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Abstract

The widespread adoption of commercial autonomous
vehicles (AVs) and advanced driver assistance systems
(ADAS) may largely depend on their acceptance by soci-
ety, for which their perceived trustworthiness and inter-
pretability to riders are crucial. In general, this task is
challenging because modern autonomous systems software
relies heavily on black-box artificial intelligence models.
Towards this goal, this paper introduces a novel dataset,
Rank2Tell1, a multi-modal ego-centric dataset for Ranking
the importance level and Telling the reason for the impor-
tance. Using various close and open-ended visual question
answering, the dataset provides dense annotations of var-
ious semantic, spatial, temporal, and relational attributes
of various important objects in complex traffic scenarios.
The dense annotations and unique attributes of the dataset
make it a valuable resource for researchers working on vi-
sual scene understanding and related fields. Furthermore,
we introduce a joint model for joint importance level rank-
ing and natural language captions generation to benchmark
our dataset and demonstrate performance with quantitative
evaluations.

1. Introduction
Effective and accurate understanding of visual scenes is

an important prerequisite for safe navigation of autonomous
vehicles and advanced driver assistance systems, especially
in complex and highly crowded urban scenarios. Despite
significant advancement in the development of self-driving
and driver-support technologies, public acceptance of these
systems remains limited. A survey conducted by Partners
for Automated Vehicle Education (PAVE) in 2020 [12] re-
ported that 60% of respondents would be more likely to
trust autonomous vehicles if they have a better understand-
ing of the underlying rationale of the models. To im-
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prove the transparency of these systems, intelligent vehi-
cles must have the ability to identify critical traffic agents
whose behaviors can influence their own decision mak-
ing [22, 23, 27, 47]. Identifying these important agents
allows for a more efficient allocation of computation re-
sources toward predicting the actions of a subset of critical
objects and identifying potential risks. To establish trust,
the autonomous system must provide human-interpretable
reasoning about the important agents in the scene, through
voice or visual interfaces.

Accurately identifying important agents within the en-
vironment and providing human-interpretable reasoning re-
quires a scene understanding model to capture several es-
sential scene features effectively, including 3D mapping,
the semantics of the scene, spatial and temporal relations,
agents’ importance level, actions, intentions, and attention.
Additionally, the ability to reason about important agents in
a human-interpretable manner is crucial for capturing the
essence of the scene. By integrating these comprehensive
features, the model’s ability to understand and reason about
the scene is greatly enhanced. One key to successfully ap-
plying these approaches is the availability of traffic datasets
with rich human annotations of object importance and rea-
soning to address the interpretability and trustworthiness of
autonomous systems operating in an interacting environ-
ment. However, there currently exists no comprehensive
real-world driving dataset that provides all these features.

To address this challenge and facilitate future research,
we propose a novel ego-centric, multi-modal dataset for vi-
sual scene understanding in urban traffic scenarios. The
dataset uses 2D image features and 3D LiDAR features to
provide dense semantics, temporal and relational annota-
tions of important agents that influence the ego vehicle’s
decision making. In addition, it provides diverse natural
language explanations to enable reasoning about why a par-
ticular agent in a scene is of importance. We aim to improve
the transparency and interpretability of the visual scene un-
derstanding modules of autonomous systems. The proposed
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dataset has the potential to assist drivers in conveying im-
portant decisions, improve their situational awareness, and
warn passengers about potential safety hazards present in
the surrounding environment. We also introduce a model
that uses multi-modal 2D+3D features to jointly predict the
importance level and generate captions of important agents.

The contributions of this paper are as follows. First,
we introduce the first multi-modal dataset, Rank2Tell, for
importance level ranking and natural language explanation
tasks in urban traffic scenarios. The data is annotated using
visual question answering (VQA) that combines video and
object-level attributes. Second, we propose a model that
uses multi-modal features for joint importance level classi-
fication and natural language captioning, and also establish
a benchmark suite on these tasks. Third, we introduce the
key features of the dataset that can potentially be used to en-
hance scene understanding for safety-critical applications.

