNN [52] architecture

GRU

multi-view
images 𝑥! image 

embedding 𝑢!

a triangle shaped 
table with wooden 
top and metal legs

MVCNN

text description 𝑥"

voxel 3D shape 𝑥#

text
embedding 𝑢"

voxel
embedding 𝑢#

Bi(V)

Tri(I+V)

... ...

Bi(I)

3D CNN

...

Bi-GRU

CNN! 

CNN!

CNN! 

View
pooling CNN" 

(                  )

(                  )

(                  )

GRUGRUGRU

GRUGRU

Figure 2. Given the voxel shapes xv , input text description xt and
rendered images xi, 3D CNN, Bi-GRU and MVCNN transform
them to feature vectors uv , ut and ui. We then minimize a bidi-
rectional contrastive loss to learn effective shape, text, and image
representations that are close to each other if they are from the
same object.

with pretrained ResNet18 [27] backbone fi to obtain the
representation ui ∈ Rd where ri is the image resolution.

Loss function. We adopt the bimodal loss from ConVIRT
[63]. Specifically for two modalities m1,m2 ∈ (v, i, t) so
that m1 ̸= m2 and a batch size of N we construct N posi-
tive pairs (um1j , um2j) for embeddings of the same object
and N2 − N negative pairs (um1j , um2k)j ̸=k for different
objects. We then apply the symmetric NT-Xent contrastive
loss from ConVIRT[63] and popularized by CLIP [45]:

lv→t
j = − log

exp(⟨uvj , utj ⟩/τ)∑N
k=1 exp(⟨uvj

, utk⟩/τ)
, (1)

lt→v
j = − log

exp(⟨utj , uvj ⟩/τ)∑N
k=1 exp(⟨utj , uvk⟩/τ)

(2)

where τ ∈ R+ is a temperature parameter that controls the
concentration of the distribution and smoothness of soft-
max, and ⟨, ⟩ is the cosine similarity. Finally we calculate a
weighted sum of lv→t

j and lt→v
j and average over the mini-

batch: L(v, t) = 1
N

∑N
j=1(αl

v→t
j + (1 − α)lt→v

j ), where
α ∈ [0, 1] Trimodal loss: To extend the loss to three modal-

ities we simply calculate the contrastive loss over all pair
possibilities for the text, voxel and image representations.
This gives the final loss: Ltri = L(v, i) + L(v, t) + L(i, t).

Retrieval. For the retrieval task, we are given an input text
description and we have to return the matching object. To
do this, we leverage the shared embedding space we have
built between three modalities. We consider three strategies
for matching the text and shape by calculating the cosine
similarity between: 1) text and voxel embeddings, 2) text
and image embeddings, and 3) text and sum of image and
voxel embeddings.
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5. Experiments
In the main paper, we present experiments on text-

to-shape retrieval on the ‘chair and tables’ dataset from
Text2Shape [7]. The ‘chairs and tables’ dataset consists of
solid colored voxels of 6521 chairs and 8378 tables from
ShapeNet [5], and text descriptions collected from humans
(≈ 5 per shape). We follow the train/val/test split by Chen
et al. [7] which ensures that shapes do not occur in the
same split. We present additional results on shape-to-text
retrieval, and results on the primitives dataset in the sup-
plement. To show our method works beyond ‘chairs and
tables’, we conduct text-to-shape retrieval on an extended
set of 13 object categories from ShapeNet [5] (see supple-
ment). Results across experiments consistently show that
our trimodal model outperforms bimodal models.

5.1. Metrics

We follow prior work on text-to-shape retrieval [7, 25,
53] and use standard metrics of Recall Rate (RR@k) and
Normalized Discounted Cumulative Gain (NDCG) [29].
RR@k deems a retrieval successful if the ground truth (GT)
appears in the top k candidates (we set k to 1 and 5). NDCG
compares the ranked retrieval results with optimal rank-
ing. However, since we assume there is only one relevant
shape for each query, we do not take full advantage of the
NDCG metric. We also evaluate using Mean Reciprocal
Rank (MRR), the average of the inverse of the rank of the
GT.

