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Abstract

Object detection models, a prominent class of machine
learning algorithms, aim to identify and precisely locate ob-
jects in images or videos. However, this task might yield
uneven performances sometimes caused by the objects sizes
and the quality of the images and labels used for training.
In this paper, we highlight the importance of large objects
in learning features that are critical for all sizes. Given
these findings, we propose to introduce a weighting term
into the training loss. This term is a function of the object
area size. We show that giving more weight to large ob-
jects leads to improved detection scores across all object
sizes and so an overall improvement in Object Detectors
performances (+2 p.p. of mAP on small objects, +2 p.p.
on medium and +4 p.p. on large on COCO val 2017 with
Internlmage-T). Additional experiments and ablation stud-
ies with different models and on a different dataset further
confirm the robustness of our findings.

1. Introduction

Object detection is a fundamental task in computer vi-
sion with applications in a variety of fields (autonomous
vehicles, surveillance, robotics, ...). It has been studied in
computer vision since the dawn of automatic Image Pro-
cessing [7, 15,41]. The surge of Convolutional Neural Net-
works (CNNs) [19] has revolutionized the field leading to a
proliferation of methods [10,21,31,38,45] and substantial
improvements in detection scores.

Researchers have proposed several variants of object de-
tection models, including one-stage [22,23,31,39] and two-
stage detectors [9, 10,21,29], to improve the speed and ac-
curacy of object detection. Furthermore, novel techniques,
such as attention mechanisms [4,24,40] and anchor-free ob-
ject detection [5, 18, 39], have emerged to further improve
the performances of existing models. In this paper, we aim
to focus on object detection models and analyze their un-
derlying mechanisms for locating objects within an image.

Detection datasets usually contain a large number of easy
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Figure 1. Overview of the proposed weighting policy (right) com-
pared to a general object detection framework (left). The area of
each bounding boxes is computed (black dotted arrow) then its
log is taken as a sample weight for the corresponding bounding
box in both classification and localization losses (green dotted ar-
rows). This gives more importance to large objects and perfor-
mances across all sizes benefit from it.

examples and a small number of hard ones. Automatic
selection of these hard examples can make training more
effective and efficient [30]. Different data sampling tech-
niques were proposed depending on the criterion for select-
ing the hard samples during training. These criteria include
high current training loss [37], Foreground/Background ra-
tio unbalance [22,34], IoU-unbalance shifting towards hard
examples [27] and class unbalance [28].

The influence on detection performance of object size
distribution of a training dataset is less examined subject in
the literature. Common wisdom would dictate that if the fi-
nal goal is to have a maximum performance for a given size
of objects - say small objects - more emphasis during train-
ing should be given to these target objects. Our work shows
that reality can be counter-intuitive, as we find that giving
more focus to large objects can improve performance for all
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object sizes, including small ones. Indeed, we find that a
simple change in the training loss can increase performance
for various object detectors. The loss functions of object
detection can be categorized as two sorts: the classification
loss and the localization loss. The first is used to train a clas-
sification head that will detect and, in the case of multiclass
object detection, categorize the target object. The second is
used to train a head that will regress a rectangular box to
find the target object. We propose to incorporate the sample
weight function in the total loss computation, including the
classification term (see Figure 1). By assigning less weight
to smaller objects and more weight to larger objects, the
model learns effectively from both small and large objects.

Through empirical evaluations and ablations, we vali-
date the effectiveness of the proposed weight function and
demonstrate its potential for advancing the state-of-the-art
in object detection. Our contribution are the following:

* We verify that learning on large objects leads to better
detection performance than learning on small objects.

* We propose a simple loss re-weighting scheme that
gives more emphasis to large objects, which results
in an overall improvement of object detectors’ perfor-
mances across all objects sizes.

* We analyze for which object detection sub-tasks the
performance gains are most seen, improving the un-
derstanding of the impact of the loss re-weighting.

2. Related work

Besides the use of geometrical data augmentation tech-
niques, over the years object detector architectures have
incorporated more and more elements to improve perfor-
mance across object scales. In this section, we review some
of the models that we deem important for their influence or
performances. Mainly highlighting the proposed ideas to
deal with the different object sizes. We then focus on data
augmentation, how it has been used for the same goal and
its limitations.