2. Related Work
2.1. Object Importance Classification

Identifying important objects in images or videos has at-
tracted a great deal of research interest in various domains.
There are several visual saliency studies that have created
a pixel-level importance mapping for tasks such as visual
question answering [1,45], scene understanding [35], video
summarising [15], driver attention [24], and AV steering
control [17]. However, these methods do not treat objects as
distinct instances. Several studies focus on identifying the
single most important object in a scene, such as the most im-
portant person in a social situation [25]. Several other stud-
ies make a binary classification between “important” and
“unimportant” for multiple objects in a scene [13,21,22,48].
However, only one of these studies [22] attempts to cou-
ple natural language with importance estimation but this
work only provides a description of a single important ob-
ject. Other studies [29, 39] classify agents in the scenes at
three different importance levels: high, medium, and low.
However, none of these studies explains the underlying rea-
soning for the importance estimation for a specific object.

2.2. Dense Captioning

There has been a large amount of research on generat-
ing natural language to describe visual images or videos.
The idea of self-attention was proposed in the visual cap-
tioning task [40], which has been the basis for many further
visual captioning research including [3,10]. Some dense vi-
sual captioning methods aim to generate a caption for mul-
tiple regions in the same image [16,42,44] using the Visual
Genome dataset [20]. The ScanRefer dataset was proposed
for object localization and language description tasks [5].
Our problem setting is similar to dense image captioning but
we focus on generating explanations for the important ob-

jects in traffic scenarios with spatio-temporal observations.

2.3. Datasets

In recent years, many traffic scene datasets have been
proposed to stimulate progress in the analysis of the impor-
tant objects in driving scenes. HDD [32] and KITTI [29] are
object localization datasets that benchmark importance lo-
calization and anomaly detection. HAD [18], BDD-X [19],
BDD-OIA [41] are captioning driving datasets that provide
reasons for the ego vehicle’s actions in natural language
descriptions. DRAMA [28] provides important object la-
bels with captions from the ego car’s perspective while con-
sidering spatio-temporal relationships from videos. While
DRAMA [28] is the most relevant dataset to our proposed
Rank2Tell, the major differences are shown in Table 1.

3. Rank2Tell Dataset
The dataset is collected using an instrumented vehicle

equipped with three Point Grey Grasshopper video cam-
eras with a resolution of 1920 × 1200 pixels, a Velodyne
HDL-64E S2 LiDAR sensor, and high precision GPS. Ad-
ditionally, Vehicle Controller Area Network (CAN) data
is collected for analyzing how drivers manipulate steering,
breaking, and throttle. All sensor data are synchronized and
timestamped using ROS and customized hardware and soft-
ware. The dataset contains a diverse set of traffic scenes
captured at intersections in different environments, includ-
ing urban areas. We selected 116 clips of approximately 20
seconds each, focusing on intersections from several hours
of data. These video clips capture both the entering and
exiting of the ego vehicle from the intersection.

3.1. Annotation Methodology

The important agent identification is subjective in nature
and can vary based on factors such as age, gender, and driv-
ing experience. To account for this diversity of opinions,
each video was annotated by five annotators with varying
levels of driving experience and age. The detailed statistics
of annotators are introduced in the supplementary material.

We first stitch images from the three cameras, i.e. front,
left, and right, which provide a wide FOV (horizontal 134
degrees). Each frame of a video is overlayed with the
ego vehicle’s speed, and intention (left/right/straight) while
leaving the intersection using an arrow. Annotators anno-
tated every 4th frame of the 10 fps video. To avoid bias
in important agent identification due to prior knowledge of
other agents’ future intentions, the annotators had access to
only 40 historical frames (i.e., 4 seconds of the video) while
annotating a certain frame.

We divide our annotation scheme into three parts: Im-
portant Agent Identification, Important Agent Localization
and Ranking, and Captioning. The annotation schema is
shown in Figure 2.
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The pedestrian is of importance because they 
are crossing the crosswalk toward the Ego car 
from the right side while the Ego car intends to 
turn right at the intersection.