We note that there are often multiple shapes that can
match the text description. Since the text description can be
underspecified, we also measure the similarity of the top k
retrieved shapes to the GT shape. Following work in shape
retrieval [33], we use a point-wise F1τ with τ = 0.1 to cal-
culate shape similarity. F1τ is the harmonic mean of the
fraction of points from retrieved shapes within τ of a point
from GT (point-wise precision), and the fraction of points
from GT within τ of a point from retrieved shapes (point-
wise recall). To compute F1τ , we sample 10K points uni-
formly on the mesh surface of GT and retrieved shapes. See
the supplement for more details.

5.2. Implementation details

We use a one-layer bi-directional GRU [12] for the text
encoder, and a 3D CNN architecture for the voxel encoder.
We use the pretokenized and lemmatized text from Chen
et al. [7], with a vocabulary consisting of 3587 unique words
and 1 pad token. For the Bi-GRU, we use word embedding
size of 256, and a hidden state size of 128. Word embed-
dings are randomly initialized from a standard Normal dis-
tribution. For the 3D CNN, we use 5 Conv3D layers of
sparse convolutions from the spconv library.1 For multi-

1https://github.com/traveller59/spconv

view images we use the MVCNN [52] architecture with pre-
trained ResNet18 [27] backbone. A fully-connected layer
is added to ensure the output dimension for all encoders is
512. Unless otherwise specified, training uses batch size
128, voxel resolution 643, image resolution 1282 and 6 im-
ages for the MVCNN. In preprocessing, we normalize im-
age and voxel values from 0-255 to 0-1. We implement our
models using PyTorch [42] and train with the Adam opti-
mizer [31]. We use a learning rate of 0.00035 for batch size
128, and adopt the linear scaling rule [22] to scale the learn-
ing rate for other batch sizes. We train for up to 20 epochs
until convergence, and select the checkpoint with the best
performance on the val set. All models are trained on an
A40 GPU with each experiment taking about 1 hour. Our
models are memory efficient with most models requiring
less than 12GB (see supplement). We render the multiview
images with Pyrender2 from 12 camera positions elevated
slightly above the object, pointing towards the object, and
separated by 30 degrees. For multiview experiments using
fewer images, we subsample so images are evenly spaced.

5.3. Models

Baselines. We compare to Text2Shape [7], Y2Seq2Seq
[25] and Parts2Words [53]. Text2Shape [7] uses a triplet
loss [51] combined with learning by association [24].
Y2Seq2Seq [25] uses a view-based model and a triplet con-
straint. For Parts2Words, we report results for a global
model (no part modeling) and their full model that uses part
information. Parts2Words [53] uses point clouds as input
instead of voxels. The global model uses PointNet [44] as
the feature encoder and a Bi-GRU as the text encoder and
aggregates the point and text features. Parts2Words jointly
embeds point clouds and text by aligning parts from shapes
and words from sentences. Both the global and the part-
based models use a semi-hard negative mining triplet rank-
ing loss. We note that these methods use either more com-
plex losses or require additional labelled data compared to
our model. In addition to baselines from prior work, we
use two random baselines: one computes the expected met-
ric mathematically, and the other uses our architecture with
random weights.
Our models. We train variants of our model with just two
modalities (Bi) or all three modalities (Tri). For the bimodal
models, we only consider text and image (I), or text and
voxels (V). During retrieval, we compute the similarity of
the text with image (I), or text with voxels (V). In the case
of trimodal embedding, we also use a combination of the
image and voxel when computing the similarity, with (I+V)
denoting that the retrieval was done by calculating similar-
ity with text and the sum of image and voxel representa-
tions.

2https://github.com/mmatl/pyrender
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top1 top2 top3 top4 top5

1 an L-shaped dark brown colored wooden table.

17.31 6.60 20.34 GT 2.19

2 a luxurious gray leather modern concept plush chair
with stainless steel frame foots

GT 2.89 9.50 1.78 3.42

3 simple circular table with no leg and only one circular
base.

0.79 5.77 0.59 GT 6.32

4 This is greenish top wooden billiards table.

15.79 GT 8.04 19.59 3.18

5 this is a boxy look gray chair. It appears to be made
out of granite and is gray with 4 short legs and a high,
arched back.

GT 4.64 22.32 12.97 11.42

6 wooden armless dining room chair with open nine-
square back.

