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Abstract

We explore the task of Reasoning Across Images and

Video (RAIV), which requires models to reason on a pair

of visual inputs comprising various combinations of im-

ages and/or videos. Previous work in this area has been

limited to image pairs focusing primarily on the existence

and/or cardinality of objects. To address this, we leverage

existing datasets with rich annotations to generate seman-

tically meaningful queries about actions, objects, and their

relationships. We introduce new datasets that encompass

visually similar inputs, reasoning over images, across im-

ages and videos, or across videos. Recognizing the distinct

nature of RAIV compared to existing pre-training objec-

tives which work on single image-text pairs, we explore

task-specific pre-training, wherein a pre-trained model is

trained on an objective similar to downstream tasks with-

out utilizing fine-tuning datasets. Experiments with several

state-of-the-art pre-trained image-language models reveal

that task-specific pre-training significantly enhances per-

formance on downstream datasets, even in the absence of

additional pre-training data. We provide further ablative

studies to guide future work.

1. Introduction
Vision-Language tasks, i.e., tasks that require under-

standing and reasoning over vision and text, have gained
widespread popularity in recent years. This increase can
be primarily attributed to the user-friendly nature of these
tasks, which allow for natural language communication with
minimal guidance for the end-user. Popular downstream
Vision-Language tasks and benchmarks include Image Clas-
sification [8], Visual Question Answering (VQA) [1, 12],
Image-Text Retrieval and Captioning [5]. However, such
tasks focus on reasoning over a single image or video. In this
work, we aim to broaden the scope and investigate down-
stream tasks which additionally require reasoning over a set
of images and/or videos.

The common approach to train models on Vision-
Language tasks is to utilize Vision-and-Language Pre-

training (VLP), then fine-tune the model on the downstream
task. First, the model is trained on large amounts of, po-
tentially noisy, paired vision and language corpora obtained
directly from the web. The pre-trained model is then fine-
tuned over a range of unimodal or multi-modal downstream
tasks with a separate head added for each task. During the
pre-training stage, models are trained over synthetic tasks
generated from the paired text data with the most commonly
used tasks being masked language modeling, image-text
matching, and contrastive learning. These pre-training tasks
have several advantages, including the ability to be directly
applied to any paired image-text corpus, ease of training,
and empirical evidence of large improvements when fine-
tuned on downstream tasks such as VQA and image-text
retrieval [11,15,21]. However, the downstream tasks used as
benchmarks are often close to the original pre-training tasks
usually reasoning over a single image and text.

In this work, we investigate downstream tasks which
additionally require reasoning over a set of images and/or
videos. The closest work in this space is NLVR2 [42] where
given a pair of images and a corresponding statement, the
model is required to classify the statement as True or False.
NLVR2 has been used as a diagnostic dataset for a number
of vision-language pre-training methods [6, 11]. However,
NLVR2 suffers from three key deficiencies: First, the dataset
is strictly limited to a pair of images and doesn’t include
videos; Second, it is not possible to diagnose why the model
classified a statement as True or False as there is no reasoning
component; Third, the statements are overwhelmingly about
either the existence or the cardinality of objects.

We extend the NLVR2 task [42] to include both images
and video. For brevity, we denote this task as Reasoning
Across Images and Video (RAIV). We leverage annotations
from existing datasets with semantically rich annotations,
namely ImSitu [47] and VidSitu [36] which provide fine-
grained information about the activity, and the entities in-
volved in the activity. This allows us to create new datasets
that have statements about image-image (Im-Im), image-
video (Im-Vid), and video-video (Vid-Vid). These rich
datasets allow the creation of statements about actions, ob-
jects, and other semantic roles. Further, since our statement
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Two dolphins jumping out 
of water during sunsets

(a) VLP with MLM + ITM

Both Images show dolphins jumping out of water.
A: True

How many dolphins are 
present in the image?

(b) VQA

(c) Im-Im VVT task

Both image and the video show dolphins jumping out of water.
A: False
R: Only left image has dolphin jumping out of water. 

(d) Im-Vid VVT task

Both videos show dolphins jumping out of water.
A: False
R: Neither video shows dolphins jumping out of water. 