The pedestrian is of importance because they 
are crossing the crosswalk toward the Ego car 
from the right side while the Ego car intends to 
turn right at the intersection.

The pedestrian is of importance because they 
are crossing the crosswalk, toward the Ego car 
from the right lane while the Ego car intends to 
turn right at the intersection.

The pedestrian is of no importance.

The pedestrian is of importance because they 
are crossing the crosswalk, toward the Ego car 
from the right lane while the Ego car intends to 
turn right at the intersection

The traffic light is of importance, because it is 
located at the right side of the road and the Ego 
car intends to turn right at the intersection and 
the green light is indicating it to go.

The traffic light is of importance because it is on 
the right lane of the Ego car while the Ego car 
intends to turn right at the intersection and the 
green color is indicating it to go.

The traffic light is of importance because it is on 
the right lane while the Ego car intends to turn 
right at the intersection and the green color is 
indicating it to go.

The traffic light is of importance because it is on 
the right lane while the Ego car intends to turn 
right at the intersection and the green color is 
indicating it to go.

The traffic light is of importance because it is on 
the Ego lane while the Ego car intends to turn 
right at the intersection and the green color is 
indicating it to prepare to go.

Medium

High

High

High

High

Medium

High

High

High

Figure 1. Overview of Rank2Tell. Rank2Tell is an ego-centric dataset with three camera images and point cloud features for visual scene
understanding in complex urban traffic scenarios. For each scenario, five annotators are asked to identify important objects in the scene
with three importance levels: high, medium, and low. They also compose natural language descriptions to explain their reasoning behind
the importance ranking of each important object in the scene, which leads to diverse annotations of explanations. In this exemplar scenario,
the important objects are indicated by bounding boxes. The importance and natural language annotations of the traffic light and the crossing
pedestrian are shown as illustrative examples.

Table 1. Comparison of our proposed dataset with other datasets.

Important Agents Identification only Captioning only Both
Dataset HDD [32]EF [46]SA [4]DoTA [43]KITTI [29]A-SASS [39]HAD [18]BDD-X [19]BDD-OIA [41]T2C [9]DRAMA [28] Ours

# Scenarios 137 3,000 1733 4,677 - 10 5,744 6,984 11,303 850 17,785 116
# Frames annotated/video ≥1 ≥1 ≥1 ≥1 - ≥1 ≥1 ≥1 ≥1 1 1 ≥1

Avg. video duration (in sec) 2700 4 5 - - - 20 40 5 20 2 20
Importance Localization ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓
Importance Captioning ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓

Importance Ranking ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓
# Important objects/frame 1 1 ≥1 ≥1 ≥1 ≥1 - - - - 1 ≥1

# Captions/frame - - - - - - 1 1 1 - 1 ≥1
# Captions/object - - - - - - 1 1 1 - 1 ≥1

Avg caption length - - - - - - 11.05 8.90 6.81 11.01 17.97 31.95
RGB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LiDAR ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓
3D boxes ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Field of View (RGB) C C C C C LCR C C C LCR C LCR
Object Tracking ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Reasoning ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓
Free Form Captions ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓

Important Agent Identification. The first step is to iden-
tify whether there exist important agents in the scene that
have the potential to influence the ego vehicle. To this
end, we overlay the ego vehicle’s intention (i.e., straight,
left, right) and speed obtained using CAN bus data, as
shown in Figure 1. Then we overlay this information on
the stitched images before passing it on to the annotators,

which provides important context information to annotators
about driver behavior and intent which is crucial to iden-
tify important agents. This is in contrast with other works
in that [29] does not provide this information at all and [28]
asks the annotators to label the ego vehicle’s intention along
with importance, for which they need to watch the entire
clip which is not a realistic setting in the real world because
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High, 
Medium, 