GT 19.36 13.31 18.78 12.38

Figure 3. Retrieval results on the test set with Tri(I+V). For each description, we use Tri(I+V) to retrieve the top-5 shapes. We show the
F10.1 score (as a percentage) for each retrieved shape and mark the ground-truth shape (indicated by green GT). The expected F1 score
for GT is 100. Shapes that are not a perfect match to the description are marked in dark orange (color mismatch), and gold (shape detail
mismatch). Results show that our network has good language grounding ability overall. It can retrieve shapes that match L-shaped (row 1),
stainless steel frame foots (row 2), circular table (row 3), no leg (row 3), circular base (row 3), greenish top (row 4), wooden (row 4), boxy
look (row 5), gray (row 5), armless (row 6) and nine-square back (row 6). Though we assume one ground-truth shape, multiple shapes can
match the query description (row 1, 3-5).

5.4. Results

We present qualitative retrieval examples and quanti-
tative evaluations comparing our method to prior work.
We examine the choice of different loss functions and hy-
perparameters (see supplement for experiments on image
and voxel resolution, and experiments with different back-
bones). We train models with different seeds and report
mean and standard error across 3 runs.

Example retrievals Fig. 3 shows successful retrievals of
shapes using Tri(I+V), our best-performing model (see
supplement for more examples). Our model successfully
grounds language describing shape (L-shaped, boxy), color
(brown, greenish), and texture (wooden). It can also handle
negation (armless). Note that many shapes match the de-

scription despite not being the ground-truth shape, indicat-
ing that there are indeed many matching shapes for a given
description. For example, in row 3 the retrieved shapes all
match the description, but the four of the five shapes would
be negatives in our training and retrieval metrics.

Comparison with prior work. We report the text-to-
shape retrieval results in Tab. 1. The full Parts2Words [53]
model assumes prior part segmentation knowledge to com-
pute attention with the word embeddings and trains using
the triplet loss with negative sampling. In contrast, we do
not leverage any part prior knowledge, or attention mech-
anisms. For comparison, we include Parts2Words (global)
with average pooling, which does not use any part infor-
mation. Tab. 1 shows that our method performs better on
all retrieval metrics, and we can achieve slightly better per-
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RR@1 RR@5 NDCG@5

Random (expected) 0.06 0.30 0.20
Random (weights) 0.08 0.32 0.20

Text2Shape [7] 0.40 2.37 1.35
Y2Seq2Seq [25] 2.93 9.23 6.05

Parts2Words (global) [53] 8.60 24.82 16.83
Parts2Words (full) [53] 12.72 32.98 23.13

Bi(I) (our) 11.09 30.78 21.10
Bi(V) (our) 8.93 26.71 17.98

Tri(I+V) (our) 12.22 32.23 22.46

Table 1. Text to shape retrieval comparison against prior work
on the test set. We report the recall rate (RR@1, RR@5) and
NDCG@5 as percentages. We train with a batch size of 128, 643

voxels, and 6 multi-view images at a resolution of 1282 each. Our
bimodal joint embedding (Bi(I), Bi(V)) trained using the NT-XEnt
loss outperforms prior work with global matching. Our trimodal
embedding (Tri(I+V)) further improves performance, and is close
to Parts2Words [53] which uses part annotations for training.

RR@1(↑) RR@5(↑) NDCG@5(↑) MRR(↑) F10.1(↑)

Bi(I) 11.61 ± 0.20 30.65 ± 0.19 21.36 ± 0.23 21.46 ± 0.25 16.69 ± 0.50
Tri(I) 12.19 ± 0.45 32.33 ± 0.60 22.54 ± 0.54 22.62 ± 0.49 17.39 ± 0.41
Bi(V) 9.59 ± 0.27 27.14 ± 0.48 18.54 ± 0.13 19.03 ± 0.08 14.96 ± 0.20
Tri(V) 9.83 ± 0.21 27.75 ± 0.35 18.97 ± 0.21 19.32 ± 0.20 15.08 ± 0.23
Tri(I+V) 12.52 ± 0.28 32.67 ± 0.61 22.87 ± 0.46 22.68 ± 0.32 17.45 ± 0.30

Table 2. Comparison of bimodal and trimodal models for text-to-
shape retrieval on the val set. Trimodal embeddings (Tri(I),Tri(V))
give better performance than bimodal embeddings (Bi(I),Bi(V)).
By summing the image and voxel embeddings from the trimodal
model (Tri(I+V)), we further improve retrieval performance.

formance than even the full Parts2Words model. Note that
there are several differences in the prior work compared to
our own: the network architectures and specifics of the loss
functions, as well as different input representations. Chen
et al. [7] used 323 colored voxels, while Y2Seq2Seq [25]
used multi-view images, and Parts2Words [53] used colored
point clouds.