Feature Pyramid Networks (FPN) Feature Pyramid
Networks (FPN) is a widely used module proposed by
Lin et al. [21] that addresses the limitations due to having
one common prediction output for all object scales. More
specifically it proposed to extract features at different lev-
els of a backbone convolutional network [21, 30, 38], and
merge them back in an inverted feature pyramid. Then each
level of the inverted feature pyramid has a dedicated detec-
tion branch dedicated to objects of a given size range. The
performance gains can be attributed to capturing semantic
information at higher resolutions while maintaining spatial
information at lower resolutions.

Figure 2. Example of some small objects cropped without or with
small context (first and second columns) and their entire context
in the image (third column, the objects are highlighted in yellow
bounding boxes, zoom for better view). We focus on a traffic light
in the first row, a clock in the second and a book in the third. We
see from these examples that in the case of small objects, it is diffi-
cult, even to a human eye, to correctly label the designated object.
Also, the more context we have, the easier is the classification.
This also applies to CNNs.

YOLO YOLO (You Only Look Once), proposed by Red-
mon et al. [31], is a real-time anchor based one-stage object
detection system that uses a single neural network to simul-
taneously predict object bounding boxes and class probabil-
ities in real time and directly from input images. Achiev-
ing state-of-the-art speed and accuracy. Since its incep-
tion, YOLO has undergone several evolutions to enhance
its performance. YOLOvV2 [32] improved upon the origi-
nal architecture by introducing anchor boxes to enable the
model to efficiently detect objects of different aspect ra-
tios and sizes. YOLOV3 [33] incorporated a feature pyra-
mid network, which enabled the model to effectively cap-
ture objects at multiple scales. YOLOv4 [2] adopted the
CSPDarknet53 [43] backbone, which improved the model’s
capacity to extract complex features. It also incorporated
the PANet [44] module, which performed feature aggrega-
tion across different levels of the network,further improving
object detection at various scales. YOLOVS [13] is a Py-
Torch implementation of YOLO, characterized by practical
quality-of-life improvements for training and inference. In
terms of performance it is comparable to YOLOV4.

TTFNet TTFNet [25] is a derivative of CenterNet [47],
which defines an object as a single point (the center point of
its bounding box). It uses keypoint estimation to find center
points and regresses to all other object properties. TTFNet
speeds-up the training of CenterNet by predicting bound-
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ing boxes not only at the center pixel but also around it
using a Gaussian penalization. Several weighting schemes
were considered and the authors found that the best perfor-
mance was reached by normalizing the weights then multi-
plying by the logarithm of the area of the box. The local-
ization loss is then normalized by the sum of the weights
present in the batch. Inspired by this approach we propose
to add the logarithmic weighting also to the other terms,
namely localization and classification. Other works such as
FCOS [39], have studied the impact of the bounding boxes
areas on the training, but to the best of our knowledge, none
have proposed a weighting scheme to focus on large ob-
jects. In FCOS all the pixels of the bounding box contribute
to its prediction, but the subsequent loss is averaged among
all pixels. Its implementation was later extended as FCOS
Plus,' which reduces the learning region to a center region
inside the box.

DETR DETR (Detection Transformer) [4] introduces a
transformer-based architecture to object detection that en-
ables simultaneous prediction of object classes and their
bounding box coordinates in a single pass. Notably, DETR
utilizes a global loss function based on sets, allowing it to
effectively handle variable object counts through the inte-
gration of self-attention mechanisms and positional encod-
ings.

InternImage Internlmage, proposed by Wang et al. [45],
is a large-scale CNN-based foundation model which capi-
talizes on increasing the number of parameters and train-
ing data, similar to Vision Transformers [8]. Internlmage
employs deformable convolutions [0] as its core operator,
allowing it to capture richer contexts in object representa-
tions. Moreover, Internlmage incorporates adaptive spatial
aggregation conditioned by input and task information, re-
ducing the strict inductive bias commonly observed in tra-
ditional CNNs. InternImage has attained improved object
detection results and currently holds high ranks in evalua-
tion scores across different datasets. As we will see we can
further improve the performance of InternImage by training
with a size-dependent weighting term.