(e) Vid-Vid VVT task

Figure 1. Existing fine-tuning tasks such as (b) VQA operate on
single image which is similar to pre-training objective (a) such
as Masked-Language Modeling or Image-Text Matching. Here,
we expand the scope to include reasoning (c) across images or (d)
across image and a video. (e) across videos. Here “A” denotes the
answer (True/False), and “R” denotes reason.

queries are generated in an automatic fashion and we have
access to the ground-truth annotations, we also explore the
task of reasoning, i.e., why the model chose a specific answer
(true or false), using a multiple-choice answer framework.

Finally, for rich image-image comparison, we also utilize
Instruct-Pix2Pix [3] where the image pair consists of the
original image and an edited image obtained via a generative
model (Stable-Diffusion [32]). Figure 1 illustrates this with
an example.

Though the obtained queries are rich and diverse in se-
mantic content, the queries themselves follow a fixed tem-
plate structure that doesn’t capture human-like natural lan-
guage. To fix this issue, we utilize the progress in large-
language models [26, 44] and provide the reference captions
obtained from the source annotations to generate queries.

We note that RAIV involves more than one image and
video input which is different from the conventional vision-
language pre-training setup. To bridge this gap, we intro-
duce a second pre-training step which is task-specific before
fine-tuning on the target downstream dataset. For this task-
specific pre-training, we leverage the same dataset employed
in the initial pre-training, and don’t require access to the
downstream dataset. We exploit object detectors as well
as provided image and video captions to obtain semantic
roles to create synthetic pairs for RAIV task. Specifically,
we initialize the weights from a pre-trained vision-language
model. The model is then trained for the downstream tasks
but is confined to the original pre-training datasets.

Our experiments show that while pre-training is
quintessential to obtaining state-of-art results, task-specific
pre-training leads to significant gains (over 1-3%). The dif-
ferences are further exacerbated in image-video and video-
video tasks. We also find task-specific pre-training can
achieve competitive performance even with significantly
smaller amount of downstream dataset.

Our main contributions can be summarized as (i) intro-
ducing Reasoning Across Images and Video (RAIV) task
with multiple datasets ranging from Im-Im, Im-Vid and Vid-
Vid (ii) task-specific pre-training for RAIV and (iii) detailed
ablative study and benchmark with multiple baselines. Our
code and dataset are available 1

2. Related Works
Vision-Language Pre-Training (VLP) has effectively

become the standard for almost every vision-language task.
Earlier works replicated the success of language pre-training
in GPT [30], BERT [9] to the image-language domain using
pre-extracted object features such as LXMERT [43], ViL-
BERT [25], VL-BERT [41], UNITER [6]. Recent works ex-
tend the vision-transformer (ViT) architectures [10] to vision-
language transformers such as ViLT [15], ALBEF [21], ME-
TER [11] and learn directly from patches from raw images.
Such models can be initialized from strong vision backbones
trained via contrastive losses over a very large image-text
corpus such CLIP [29] and ALIGN [13].

1https://github.com/TheShadow29/raiv-task
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Verb Cut
Arg0 Person

Arg1 Bread

Arg2 Knife

Loc Chopping Board

Verb Eat
Arg0 Person

Arg1 Bread

Arg2 Hand

Loc Kitchen

Common Object <c-obj>: Bread

False Template:
<c-obj> is present only in the left image. 

True Templates:
In both images, <c-obj> is present.

Verb Eat
Arg0 Person

Arg1 Bread

Arg2 Hand

Loc Restaurant

Image-1 Image-2 Image-3

(1 & 2) 
In both images, bread is present. (True)
In only left image bread is present. (False)

(2 & 3)
In both images, a person is eating bread. 
(True)
In both images, a person is eating in a 
restaurant. (False) 

Figure 2. Sentence generation for RAIV tasks. Given images from ImSitu (same process applies for videos from VidSitu) along with their
SRLs, we find the common object (in this case bread) and use them along with True/False templates to generate sentences.

Here, our aim is not to design a new architecture, but
instead to validate the generalization of existing pre-training
losses to downstream tasks which differ considerably from
the pre-training tasks in their input format. For our experi-
ments we use METER [11] as our base model, but also show
comparisons with ALBEF [21], VinVL [49], FROZEN [2].