Bimodal vs Trimodal. We compare the trimodal joint em-
bedding with bimodal ones (see Tab. 2). The modalities in
the parentheses indicate which representation was used to
retrieve the 3D shapes with respect to the text embeddings.
We see that the trimodal embedding improves retrieval per-
formance across all metrics when retrieving by both images
and voxels. We obtain the best result when we sum the im-
age and voxel embeddings, indicating that the information
in the voxels is complementary to the multi-view images.
Fig. 4 shows a comparison of retrieved shapes for an exam-
ple description from the validation set. The retrieved shapes
using Tri(I+V) conform to the description more closely than
Bi(I) or Bi(V) shapes. See supplement for more examples.

Can pretrained CLIP encoders help? We investigate
whether using pretrained vision-language encoders can help
improve performance. Specifically, we experiment with

Text Image Voxels RR@1 RR@5 NDCG@5

ZS∗ CLIP CLIP - 5.43 16.57 11.27

Bi(I) CLIP MVCNN - 5.79 16.90 11.49
Bi(I) GRU CLIP - 7.29 22.57 14.85
Bi(I) CLIP CLIP - 5.76 19.13 12.41

Tri(I+V) CLIP CLIP 3D-CNN 6.72 21.95 14.52

Bi(I) GRU MVCNN - 11.43 30.07 20.92
Bi(V) GRU - 3D-CNN 8.98 26.76 17.99

Tri(I+V) GRU MVCNN 3D-CNN 12.11 32.39 22.42

Table 3. Comparison of text to shape retrieval performance us-
ing CLIP-based models on the val set. We report the recall rate
(RR@1, RR@5) and NDCG@5 as percentages. It can be seen
that zero-shot CLIP [45] has relatively good performance consid-
ering that it has not been trained on the Text2Shape [7] ‘chairs and
tables’ dataset. Training an MLP to project the CLIP embeddings
(CLIP-MLP) drastically improves the retrieval performance, but
still underperforms our Tri(I+V) model.

RR@1(↑) RR@5(↑) NDCG@5(↑) MRR(↑)

Bi(I) 6.44 ± 0.36 21.6 ± 0.61 14.08 ± 0.51 14.99 ± 0.44
Bi(V) 6.19 ± 0.14 20.85 ± 1.02 13.58 ± 0.46 14.51 ± 0.30
Tri(I+V) 8.12 ± 0.20 26.39 ± 0.58 17.96 ± 0.55 18.55 ± 0.42

Table 4. Text-to-shape retrieval on the val set using triplet loss
with semi-hard negative mining. Performance is lower than NT-
Xent (Tab. 2).

CLIP [45], a popular text-image embedding that was trained
using contrastive learning with the NT-Xent loss on a large
corpus of 400M image-text pairs. We took the pretrained
CLIP with ViT-L/14 [15] backbone, and aggregated the em-
beddings from 6 multi-view images.

We compared the performance of using CLIP in a zero-
shot (ZS) manner (without training any weights) and using
the CLIP image and text encoders in our models. For zero-
shot retrieval, we use the average of the multi-view image
embeddings as our overall image embedding, and match
that against the text embedding by taking the dot product.
To incorporate CLIP into our models, we project frozen
CLIP embeddings using a two-layer MLP (see supplement).
We present results for zero-shot CLIP and variations of us-
ing the text or image CLIP encoders in Table 3. We find
that zero-shot CLIP does not perform well, likely due to
the domain gap between the rendered images and the CLIP
training data. Nevertheless, it can beat the baseline method
from the original Text2Shape [7] without being trained on
the dataset. Incorporating CLIP into our models and train-
ing the MLP results in higher performance, showing the
value of training a task-specific MLP on the Text2Shape [7]
‘chairs and tables’ data. We find that our models, which
are trained from scratch, are able to outperform the CLIP
variants. We also experiment on the ShapeNet c13 data (see
supplement), where the CLIP-based models perform much
better. We believe that is likely due to less training data for
the other categories.