Data Augmentation Data augmentation is a powerful so-
lution to enhance the performance of object detection mod-
els across all object sizes [14,35]. By applying transforma-
tions to the training dataset, data augmentation techniques
introduce diversity and expand the representation of objects
at different scales. Augmentations such as random scal-
ing, flipping, rotation, and translation enable the models to
learn robust features for accurate detection of both small
and large objects. Augmentations specifically designed for

'https://github.com/yqyao/FCOS_PLUS

Range ratiosy.qin | ratioyg
Small [0, 322] 0.27 0.28
Medium | [322,962] | 0.45 0.44
Large [962 , +o00[ | 0.27 0.29

Table 1. Objects sizes ranges in COCO dataset.

small objects, such as random patch copy-pasting and pixel-
level augmentations [17], help alleviate issues related to
low-resolution details and limited contextual information.
Similarly, augmentations that preserve spatial context and
prevent information loss during resizing or cropping [26,46]
assist in handling large objects. However, it is important
to note that data augmentation techniques have limitations
when it comes to object sizes. While augmentations can in-
troduce diversity and expand the representation of objects,
upscaling objects does not inherently yield additional infor-
mation. Increasing the size of small objects through aug-
mentation may improve their visibility, but it does not pro-
vide additional contextual details or features that were not
present in the original image. On the other hand, downscal-
ing or resizing larger objects can potentially lead to the loss
of important information and fine-grained details, which
may hinder accurate detection.

Little attention has been given to the content of the
dataset itself (with exception of annotation errors [1, 1 1]),
in particular the impact of object size distribution on the de-
tection performance across all scales. In the next section,
we highlight the importance of features learned from large
objects on the overall performances of object detectors.

3. On the importance of objects sizes

Datasets such as COCO incorporate a diverse set of ob-
jects of various sizes. However, detecting large objects
presents different challenges compared to small ones. Large
objects have rich details and texture, which might have to be
interpreted or ignored, but this rich information are usually
enough to know what they are without surrounding context.
Small objects differ in that the surrounding context has sig-
nificant importance in their interpretation. As an illustration
of this fact, Figure 2 shows a set of cropped small objects
without or with their context. We tend to imagine that small
object detection depends mainly on the earlier stages of a
backbone. However, this observation implies that the latest
stages of the backbone have features that capture large ob-
jects, but also the context needed to detect small ones. As a
result all object sizes need good quality features at all levels
of the network backbone. The intuition behind our research
is that having a variety of object sizes helps learn high qual-
ity features at all sizes, and that emphasizing the importance
of large objects in the loss is even better.

This intuition can be verified by the following experi-
ment: Given an object detector (YOLO v5 [12] in this case)
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Small Medium Large All
Scores mAP mAR | mAP mAR | mAP mAR | mAP mAR
Only pretrain on Small+Medium 0.265 0.425 | 0451 0.676 | 0.401 0.628 | 0.281 0.512
Only pretrain on Large 0.187 0.356 | 0.325 0.605 | 0.482 0.731 | 0.255 0.426
Pretrain on Small+Medium then finetune on all 0.253 0413 | 0424 0.667 | 0.446 0.695 | 0.296 0.521
Pretrain on Large then finetune on all 0.271 0.433 | 0.487 0.681 | 0.542 0.753 | 0.350 0.604
Reference scores (Train directly on the entire dataset) | 0.297 0.456 | 0.540 0.718 | 0.674 0.833 | 0.372 0.660

Table 2. Test mAP and mAR scores for different pretraining object sizes on COCO val 2017. The finetuning step (if it exists) is done
while freezing the encoder part of the network. Note that pretraining on large objects improves the scores for all sizes compared to
pretraining on small/medium objects

and a training dataset (COCO [20]) we start by initializing
the model with random weights and pretrain it using only
large objects. We used the size ranges used by the authors
of YOLO v5 in their github repository” and shown in Ta-
ble 1. We then freeze the encoder layers and fine-tune the
model on all the training data. We also repeat the same pro-
cedure but using the small and medium data for pretraining.
The results of train and test mAP and mAR are shown in
Table 2. The goal of these experiments is to observe the
quality of the learned backbone features for various object
sizes when trained exclusively on large or small+medium
objects.

We can see that, despite the relatively lower quantity
of large objects compared to the rest of the dataset, the
model pretrained on large objects and finetuned on the en-
tire dataset performs better across all sizes. This means that
features for bigger objects are more generic and can be used
to detect at all object sizes including smaller ones. This is
less the case for features learned on small objects.