Fine-Tuning for most common image-language tasks
such as VQA, image-text retrieval, and image-captioning
involves adding a task-specific head and training it over the
target dataset. As noted before, downstream tasks often vary
based on input type such as in NLVR2 which requires two
images instead of one. To accommodate this, previous work
[6, 7, 11, 43] create new image token type embedding. Such
heuristic has largely been successful in improving results
over non-pre-trained models. Different from previous work
which performs additional training on the target domain, our
focus is to perform training on original pre-training datasets
with additional synthetic tasks. Here, we re-use the same
idea of new image-type embedding but don’t differentiate
between images and videos, essentially treating images as
single-frame videos.

Visual Semantic Role Labeling (SRLs) for Reasoning
has been previously explored under human-object interac-
tion [4], situation recognition [14, 28, 36, 47]. In this work,
we utilize SRL annotations from existing datasets, partic-
ularly ImSitu [47] and VidSitu [36] to semi-automatically
create new downstream datasets to include reasoning over set
of images and videos. Using SRL annotations for construct-
ing datasets has also been used for video grounding [34]
and video question answering [35]. We further use existing
SRL system [39] to obtain SRLs in pre-training datasets and
utilize them in creating synthetic tasks for pre-training.

3. Method
We first describe Reasoning Across Images and Video

(RAIV) tasks in detail (Section 3.1) followed by our model
framework (Section 3.2).

3.1. Reasoning Across Images and Video (RAIV)
Tasks

Given a pair of visual inputs such as pair of images, an
image and a video, or a pair of videos along with a corre-
sponding statement about the pair, the model has to correctly
classify the statement as true or false. We call this task Rea-
soning Across Images and Video (RAIV). This extends the
well-known NLVR2 task [42] to include both images and
videos instead of just images.

Though conceptually simple, creating new datasets re-
quires considerable human resources and can still fall vic-
tim to dataset biases. For instance, the cost of obtaining a
unique sentence in NLVR2 was $0.65. Further, extending
the NLVR2 annotation approach for videos is prohibitively
expensive due to a significant increase in annotation time.
To circumvent this issue, we instead choose to create new
datasets semi-automatically from existing datasets with se-
mantically rich annotations. In creating datasets for RAIV,
we have three main considerations: (i) the statement queries
should include rich object and activity semantic informa-
tion (ii) the visual inputs should be similar for finding fine-
grained differences (iii) the dataset should support a reason-
ing component to identify why a statement is classified as
true or false. Unfortunately, no single dataset satisfies the
above three criteria. Thus, we create individual datasets to
test these components.
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People are hoisting a flag in 
both I1 and I2

Image / Video and Text Pair Patches Temporal 
Position

ID 
Position

0

0

0

0

0

0

0

0

1

3

1

1

1

1

Vision Transform
er

Vision Transform
er

Text Transform
er

Text Transform
er

Cross Attention Layers
Cross Attention Layers

METER

CLS
CLS

Concat BCE
Loss

Figure 3. A schematic of framework for RAIV task. Input is a pair of images, videos or an image and a video (shown here) with a text. The
visual inputs (denoted by I1 and I2) are first patchified then appended with temporal position embedding denoting the frame number. We
note that images are considered to be a single frame video. Then, we add the ID embedding denoting whether it is the first or the second
visual input. This is input into two METER model (shared weights) which takes both vision patches and text as input. The appended CLS
from both inputs are concatenated and a Binary Cross Entropy Loss is used given the ground-truth.

Rich Visual Semantics. To obtain rich semantic data,
we utilize semantic role labeling (SRL) which answers the
high-level question of “who did what to whom” [40]. To
obtain SRLs we can either apply an existing semantic role
labeling system [39] or utilize annotations in existing Visual
Semantic Role datasets [36, 47]. For the purpose of creating
rich downstream datasets, we opt for the latter with human-
annotated SRLs. We also utilize an object detector to obtain
the unique objects within a given image or video.

Recall that our task is to obtain pair of images or videos
and a corresponding statement to be classified as true or
false. To this end, we design a template-based statement
generation method with the templates closely following ex-
emplar statements in NLVR2 dataset. While template-based
statements are significantly less rich and diverse compared
to human-annotated systems, there are two key advantages.