NT-Xent vs triplet loss. To validate the choice of NT-Xent
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# of images RR@1(↑) RR@5(↑) NDCG@5(↑) MRR(↑)

Bi(I)

1 9.15 ± 0.11 26.34 ± 0.32 17.84 ± 0.20 18.36 ± 0.19
3 11.19 ± 0.19 30.22 ± 0.25 20.97 ± 0.05 21.23 ± 0.12
6 11.61 ± 0.20 30.65 ± 0.19 21.36 ± 0.23 21.46 ± 0.25

12 11.23 ± 0.20 31.13 ± 0.10 21.43 ± 0.09 21.50 ± 0.15

Table 5. Comparison of number of images on shape retrieval for
Bi(I) on the val set. We find that having multiple views is im-
portant for improved performance, but increasing the number of
images beyond 6 causes a slight decrease in RR@1. We believe
that 6 views is sufficient to capture the necessary information, and
increasing it further increases the number of parameters and re-
quires more compute.

batch size RR@1(↑) RR@5(↑) NDCG@5(↑) MRR(↑)

Tri(I+V)
32 10.62 ± 0.27 30.19 ± 0.61 20.60 ± 0.16 20.86 ± 0.11
64 11.48 ± 0.34 31.40 ± 0.55 21.67 ± 0.37 21.80 ± 0.32

128 12.52 ± 0.28 32.67 ± 0.61 22.87 ± 0.46 22.68 ± 0.32
256 12.43 ± 0.35 32.25 ± 0.58 22.53 ± 0.49 22.65 ± 0.40

Table 6. Comparison of batch-size on shape retrieval for Tri(I+V)
on the val set. We find that increasing the batch size increases the
performance. However, the performance decreased for the largest
batch size we tried (256). This could be due to overfitting on the
limited amount of negatives, or the presence of more noisy nega-
tives in the large batch.

as our loss function, we compare the performance of our
model using a hinge-based triplet loss [48] instead of NT-
Xent. We use semi-hard negative mining with a margin of
0.025. Semi-hard negatives have been shown to improve
performance for contrastive losses [8]. Specifically Tang
et al. [53] showed it worked better than either triplet-loss
by itself or hard negatives for retrieval with the Text2Shape
dataset. Tab. 4 shows that the retrieval performance with
triplet loss is significantly lower than with NT-Xent. Over-
all, our findings are consistent with prior work [11]. Note
that our model outperforms Y2Seq2Seq [25] even with just
triplet loss. We find that with NT-Xent loss, our bimodal
models surpass the performance of Parts2Words [53].

5.5. Hyper-parameter analysis

We compare the performance of bimodal models on the
validation set with different numbers of input images and
batch sizes. We use the bimodal models as they are faster to
train and require less memory than the trimodal model.
Do we need multi-view images? For Bi(I), we experiment
with number of images ranging from 1 to 12 and find that
performance increases as we increase the number of images
to 6, after which there are diminishing returns and even a
small drop in performance (see Tab. 5). The results indicate
that multi-view images provide a benefit over a single view.
Does larger batch size always help? We also compare
batch sizes of 32, 64, 128 for Tri(I+V) and find that per-
formance increases with increasing batch size from 32 to
128 (see Tab. 6). This is consistent with findings from prior
work on contrastive learning [8, 41]. However, the perfor-

GT: It looks like one you would use at a picnic.
It is wooden and has bench seating.

Bi(I)

Bi(V)

Tri(I+V)

Figure 4. Top 5 retrieved shapes from the val set using Bi(I),
Bi(V), and Tri(I+V). We see that Bi(I) understands abstract con-
cepts such as picnic poorly. Tri(I+V) retrieves the most shapes
consistent with the description.

mance drops when the batch size increases to 256 for Bi(I).
For Bi(V), increasing the batch size to 256 makes little dif-
ference. We hypothesize this is due to more false negatives
in the batch since the text description may apply to multiple
shapes. Another reason may be that since our dataset size is
small compared to image datasets used in prior work [8, 45],
having a big batch size might overfit our model. We also
note that variance is quite high between runs, which we
again attribute to false negatives in the batch and random-
ness introduced when sampling batches. However, more
investigation is warranted.
Impact of other parameters. We also conduct additional
experiments (see supplement) examining the effect of dif-
ferent resolutions for image and voxels (higher resolution is
better), sparse convolutions (similar performance with less
memory, but more time to train), image backbone (smaller
backbone works better), zero-shot performance of CLIP
(works but not as good as model trained on the data) as well
as CLIP embeddings projected using a trained MLP (simi-
lar performance as Bi(I) on ‘chairs and tables’ but slightly
better for ShapeNet c13).