Another interesting point is that the network trained only
on small and medium objects performs worse on these ob-
jects than the network trained on the whole dataset. In fact
even the network using the backbone pretrained only on
large objects and finetuned on the entire dataset has bet-
ter detection performance on small objects. This highlights
the argument that large objects help learn more meaningful
features for all scales.

4. Proposed method
4.1. Weight term

To effectively leverage the large-sized objects for en-
hancing model performance, we propose the inclusion of
a weight term in the loss functions specifically designed for
object detection tasks

Wi = log(h; x w;), 9]

where h; is the i-th object height and w; is its width.
For example, let us consider the YOLO v5 loss

Ltotal = )\chlassif + Lconfidence + /\2LCIOU . (2)

Lgetection

Zhttps://github.com/ultralytics/yolov5

At each training step, the loss is calculated as an average
over all batch samples

La,batch =

1 .
N 2 Le) 3)

1€ Bpatch

with ¢ € {confidence,classif,CIoU}, Ny the number
of bounding boxes in the batch, By, the set of the bound-
ing boxes in a batch, ¢ the prediction over one bounding box
and i the corresponding ground truth. We modify Ly patch
to incorporate the weights WW; with

new

> auLy(i,i), 4)

W,batch —
iEBbatch
where o; = % This term aims to assign higher
k

weights to largefiolbjects during the training and thus en-
courages the models to focus more on learning from them.
On the other side, small objects get a reduced impact on
learning, as the sum of the weights in the batch is normal-
ized. Yet, the slow increase of the logarithm means that no
object size is negligible in the loss.

As mentioned in Section 2, the weighting term (4) was
already used in TTFNet. However, contrary to TTFNet,
which incorporated this weight in its size regression loss
(GIoU), we use it on both the localization and classification
loss terms. We justify this choice by an ablation study in
Section 6.1.

The inclusion of the weight term in the loss functions en-
courages the models to prioritize the accurate detection and
localization of large objects. This leads to more discrim-
inative features and better contextual understanding, par-
ticularly concerning larger objects. And as a consequence,
the models become better equipped to handle also small ob-
jects.

Furthermore, the weight term helps to address the inher-
ent dataset bias towards smaller objects by explicitly giving
larger objects more prominence during training. This bias
correction allows the models to learn more effectively from
the limited number of large objects present in the dataset,
bridging the performance gap between small and large ob-
ject recognition. For example, in Table 3, the ratio of each
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Small Medium Large
Dataset | r r r r r r
COCO 028 0.13 | 044 0.33 ] 0.29 0.54

NuScenes | 0.39 0.15 | 046 0.38 | 0.15 0.47

Table 3. Comparison of 7s;.e and 77%;., across all sizes on COCO
and NuScenes, note how the weighted ratios 7’ are shifted towards
large objects compared to the normal ratios of objects.
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Figure 3. Evolution of the ratio of the sum of gradient ampli-
tudes 7grqq(0) over the first 100 epochs on COCO for YOLO v5.
We see that the weighting term makes the impact of large object
greater than small objects, resulting in an overall increase in per-
formances.

object size

P — #ObjeCtssize (5)
SECT HObjects

is compared to the weighted sum of these objects

7'/ _ Zobjectesize log(wObj@CthObjECt) (6)
e Eobjects log(wobje(?th/object)

on COCO and NuScenes [3] datasets. We see that 7’ is
shifted towards large objects despite the actual ratio of those
objects being relatively small. This forces the training to
focus more on large objects, which benefits performance
across all sizes. This raises the question of the ideal ratios
for the distribution of object sizes when building a dataset,
and likely this will depend on the target objects and their
complexity at different sizes. Thus each dataset might have
a different optimal weighting function.

4.2. The effect of the weight term on the training

In order to gain more insight on the effect of the weight-
ing term on the training, we need to quantify the importance
of each sample during training. The authors of [42] argue
that the sum of the gradient magnitude of the loss can be a
good measure of this. In fact, the evolution of the param-
eters of the model # during training is proportional to the
magnitude of gradient of the loss w.r.t the model parameters
1> sc Baten VoLial|. Since these gradients live in a high

—— First block, without weights
Last block, without weights

=== First block, with weights
Last block, with weights

Gradient ratio
=

epochs

Figure 4. Evolution of 7g,qq(Oiock ) restricted to the first and last
BottleNeckCSP blocks for YOLO v5 over the first 100 epochs on
COCO. We see that the both layers (especially the first one) are
affected by the weighting function.