Low

High, 
Medium, 

Low

High, 
Medium, 

Low

High, 
Medium, 

Low

Passing-by, 
Following, 
Stopping, 
Yielding, 

Slowing down, 
Accelerating, 

No-Response, 
Other

Passing-by, 
Following,
Stopping, 
Yielding, 

Slowing down, 
Accelerating, 

No-Response, 
Other

Passing-by, 
Following,
Stopping, 
Yielding, 

Slowing down, 
Accelerating, 

No-Response, 
Other

Stopping, 
Yielding, 

Slowing down, 
Accelerating, 
No response, 

Other

Pedestrian

Bicyclist

Vehicle

Infrastructure

Free 
Form 
Captions

Free 
Form 
Captions

Free 
Form 
Captions

Free 
Form 
Captions

Waiting to cross, crossing 
the crosswalk, Standing, 
Jaywalking, Walking on the sidewalk, 
None

Attention:
Looking at ego car, Not looking at ego 
car, Not sure

Communication Aspect:
Looking into phone, taking on phone, 
talking in group, none

Stopped,
Moving,
None

Parked,
Stopped,
Moving,
None

Color, Dress:
White, Black, Blue, other;
Top, Bottom or Dress

Carrying a backpack, Carrying a
wheelchair, Carrying a kid,

Carrying a bike, Riding a skateboard

Age:
Child, Adult, Senior (over 65)

Color, Dress:
White, Black, Blue, other;
Top, Bottom or Dress

Carrying a backpack, other

Type:
Sedan, SUV, Scooter, Fire Truck, 
Ambulance, Van, Truck, Mid SUV, 
Bus, 
Hatchback, Motorcycle, Other Vehicle

Color:
White, Black, Blue, Other

Type:
Traffic Light, Stop-Sign, Construction 
work, Speed Limit Sign

Color:
Red, Green, Yellow

*Level 1:
Ego lane, 
Left, Right

**Level 2:
Neighboring lane, 
Other

*Level 1:
Ego lane, 
Left,
Right

**Level 2:
Neighboring lane, 
Other

*Level 1:
Ego lane, 
Left,
Right

**Level 2:
Neighboring lane, 
Other

*Level 1:
Ego lane, 
Left,
Right

**Level 2:
Neighboring lane, 
Other

Towards Ego 
vehicle,
Away from 
ego vehicle

Towards Ego 
vehicle,
Away from 
ego vehicle

Towards Ego 
vehicle,
Away from 
ego vehicle

Towards Ego 
vehicle,
Away from 
ego vehicle

What Which Where How Why

Type Importance Visual Attributes Action Attributes Location Motion Direction Ego’s Response Caption

(a) Sequence of Visual Questions asked from annotators during the annotation

Ego Lane
Left Right 

OtherOther NA

Level-2

Level-1

(b) Location Level

Away from ego carTowards ego car

Away from ego car Away from ego car

Towards ego car Towards ego car

(c) Motion Direction

Figure 2. The annotation schema of Rank2Tell dataset.

the driver does not have access to future information. Addi-
tionally, while [28] filters raw videos based on the activation
of vehicle braking using CAN information, we manually fil-
ter data, which is more accurate. The annotators then watch
the video and are asked to imagine themselves as the driver
and determine if there are important agents present in the
scene that may affect their driving.

Important Agent Localization and Ranking. The annota-
tors are instructed to localize each agent in the scene that is
important to the ego vehicle by creating a bounding box. At
a high level, we asked the annotators to identify agents to
which the ego vehicle should be attentive for safe driving.
Once an object is marked as important, annotators draw a
2D bounding box around that agent, and rank its importance
level and relevance they would have given the object in real
driving. In this work, we use three levels of importance:
Low, Medium, High.

The purpose is to handle ambiguity which is hard to

avoid in case of binary categorization, i.e. important or non-
important [22], and also to reduce confusion and guesswork
which is inevitable in case of a continuous ranking score.
Inspired by [29, 39], we posit that two levels of importance
(i.e., important and nonimportant) could be overly restric-
tive and inadequate for handling ambiguous cases. More-
over, [39] shows that multiple levels could aid drivers’ situ-
ational awareness in real time, with the minimal distraction
of multiple important objects. Due to the subjectivity of the
task, we used five annotators to label each scene to reduce
ambiguity and reach some level of consensus. Since differ-
ent annotators may perceive importance differently, there
are cases where the same agent has different levels of im-
portance or is not considered important at all. We show the
consistency analysis in Table 2.