5.6. Error analysis

Manual analysis. We conduct a manual analysis of the top
5 results returned for 50 text queries from the validation
set for Bi(I), Bi(V), and Tri(I+V). We count the number
of query results (shapes) that match the description exactly,
and categorize the error into color mismatch, large shape
mismatch, shape detail mismatch, and missing part (see
supplement for examples and Tab. 7 for analysis summary).
As expected from the quantitative results, Tri(I+V) has the
most shapes that match the text. With the limited number of
queries we examined, all models have similar performance
on color and missing parts. The Bi(I) model had difficulty
getting small shape details correct, and Tri(I+V) obtained
the best performance on matching the overall shape.
Failure cases. Fig. 5 shows failure cases for the Tri(I+V)
model. For the top row, while our model did not retrieve
the ground-truth (GT) shape in the top 5, all top 5 retrieved
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GT top1 top2 top3 top4 top5

round surface with
interconnected leg

0.62 25.19 5.06 0.73 22.28

taupe one seater sofa . it has
a light brown wooden frame
with four leg support . it has
two wide arm rest 5.53 7.09 8.88 6.19 0.47

Figure 5. Failed retrievals on the val set with Tri(I+V) (unmatched text is underlined). The ground truth (GT) is shown in the first column,
followed by the retrieved results with the F10.1 score for each. We see that some descriptions are general and our retrieved shapes match
the description but is not GT shape (first row), and retrieval of shapes with part details (wide arm rest) is hard (second row).

match
color

mismatch
big

shape error
small

shape error
missing

part

Bi(I) 106 65 22 85 5
Bi(V) 103 67 26 76 5
Tri(I+V) 113 64 17 74 5

Table 7. Manual analysis of the top 5 results returned for 50 text
queries. We group the results into whether they perfectly match
the description, or whether there is a mismatch in color or shape.
We confirm that Tri(I+V) has the best overall performance with the
most perfect matches and the least number of shape mismatches.

shapes match the input description (28/100 samples that we
manually inspected belonged to this error case). This il-
lustrates that the evaluation data and protocol should be im-
proved beyond what was established in Text2Shape [7]. De-
spite this, our manual analysis indicates the metrics do a
good job of ranking the models. The second row shows the
challenge of retrieving shapes with fine detail. While our
model can retrieve taupe colored armchairs, the retrieved
objects did not have wide armrest. Our model is good at the
overall shape and color, but can miss fine details and infre-
quent terms such as foldable. More data and modeling part-
to-text correspondence (as in Parts2Words [53]) can help to
reduce these types of failures.

5.7. Limitations

We investigated a trimodal loss for text-to-shape retrieval
and found that with careful tuning we outperformed the
SoTA as of early 2022, when this work was initially per-
formed. We restricted our study to voxel-based 3D rep-
resentations which often do not capture geometric details
and fine-grained surface textures. It would be interesting to
consider other modalities such as point clouds, depth im-
ages, and textured 3D polygonal meshes which may alle-
viate these limitations. One big challenge of incorporat-
ing additional modalities is the memory cost. In addition,
we focused on a specific type of contrastive loss. Other

contrastive losses, data augmentation, as well as other loss
terms such as captioning loss and reconstruction loss are
promising directions for further improvement. Our dataset
is limited in the style of the text and the coverage of shapes.
The evaluation also assumes that there is only one correct
shape but as we have noted, multiple shapes can match a
description. Thus, a significant challenge is to handle false
negative pairs in a mini-batch due to the descriptions be-
ing ambiguous. These limitations suggest opportunities for
future work. We believe our work can serve as a good foun-
dation for follow-up work in text-to-shape retrieval.

6. Conclusion
We carry out a systematic study of contrastive losses for

text-to-shape retrieval. We show that using simple con-
trastive losses can achieve comparable results to text-to-
shape retrieval methods relying on extra annotation and
complex losses. Our experiments show that incorporating
3D information either via voxels or multi-view images is
helpful for the task. We identify important challenges to
solve for the development of useful text-to-retrieval mod-
els. In addition, we propose a trimodal contrastive loss
which further improves performance by considering both
2D and 3D representations. We hope our systematic study
will serve as a foundation encouraging more work on text-
to-shape retrieval, which is an increasingly important task
as there are more and more 3D data repositories.
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