dimensional space, any two gradient vectors associated to
two inputs are likely orthogonal. Therefore the triangular
inequality

Z VoLig| <

i€ Batch

Z IVoL;.g

i€ Batch

| )

can be used as a tight estimate of the weights update. Thus,
we can consider |VgL;g|| as a measure of the impact of
each object on the learned features and we can regroup these
quantities by object size to see the effect of each object size
on the learning procedure. We computed the ratio of the
sum of gradient magnitudes of large objects over those of
small objects

> icQparg. IVoLigll
Y icasnan IVoLioll’

where 2qrge is the set of large objects, Qgpqn is the set
of small objects and L; ¢ is the training loss term evaluated
and the input ¢ (before the reduction over the image and the
entire batch).

Figure 3 shows the evolution of this ratio along 100
epochs for YOLO v5 on COCO, using or not using the pro-
posed weighting term. We can see that, without the weight-
ing term, small and large object have an comparable contri-
bution on the model parameters. This translates to rg,.qq(6)
oscillating around 1. In contrast, using the weighting in-
creases the impact of larger objects. This is shown by the
value of rg.qq(f) starting high (at about 1.8) at the begin-
ning of the training and stays larger than 1 as the training
continues.

To further investigate this effect, we studied this behavior
at different levels of the network. The YOLO v5 architec-
ture is based on 7 BottleNeckCSP blocks: two of them form
the backbone and the others are the main component of the

®)

Tgrad(0) =
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model’s neck (the PANet part). We restrict the analysis to
the parameters of the first or last BottleNeckCSP blocks and
define

ZieQnge HVGblock Liﬂblock ”
Zieﬂsma” ||v9block Li79block || 7

where Oyoc 1S the set of parameters of a given Bottle-
NeckCSP block of the model. Figure 4 shows the evolu-
tion of rg,qq(Obiock) for the parameters of the first or last
BottleNeckCSP blocks.

This provides insights about the effects on low-level and
high-level features. We see that the first block is particu-
larly impacted when the weighting function is used, with
the ratio increasing up to 16 folds at the beginning of the
training and stabilizing at a 4-fold increase later on. For
the last layer, we still observe an increase of 4.4, but less
important. This suggests that focusing the training on large
objects impacts mostly the low-level features and does so
during all the training. One can argue that these generic
low-level features are more distinguishable on large objects
than on small ones.

These findings shed some light on how the re-weighting
affects the training, suggesting that low level features are
benefiting the most from large objects. In addition, one can
argue that the shift of focus towards large objects is related
to the overall performance improvement as this is observed
since the first training epochs (this will be discussed in the
next section).

9

Tgrad (eblock) =

5. Experiments

To corroborate the impact of the proposed weighting
scheme we compare the performance of several object de-
tectors: YOLO V5, Internlmage, DETR [4] and Mask
R-CNN [10] on the COCO and nuScenes datasets, with
and without the weight term. We trained these models
on both datasets on two NVIDIA RTX 2080 Ti for 35
epochs each with a batch size of 16. We used a warm-up
of 5 epochs for Internlmage-T. We used the Adam opti-
mizer [16] with a Cosine Annealing learning rate starting
from a max value of 0.01 for YOLO v5 and Mask R-CNN
and 0.1 for Internlmage-T and DETR. The minimum IoU
for validating a detection is fixed to 0.5 and a confidence
threshold of 0.001 for COCO and 0.05 for nuScenes. As for
data augmentation, we kept the same pipeline defined for
each method on their respective papers.

The results of these experiments, in terms of mAP and
mAR scores are shown in Table 4. We see that all mod-
els exhibit a significant performance improvement across
all object sizes when using the proposed weighting scheme.
For instance, Internlmage-T with the proposed changes
reaches 51.2% mAP, while the original had 47.2% mAP,
which is a 4 p.p. gain. Our base results reproduce the re-
sults of Internlmage’s authors, and their paper shows that

Figure 5. Qualitative display of some of the improvement made
by adding the sample weight term. Columns from left to right:
Without weights (Red: Prediction, Yellow: GT), With weights
(Same Colors), Comparison (Blue: Without weights, Yellow:
With weights)

InternIlmage-B, which has more than double the number of
parameters than Internlmage-T, only reaches 48.8% under
similar training. We couldn’t train with our modifications
their biggest model Internlmage-XL, which is the state of
the art at the time of writing, as it requires expensive train-
ing resources. It is likely training such a model would define
a new state of the art. While the results are shown here on
four different CNN object detectors, the proposed weighing
scheme is quite simple and can be applied easily to other
object detection models.