First, it is inexpensive and directly allows us to create bal-
anced training, validation, and test sets. Second, we are able
to generate reasoning for the classification of the statement.
Since the reasoning for classifying a statement is often a
tautology, we instead opt for reasoning classification only
for the False statements.

The chosen templates test for existence, similarity, or
differences about the “object”, “action” and “action+entity”
or other semantic roles between the two visual inputs. The
former is obtained from an object detector and the latter
from SRLs. To generate a statement, we first condition
whether the statement would be “True” or “False” and choose
a template, for instance “obj-X is present in both images”.
Based on the condition and the template we then sample two
images with at least one common object and convert it into
a statement. In practice, we remove very common objects
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such as “sky”, and “person” expected to appear in a large
number of images. Figure 2 illustrates the use of templates
with an example.

Similar Visual Inputs. Instances of visual input pairs
based on semantic inputs often differ significantly. For in-
stance, two images involving “riding a horse” may have
different point-of-view, different numbers of horses, vary-
ing locations, etc. Unfortunately, obtaining natural images
which are visually similar is non-trivial. To circumvent this
issue, we look into image generation models, in particular,
InstructPix2Pix [3] (IP2P) which builds on Stable Diffu-
sion [32] to allow image edits. We use a subset of the dataset
from IP2P for RAIV.

Reasoning Task. Since we have the ground-truth annota-
tions for both visual inputs, we can further provide a reason.
For instance, if the original statement was “False”, the reason
could be “obj-X is present in both image-1 but not in image-
2”. Even though the reasoning can be posed as a generation
task, evaluation metrics for language generation can often
be unreliable. To keep the evaluation straightforward, we
instead opt for a 3-way multiple-choice over pre-generated
reasons. The model is provided the original query along
with each multiple-choice option separately and the highest-
scoring option is chosen. We evaluate the Reasoning Task
separately from the RAIV task.

Natural Language Queries. A key issue with using
template-based queries is the limited types of variation of
the queries. However, human annotation would be very ex-
pensive. To address this problem, we utilize the advances in
Large Language Models such as LLaMa [44], GPT4 [26].
In particular, we provide captions and/or SRLs for a particu-
lar image/video and require the LLM to create a True/False
question. Note that the LLM doesn’t have access to the
image/video but only the annotations. We utilize Vicuna-
13B [50] model to obtain these queries. We discuss dataset
creation in more detail in Section 4.1, and provide examples
of generated queries in supplementary.

3.2. Framework
Model Design. For our experiments, we utilize a patch-

based vision-language transformer trained on image-text
corpora based on METER [11]. To accommodate RAIV
tasks, we use a late-fusion model where given an image-
image-text as input, the model processes image1-text and
image2-text separately concatenates the output, and passes it
to a binary classification head which is trained using binary
cross-entropy (BCE) loss. An overview of our model design
is provided in Figure 3.

The images/videos are provided with ID number embed-
ding to denote if it is the first or the second image/video.
Since RAIV tasks also include videos, we extend the ME-
TER framework to process multiple frames. Specifically,
we sample k frames (k=4 in our experiments) from the

video, add temporal position embedding ,and concatenate
the patches from each of these frames and pass it to the
METER module. We don’t differentiate between image and
video type; instead, consider images as single-frame videos.

For Reasoning Task, the original input text is appended
with one of the possible choices at a time and fed to the
network. We re-use the same model framework and train
with BCE loss. During inference, the model returns the
choice with highest score.

Task-specific Pre-Training. As noted earlier, the pre-
training objectives such as masked-language modeling,
image-text matching, and contrastive learning primarily con-
sider single visual input which is characteristically different
from RAIV task requiring models to consider two inputs. To
this end, we propose a second pre-training step where the
objective is the same as that of the downstream task. We de-
note this as task-specific pre-training. This is different from
fine-tuning which requires the downstream dataset; here we
only require the objective which is independent of the down-
stream dataset. For instance, if a model is pre-trained on
COCO-Captions [22] and the target task is VQA, the second
pre-training step would involve generating QA-pairs from
the available image-text pairs in COCO-Captions.