Captioning. Our proposed dataset emphasizes explainabil-
ity as another aspect. In addition to identifying and rank-
ing important agents, we aim to provide an explanation for
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(a) Agents importance level distribution

Left Right Straight 

(b) Importance level of agents at different locations w.r.t ego’s
intentions

Figure 3. Statistical Analysis of Rank2Tell Dataset

why these objects are deemed significant. Therefore, after
annotators identify and localize the important objects, we
request them to annotate certain object-level attributes and
utilize them to elaborate on why they regard the object as
important via a free-form caption. Specifically, as demon-
strated in Fig. 2, we request them to annotate the following:

• What: What class (type and importance level) does the
important agent belong to?

• Which: Which visual and motion attribute belongs to
the agent?

• Where: Where is the agent (location + direction)?
• How: How does the ego car respond to the agent?
• Why: Why is the agent of High/Medium/Low level of

importance?
The first four questions require single-choice answers

from a pre-defined set of options, while the last question
is an open-ended caption that combines the answers to the
previous four questions (what, which, where, how). This al-
lows annotators to use free-form captions while incorporat-
ing all essential information captured in the 3W+1H format.

A unique benefit of having multiple captions for a single
object is the ability to evaluate caption diversity. Although
caption diversity has been explored in image datasets in pre-
vious works [8, 33, 38], it has rarely been investigated in
a video setting, particularly in traffic scenes. These ear-
lier studies concentrated on measuring semantic diversity
by various concepts in the same image. In contrast, we fo-
cus on diversity based on how humans perceive importance.
Due to the subjective nature of this task, it is crucial to as-
sess how different individuals explain and perceive impor-

tance. As far as we know, our dataset is the first to provide
diverse captions for multiple objects in traffic scenes.

3.2. Features and Applications of Rank2Tell

Scene Graphs. Our proposed dataset introduces several at-
tributes that offer significant potential for generating infor-
mative scene graphs by leveraging spatial (i.e., which and
where), temporal (i.e., tracking with 2D+3D point cloud
features), and semantic (i.e., what and how) features. These
relational attributes are captured by scene graphs, using
comprehensive scene information recorded by road users.
They are valuable for performing downstream tasks.
Situational Awareness. Enhancing situational awareness
is critical for safe and efficient navigation in complex traf-
fic scenarios. In a recent study on A-SASS, Wu et al. [39]
demonstrated the effectiveness of highlighting important
agents in the scene to improve drivers’ situational aware-
ness. Motivated by this study, our proposed dataset can po-
tentially be used to identify important agents in the scene
and develop an adaptive user interface for improving the
driver’s situational awareness in real time. Additionally, our
dataset offers unique attributes such as attention and com-
municative aspects which can be beneficial in Advanced
Driver Assistance Systems (ADAS) applications.
Interpretable Models. Human-interpretable models are
important for safety-critical applications like Autonomous
Driving or Advanced Driver Assistance Systems (ADAS).
The model’s interpretability can be evaluated using compre-
hensive attributes of Rank2Tell, and can potentially be used
to address several tasks towards providing explanations of
driving risks associated with important agents. Some of
these tasks are a) important agent localization and tracking,
b) importance level ranking, c) caption generation, and d)
diverse captions generation. Our dataset also enables joint
handling of thesetasks, which is another unique aspect. We
discuss details of these tasks in supplementary materials.

In this paper, we benchmark the performance on two of
these tasks: important agents ranking and captions genera-
tion, and also provide a model that jointly addresses them,
as discussed in Section 5.