A qualitative comparison is also shown in Figure 5. The
selected examples show that the proposed modification al-
lows the model to detect some objects that were otherwise
undetected. For example, on the first and third rows, a tie
and a plane are detected, respectively, only on the model
with our modification. Bounding box predictions are also
improved, as can be seen for example on the first and second
row, where objects detected by both models have a more
precise bounding box on the second column.

We also validate the improvement on another dataset:
NuScenes. We used Internlmage as model and compared its
performance with and without the weight term. The results
are shown in Table 5. We observe that we still have a slight
improvement in the scores with the weighted loss. The evo-
lution of the overall mAP w.r.t the number of epochs, shown
in Figure 6, proves also that the model benefits from fo-
cusing on big objects since the start of the training as the
performance is consistently better along the training proce-
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Small Medium Large All

Model #Params Weighted loss mAP mAR mAP mAR mAP mAR mAP mAR
Mask R-CNN ResNet-50 FPN 44M No 0223 0386 0485 0.621 0.513 0.697 0364 0.512
Yes 0.248 0.403 0.518 0.641 0.560 0.724 0.393 0.545
YOLO v5 64.4M No 0.297 0.456 0.520 0.640 0.617 0.745 0372 0.599
Yes 0.315 0462 0.549 0.702 0.654 0.781 0.398 0.623
DETR ResNet-50 41M No 0312 0459 0.531 0.675 0.628 0.776 0.420 0.553
Yes 0.331 0.460 0.529 0.697 0.659 0.802 0.440 0.570

InternImage-T 49M No 0.309 0.464 0.538 0.718 0.674 0.833 0472 0.66
Yes 0.332 0487 0.556 0.736 0.714 0.857 0.512 0.679

Table 4. Models performances on COCO val 2017. We can see from the results that the introduction of the sampling weight term

improved the models scores across all sizes.

Small Medium Large All
Model #Params Weighted loss mAP mAR mAP mAR mAP mAR mAP mAR
InternImage-T 49M No 0.551 0.634 0.573 0.710 0.652 0.738 0.648 0.711
Yes 0.562 0.661 0.570 0.708 0.679 0.762 0.659 0.724

Table 5. InternImage-T performances on NuScenes. These results show that the benefits of the weighting term are reproducible on

different datasets. The amount of progress may depend on the ratios of small and large objects.

0.40
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tl) .") lID 1‘5 Zb 2‘5 3‘0 35
Figure 6. The addition of a weighting term to the detection and
localization loss improves the validation scores on COCO val 2017
since the beginning of the training.

dure. We can see that from the first epochs, our weighting
policy yields an improvement of nearly 3 p.p. on average.
This emphasizes the intuition that the increased presence of
large objects helps steer training in a better direction and
avoids worse local minima. This also indicates that the ef-
fect of future improvements to object weighting could be
seen early in training.

6. Ablation studies and discussion
6.1. Impact on the terms of the loss

To further investigate the impact of weighting strategies
in the YOLO v5 loss function, we conducted an ablation
study on the COCO dataset. Given the total loss function
of the model (2), we vary the use of the weighting func-
tion for both L jgssi ¢ and Lgetection. More specifically, we

Vertical MAE

Horizontal MAE

Figure 7. The horizontal and vertical MAEs are highly correlated
for YOLO v5 on COCO, with a correlation coefficient of 0.7710

explored four scenarios: no weight terms, weight terms ap-
plied to the classification term only, weight terms applied to
the detection term only and the weight term applied to all
the loss terms.