For RAIV task, since we don’t have access to detailed
SRL information in the pre-training web curated dataset,
we utilize a state-of-art SRL system [39] on the paired text
samples to obtain visual semantic roles and use object detec-
tors to obtain the entities. Given this information, designing
objectives is straightforward: we use similar templates as
that for RAIV datasets but mine these during the training
step itself. Specifically, for a particular image/video instance,
we retrieve another image/video from our set with at least
one shared object and then construct a template query from
the two annotations. Further, we can perform this retrieval
process dynamically at train time.

4. Experiments
We discuss the dataset creation details (Section 4.1) fol-

lowed by key implementation details (Section 4.2) and then
results and takeaways (Section 4.3).

4.1. Datasets
We design datasets for RAIV to have (i) rich seman-

tic representation using existing vision-language datasets
which contain SRL annotations, namely, ImSitu [47] and
VidSitu [36] (ii) visually similar inputs using generative mod-
els like Stable Diffusion [3, 32] (iii) provide a reason for the
classification. (iv) allow natural queries by passing annota-
tions to an LLM. A summary of the dataset statistics can be
found in Table 1.

For rich semantic representation, we create the following
variations: Image-Image (Im-Im), Image-Video (Im-Vid),
and Video-Video (Vid-Vid) with images taken from ImSitu
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U-Im U-S I-Tr I-Val I-Test I-Tot

Im-Im (T) 63k 54k 94.5k 13.5k 27k 135k
Im-Vid (T) 169k 65k 109.9k 15.7k 31.4k 157k
Vid-Vid (T) 106k 62k 104.3k 14.9k 29.8k 149k

IP2P (G) 75k 150k 105k 15k 30k 150k
Im-Im (G) 63k 75k 105k 15k 30k 150k
Im-Vid (G) 169k 75k 105k 15k 30k 150k
Vid-Vid (G) 106k 75k 105k 15k 30k 150k

Table 1. Dataset Statistics for RAIV datasets. U-Im, and U-S
denote unique numbers of images and sentences, respectively. I-
{Tr, Val, Test, Tot} denotes the number of instances. Note that in
template-based queries some sentences are duplicates.

and videos taken from VidSitu. We note that while videos
in VidSitu are 10 seconds long, for our experiments we
only consider 2 second long clips which correspond to a
particular event in the video. We utilize the same splits as
in the original datasets to avoid any training dataset leakage
into validation splits. For each of the datasets, we create
approximately the same number of samples as in NLVR2
around 120k annotations with an even distribution of the
verbs and objects but we note that our process allows creating
more examples without any additional human effort. We
further take care to not introduce any spurious dataset bias.
Similar to NLVR2, we create balanced validation and test
sets using the same unique statement where it is true for a
particular pair and false for another pair in the given dataset
to ensure no language-only bias in the dataset. Finally, we
split the dataset into Train, Val, and Test in a 7:1:2 ratio
making sure no leakage of visual inputs. We use the suffix
“T” to denote the statement queries based on templates.

To obtain natural language queries for the above dataset,
we use LLM in particular Vicuna-13B. We input the semantic
roles for the two images and require the LLM to provide
a true statement. We use the suffix “G” to denote such
statements which are obtained using LLMs.

We use the template-based dataset (suffix “T”) for the
reasoning task. Since the queries themselves were based on
templates, and we have access to the ground-truth informa-
tion, we create 3-way multiple choice questions and require
the model to choose a correct answer. We opt for multiple-
choice due to ease of evaluation similar to previous work in
common-sense reasoning [19, 48]. We note that only “False”
statements are used in the Reasoning Task.

For visually similar inputs, we use the dataset provided
by InstructPix2Pix (denoted by IP2P) which contains pair of
images, both generated via Stable Diffusion but with some
key edits to the text. The captions for the original images,
as well as the edit caption, are provided. To obtain a true
statement, we input both the original and the edit caption to
a LLM (Vicuna-13b) to obtain the output caption. To obtain
a false statement, we input the original caption but change

the edit caption. We provide more details on dataset creation,
statistics and visualization in Appendix A.1.