3.3. Dataset Analysis

3.3.1 Dataset Statistics

Figure 4 shows the distribution of labels obtained using
video-level question answering in Rank2Tell. Figure 3a
shows the distribution of agent types with their importance
levels in the scene. This is answered using the what in the
question answering. Since the dataset comprises all scenar-
ios focused on four-way intersections, the majority of the
infrastructures such as traffic lights (3048), and stop signs
(668) are of high importance and there is consensus among
annotators. Figure 3b demonstrates the distribution of lo-
cation level-1 of various important levels objects given the
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(a) Top 30 words distribution for captions
associated with high important objects

(b) Top 30 words distribution for captions
associated with medium important objects

(c) Top 30 words distribution for captions
associated with high low objects

Figure 4. Statistical analysis of Rank2Tell dataset.

intention of the ego car. It shows that the majority of agents
situated on the left and right of the ego car are of high im-
portance when the ego car’s intention is left and right, re-
spectively. However, when the ego car’s intention is to go
straight, the agents’ location is equally distributed in three
lanes- left, right, and ego lane. This makes the task of im-
portance ranking classification nontrivial and difficult to es-
timate by only using the ego car’s intention as a feature.

To describe the visual attributes of significant objects,
annotators usually provide free-form responses that inte-
grate information about the object’s what, where, how, and
which. In Figure 4, we illustrate the distribution of the top
30 words utilized in captioning the “why” question. This
demonstrates that annotators effectively conveyed the in-
tention, motion direction, and location of important agents
while generating natural language captions.

3.3.2 Consistency Analysis

We conduct an inter-annotator consistency analysis among
five annotators, based on the mode of various importance
levels they selected, as presented in Table 2. In cases with
multiple modes, we set the highest importance level as the
final importance to obtain these consistency scores. A 40%,
60%, 80%, and 100.00% consistency implies that 2, 3, 4,
and 5 annotators provided the same importance levels for an
object. Results show that for data instances with High as the
majority importance, 88.23% of data samples exhibit more
than 60% consistency. Similarly, for data instances with
Not-Important as the majority voting, 98.61% data samples
have more than 60% consistency. This indicates that anno-
tators highly agreed on objects selected as High and Not-
Important importance based on mode. To assess the quality
of the dataset, we compute intra-class correlation (ICC) [34]
for the entire dataset, yielding 0.92, which shows excellent
inter-rater agreement [7]. However, we use the mode of
only importance level classes to obtain the ground-truth im-
portance level of an object for various tasks, such as object
importance level classification (Section 5.1). That is, if 2
out of 5 annotators deem an agent as important, we use the
ground truth as the mode of the two importance levels in-
stead of all 5. This method aims to reduce falsely underes-

timating an agent’s importance. Please refer to the supple-
mentary materials for more details.

Table 2. Data (%) for different inter-annotator consistency (%) of
agent’s importance annotation based on the mode of all 5 annota-
tors’ importance levels.

Consistency Not Important Low Medium High
40 1.37 38.33 33.77 11.75
60 4.52 51.54 42.39 30.93
80 7.86 9.46 17.79 28.95

100 86.23 0.65 6.03 28.35
≥60 98.61 61.65 66.21 88.23

4. Methodology
We introduce a model to jointly address objects’ impor-

tance classification and caption generation. The architecture
of the model is illustrated in Figure 5, which leverages mul-
tiple modalities (i.e., 2D and 3D features). It consists of five
main components: a) a 2D deep feature extraction module
that extracts object-level features from frontal-view visual
observations and ego vehicle state information, b) a 3D deep
feature extractor that extracts object-level features from 3D
point cloud observations, c) a relational graph module that
learns the enhanced objects (node) features and relational
(edge) features, d) an importance classification module that
takes in the objects and objects relational features to pre-
dict the importance level for each important objects in the
scene, and e) a context-aware attention captioning module
that generates descriptions from the object features and re-
lational features.