Our analysis focuses on evaluating the Mean Average
Precision (MAP@50:95) as a general metric score and the
error on the bounding box center as a localization metric
score. Table 6 shows the impact of each combination on the
mAP for various sizes of objects. As the mAP is impacted
by both the localization errors and the capacity of the net-
work to detect the objects and correctly classify them, we
complement the results the Mean Absolute Error (MAE:
average L1 distance of the predicted bounding box center
compared to the ground truth center). The MAE was es-
timated only on the horizontal component. We can justify
this by the high correlation between horizontal and vertical
MAE:s (see Figure 7). In order to reduce the impact of the
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Letassif  Ldetection  MAPsman - MAPpedium  MAPjarge mAPyy
- - 0.297 0.540 0.674 0.372
v - 0.290 0.542 0.680 0.371
- v 0.315 0.551 0.686 0.384
v v 0.332 0.556 0.714 0.398

MAFEsmai  MAEpciivm MAFEqarge MAE,; APQ504,
9.843 12.427 14.824 12.523 0.572
8.245 11.346 11.293 10.576 0.584
0.315 0.551 0.686 0.384 0.587
5.645 9.587 8.386 8.231 0.615

Table 6. Ablation study on the introduction of the weight term in classification and detection loss term and its effect on the mAP@50:95,
the Mean Absolute Error (Pixels) on the bounding box center and the Average Precision on IoU=0.5 on COCO val 2017 dataset.

Sample weight function | mAP | mAR
flwxh)=1 0.372 | 0.599
flwxh)=wxh 0.217 | 0.412
flwxh)=+vwxh 0.243 | 0.459
f(w x h) =log(w x h) | 0.398 | 0.623

Table 7. Results of different sample weights functions on COCO
2017 val using YOLO v5.

capacity of the network to detect objects, these results were
computed on the set of objects correctly detected (correct
class and IOU > 0.5). Lastly as AP@50 is less sensitive
to localization errors, we display the corresponding results
across all objects.

The results show that when adding only the weight-
ing scheme to the classification term, the mAP regresses
slightly, in particular for small objects, despite improved
AP50 and MAE. The exact interpretation of this phe-
nomenon is unclear. However, when the changed term is
the detection term, mAP, MAE and AP50 are improved.
The MAE gain is more important relatively for large ob-
jects (30%), indicating better localization. Lastly, having
the weighting scheme on both loss terms gives the best per-
formance on all metrics. Proportionally compared to the
initial results, the highest gain is seen on small targets, as it
sees a 12 p.p. increase in mAP (against 3 p.p. for medium
and 6 p.p. for large objects) and a 43% decrease in MAE
(against 23% for medium and 36% for large objects).

This suggests that a holistic approach that considers both
classification and detection, with the weight terms appro-
priately assigned, is crucial for achieving the best results in
terms of mAP score and bounding box center error.

6.2. On the choice of log(w x h)

As discussed above, the main idea behind the choice of
log(w x h) is to increase the contribution of large objects in
the learning of the network features. We tested other func-
tions of w X h and compared them to the proposed func-
tion. Table 7 evaluates some sample weighting functions
for YOLO v5 on the COCO dataset. We kept on the idea
that this function should depend on the areas of the objects
and changed only the type of function (linear, logarithmic,
square root). Although log(w X h) yields the best results
in this table, we believe that additional research and exper-
imentation is required in this direction in order to identify
better functions or to prove that the chosen weight function
is the optimal choice for better performances.

6.3. Impact of the dataset

The performance gain was demonstrated on two
datasets: COCO and NuScenes. While the performance
gain on these two datasets is far from negligible, there is
no guarantee that similar gains can be obtained on other
datasets. In fact the weighting scheme comes down to artifi-
cially increase the proportion of larger objects in the dataset,
and thus if the dataset already had optimal proportions, the
weighting wouldn’t increase the performance. The con-
clusions from this research though is that when building
a dataset, it is important to have a significant proportion
of large objects, and if not, compensate with a weighting
factor. One aspect impacting weighting needs is the diffi-
culty of the detection of each object’s size. For COCO and
NuScenes, the detection scores for small objects are lower
than for large objects. As small objects are harder to de-
tect they tend to have stronger errors in the loss, and thus
higher gradients. The weighting scheme can be seen as a
correction factor to this behavior.

7. Conclusion

In this paper, we have shown that the presence of large
objects in the training dataset helps to learn features that
yield better performance also on small and medium objects.
We then proposed a simple loss reweighting scheme that
leads to improved performance of object detectors. Our
findings underscore the importance of considering large
objects and demonstrate the potential of incorporating a
weighted loss term in enhancing overall object detection
performance. Through experiments and ablation studies,
we validated the effectiveness of our proposed approach.
We evaluated different models and datasets, consistently ob-
serving improvements in detection scores across all sizes.

Future research in this area could investigate novel
strategies that explicitly consider the impact of large objects
on detection accuracy across different scales.
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