Pre-Training Datasets. We closely follow previous work
[11,21]. In particular, we use the METER pre-trained model
which is pre-trained on CC3M [38], SBU [27], COCO [22]
and Visual Genome [17].

Task-specific pre-training We leverage COCO-Captions
for images which includes 5 captions per image and VATEX-
en [46] for videos which is a subset of Kinetics-400 videos
consisting of 25k videos with 10 captions each. To obtain
action-object information we utilize SRL labeling system
[39] on the provided paired caption for both COCO-Captions
and VATEX-en.

4.2. Baseline and Implementation Details

Baselines. As noted in Section 3.2, we build on the ME-
TER model. Specifically, we use the pre-trained checkpoint
based on CLIP-VITB/16 [29] with Roberta [23] (named
METER-CLIP16-RoBERTa-288) which is trained on multi-
ple image datasets namely, CC3M, SBU, COCO, VG. For
convenience, we call this collection of datasets ImgAll. Apart
from fine-tuning the pre-trained checkpoint, we also consider
a random baseline that simply performs a majority voting, a
no pre-training baseline where the model is directly trained
on the downstream datasets.

Implementation Details Our model and code are im-
plemented in Pytorch. For all fine-tuning experiments, we
follow identical settings as METER. For videos, we sample
K=4 frames per video where each video is 2 seconds long
and sampled at 30 frames per second and use sinusoidal
position embeddings [45].

In the task-specific pre-training step, we primarily use
the COCO dataset instead of the entire ImgAll dataset in
order to limit computation time, similar to the fine-tuning
process on the downstream task. We also note that instead
of using the object annotations available in COCO, we use
the VinVL object detector outputs instead as it detects a
larger number of categories outside of COCO. For videos,
we use a subset of Kinetics videos from VATEX-en. We note
that the videos in Kinetics are 10s long compared to 2s in
the downstream dataset. To circumvent this issue, we first
obtain an intersection of the videos from AVA-Kinetics [20]
which gives us 5.7k videos where the keyframe of the person
performing the action is provided. We particularly sample 2s
clips around the keyframe. In general, we randomly sample
4 frames from the entire video.

We train for 10 additional epochs but reduce batch size
to 256 with AdamW optimizer [24] with linear warm-up
for initial 10% to 1e� 4 of the training followed by linear
decay. We only utilize the last checkpoint and then perform
fine-tuning on the target dataset. We provide detailed hyper-
parameter settings in supplementary (Appendix B).
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Pre-Training TSP Data NLVR2 Im-Im (T) Im-Vid (T) Vid-Vid (T) IP2P Im-Im (G) Im-Vid (G) Vid-Vid (G)

Majority voting 50 50 50 50 50 50 50 50

7 7 54.52 57.23 52.53 51.84 51.76 52.66 52.75 51.08
ImgAll 7 82.05 70.61 65.64 59.34 68.72 68.16 67.80 64.63
ImgAll COCO 83.43 74.82 66.48 59.4 70.15 71.06 68.24 65.23
ImgAll COCO + VTX 83.57 74.12 68.3 61.82 70.04 71.25 70.77 66.83

Table 2. Accuracy@1 of fine-tuned pre-trained models on NLVR2 and RAIV datasets. All models are obtained from METER. Pre-Training
refers to data used for pre-training. TSP Data refers to data used for task-specific pre-training which is obtained from COCO and VATEX.
(T) and (G) refers to whether the statements are obtained via template or generated via Language Model. NLVR2 refers to NLVR2-dev set.

Pre-Training TSP Data Im-Im (T) Im-Vid (T) Vid-Vid (T)

Majority Voting 33.33 33.33 33.33

7 7 34.29 34.37 34.37
ImgAll 7 56.32 49.86 44.73
ImgAll COCO 62.17 52.9 46.62
ImgAll COCO + VTX 64.11 56.32 51.85

Table 3. Accuracy@1 of fine-tuned pre-trained models on the
Reasoning Task of RAIV datasets.

4.3. Results

In Table 2, we report results on the True/False classifica-
tion task of various RAIV datasets. In Table 3, we report
the results for the Reasoning task (Multiple Choice Ques-
tion) for the same baselines. We note that the reasoning
task is treated separately from the classification task. “Ac-
curacy@1” is the metric used everywhere. We make the
following observations.