4.1. Feature Extractor

We adopt a 2D deep feature extractor from [22]. The
deep feature extractor uses a sequence of RGB images,
depth images, semantic maps, the ego vehicle’s inertial data,
and a 2D bounding box of each object in the scene. The
depth images are obtained by projecting the point cloud to
the stitched camera view and the segmentation maps are ob-
tained using DeepLabv3 on the stitched RGB images. To
extract the 3D features of each object, we adapt the Point-
net++ [31] backbone and the voting module in VoteNet [11]
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Visual Feature Extractor

Bounding boxes, 
position, scale features 

extractor

Sequence 
Encoder I

Sequence
Encoder II

Sequence 
Encoder III

PointNet++ 
Backbone 

Module
Proposal Module

Importance 
Classifier

Captioning 
Decoder

Ego Intention

Voting 
Module

2D Feature Extractor

3D Feature Extractor

GNN

Importance Ranking

“The pedestrian is 
of importance 
because they are 
crossing the 
crosswalk, toward 
the Ego car from 
the right lane …….”

Depth Feature Extractor

Figure 5. Architecture of Joint Model. The framework consists of five components: a 2D feature extractor, a 3D feature extractor, a
relational graph, an importance classifier, and a captioning decoder.

to aggregate all object candidates in a scene to individ-
ual clusters. To capture the mutual influence and relations
among objects, we use a graph-based approach that models
objects as nodes and their relations as edges in a relational
graph module. The module takes in the concatenated 2D
and 3D object features and extracts both object features and
relational features between objects. To model the relational
(edge) features, the module considers only the K nearest
objects surrounding the target object to limit the computa-
tion complexity. The final object features are obtained by
concatenating the graph node features with the object re-
lations, global features, ego features, and ego intentions.
These are then fed into the importance classifier and the
captioning decoder, respectively. More details can be found
in the supplementary materials.

4.2. Training Objective

The loss function for our joint model consists of impor-
tance classification loss and caption generation loss. We
apply a conventional cross-entropy loss on the generated to-
ken probabilities, as in previous works [6, 22]. We used a
weighted sum of both loss terms as the final loss:

L = αLimp + βLcap, (1)

where α and β are the weights for the loss terms. Further, to
enforce the model to reduce the instances of falsely underes-
timating an agent’s importance, we penalize the Limp cor-
responding to different ground truth (GT) and predictions
(P) for different importance levels of high (H), medium(M),
low(L), and not-importance(NI) as follows:

Limp = ΣN
i=1Li (2)

Li =

{
λkLi, if (GT − P ) = k > 0,

Li, otherwise,
(3)

where Li is the cross-entropy loss for each object i.

Method F1 (I) F1 (NI) Accuracy
OIE [14] 55.78 87.74 80.80

INTERACT [47] 56.42 88.02 81.21
IOI [22] 64.01 89.06 83.22

Ours 78.44 92.97 89.39

Table 3. Quantitative evaluation of F1 scores for two importance
levels across baselines (I: important, NI: nonimportant).

5. Experiments
We evaluate the performance of our model on the pro-

posed Rank2Tell dataset by comparing it with various base-
lines on two tasks: importance level ranking (classification)
and natural language captions generation. For fair compar-
isons, we use the same backbone modules and hyperparam-
eters across different baselines. More details can be found
in the supplementary materials.

5.1. Importance Level Classification: Baselines

All the importance classification baselines take 2D im-
age features and object features as inputs and infer the im-
portance level of objects in the scene.
Goal-oriented object importance estimation (OIE) [14]:
OIE is a two-stage framework that firstly generates object
tracklets from videos as object proposals and then classifies
the proposals as important objects.
Interaction graphs based object importance estimation
(INTERACT) [47]: INTERACT is a graph convolutional
network based method that extracts appearance features
from objects and represents them as nodes in the graph.
These features are then updated by interacting with other
nodes through graph convolution based on the learned in-
teraction graph edges. The updated features are used to es-
timate object importance using a multi-layer perceptron.
Important Object Identification (IOI) [22]: IOI is a
graph convolutional network based method that explicitly
models both the appearance and motion of objects in the
scene and also uses the ego vehicle state information in the
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Method F1 (L) F1 (M) F1 (H) F1 (NI) Accuracy
OIE [14] 10.25 14.32 49.68 86.56 74.95

INTERACT [47] 14.04 27.56 44.04 87.45 75.09
IOI [22] 14.09 16.19 49.55 87.85 76.84

Ours 20.49 28.94 58.84 92.62 80.93

Table 4. Quantitative evaluation comparing the F1 scores for 4 im-
portance levels across baselines. L:LOW, M:MEDIUM, H:HIGH,
NI:NON-IMPORTANT

Method C B-4 M R
S&T [37] 47.67 30.24 34.91 53.31

Scan2Cap [6] 56.32 49.59 38.36 66.35
Ours 100.15 45.83 36.21 68.56

Table 5. Quantitative evaluation comparing the performance of
baselines for captions predictions. C: CIDER, B-4: Bleu-4, M:
Meteor, R: Rouge

current frame for importance classification. It reasons about
the relations between objects in the scene.

5.2. Captioning: Baselines

Scan2Cap [6]: Scan2Cap is an end-to-end method to per-
form dense captioning on 3D point clouds to densely detect
and describe 3D objects in RGB-D scans. The method first
employs a detection pipeline to obtain object proposals and
then applies a relational graph and context-aware attention
captioning module to learn object relations and generate to-
kens, respectively.
Show, and Tell (S&T) [37]: This baseline generates cap-
tions using 2D features (i.e., global RGB image features and
target object features). The visual features are extracted us-
ing a ResNet-101 pre-trained on the ImageNet dataset. The
global features are concatenated with the target object fea-
tures, which are used to generate the captions.

5.3. Metrics

To measure the quality of the predicted importance rank-
ing of each object in the scene and their corresponding cap-
tions, we evaluate the performance of the baselines using
standard classification metrics: F1 score, and accuracy for
the importance estimation, and standard metrics such as
BLEU-4 (B4) [30], METEOR (M) [2], ROGUE (R) [26],
and CIDER (C) [36].

5.4. Results

5.4.1 Quantitative Comparison

Table 3, Table 4, and Table 5 show the quantitative re-
sults of our model and baselines for importance classifica-
tion and caption prediction tasks. The importance baselines
are trained and evaluated with two classes (Important and
Non-Important), and four classes (High, Medium, Low, and

Non-Important). For the two classes, high, medium, and
low important objects are merged as one important class.
The INTERACT [47] baseline outperforms OIE [14] as it
models agent interactions in the scene using graph convolu-
tional networks. This makes it more efficient in predicting
the importance levels of multiple agents in the scene with
lesser input features than OIE [14]. Furthermore, IOI [22]
outperforms the previous two baselines as it utilizes the ego
vehicle’s speed, acceleration, and intention features. While
the agent’s importance level is highly influenced by the ego
vehicle’s intention (e.g., straight, left, right) at the intersec-
tion, the ego’s speed and acceleration are influenced by the
importance level of an agent. This interaction behavior is
explicitly incorporated in IOI [22], which makes it outper-
form other methods. Since there is currently no importance
ranking estimation model that uses 3D features, we bench-
mark results on baselines using only 2D features.

For the captioning baselines, Scan2cap [6] outperforms
S&T [37] because Scan2Cap uses 3D point clouds and 3D
bounding box features, which are more informative than 2D
features. The 3D point cloud provides information on the
distance between agents and their heights, which captures
the dependence of the agents’ location with the words in the
captions, such as left side or right side of the ego car. Our
proposed joint model leverages both 2D and 3D features
and outperforms the uni-modal baselines in several metrics.
Further, the joint training of importance classification and
captions prediction complements each other, thereby out-
performing the baselines trained with a single task (more
details in supplementary material).

To demonstrate the usefulness of Rank2Tell annotations,
we conduct an ablation study where we integrate action at-
tributes (Which) with object features for all baselines, and
the detailed results are shown in supplementary materials.

6. Conclusion
We present a novel multi-modal dataset (Rank2Tell) in

urban traffic scenarios, which enables joint importance level
prediction and reasoning in traffic scenes with frame-level
annotations. The dataset includes object-level questions on
important objects and language interpretations of the scene
from the ego driver’s perspective, integrating spatial, tem-
poral, and relational features. This offers new avenues for
improving visual scene comprehension and advancing au-
tonomous systems’ interpretability and trustworthiness.
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