Pre-Training is quintessential In both Table 2 and Table
3 we note that without pre-training the model performs very
similar to a simple majority voting. The main reason is the
extremely sparse signal in the RAIV task which requires two
visual inputs but provides only a singular true/false as output.
Thus, there is not enough training signal for the model to
learn to perform the task.

Importance of Task-Specific Pre-Training Across all
RAIV datasets, we find that Task-Specific Pre-Training is
helpful but the relative improvements depend on the specific
dataset. On the image-image datasets, the improvements
vary from ⇠ 1.5 points in NLVR2, IP2P, and Im-Im (G) to ⇠
4 points in Im-Im (T). However, for image-video and video-
video datasets, simply using images for task-specific pre-
training is not effective, leading to only small improvements
⇠ 0.5 points. But when videos are added to the task-specific
pre-training routine, the improvements are significant in the
range of ⇠ 2� 3 points.

Image-based RAIV has Lower performance than
NLVR2. In Table 2 we note that models perform worse on
Im-Im (T), Im-Im (G) as well as IP2P compared to NLVR2.
For the first two, we attribute this discrepancy to the fact that

Im-Im datasets explicitly consider actions that lead to the
queries having richer semantics. For IP2P, the visual similar-
ities between the two images are very high since they have
very minor edits. Another possible reason is that IP2P is
very diverse in terms of objects which may not be sufficiently
covered in the pre-training datasets.

Template Queries vs Generative Queries In Table 2 we
find that compared to generative queries, the template queries
are easier for Im-Im but harder for Im-Vid and Vid-Vid. This
is likely because, for Im-Im (T) case, the templates used in
task-specific pre-training resemble those in the downstream
dataset. Conversely, for Im-Im (G) dataset, the model needs
to learn from natural language generation and not templates.
On the other hand, in the Im-Vid and Vid-Vid datasets, the
generated queries often include additional information such
as objects present in the video which could be controlled in
the template-based queries.

4.4. Ablative Study
We perform multiple ablative studies such as the effective-

ness of the model architecture, framework and task-specific
pre-training against downstream data, using random vs con-
ditional sampling.

Task-specific Pre-training with other image pre-
trained baselines In Table 4 we introduce additional image-
pre-trained vision-language models to verify the effective-
ness of task-specific pre-training. We compare to METER,
ALBEF [21] and VinVL [49]. For ALBEF, we use ALBEF-
4M and for VinVL we use Oscar-B w/VinVL. ALBEF is
similar to METER in that it uses a patch-based vision trans-
former [10] but additionally includes knowledge distilla-
tion during pre-training but notably the vision module is
initialized from ViT-B/16 compared to CLIP-ViT-B/16 for
METER. VinVL on the other hand uses an object detector
(Faster-RCNN [31]) to extract relevant object features. In all
cases, we find task-specific pre-training is helpful and pro-
vides a consistent improvement in performance (⇠ 2� 3%).

Across architectures, METER outperforms ALBEF as
its vision transformer is initialized from CLIP. METER and
VinVL have similar performance as object features from the
strong object detector plays an important role for the latter.
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Model NLVR2 Im-Im (T) Im-Vid (T) Vid-Vid (T) IP2P Im-Im (G) Im-Vid (G) Vid-Vid (G)

METER 82.05 70.61 65.6 59.34 68.72 68.16 67.8 64.6
+TSP 83.57 74.12 68.3 61.82 70.15 71.25 70.77 66.83

ALBEF 80.24 67.41 62.35 58.14 67.15 66.5 65.84 61.41
+TSP 81.07 70.76 66.13 60.77 70.13 68.4 68.35 64.77

VinVL 82.05 69.14 64.7 59.83 67.29 68.42 67.72 65.2
+ TSP 84.56 74.81 69.84 61.96 71.8 71.45 69.76 67.45

Table 4. Accuracy@1 across RAIV datasets using image pre-trained baselines with and without Task-Specific Pre-Training (TSP) which
uses data from COCO + VTX.

% IP2P ! 1 % 10 % 50 % 100 %

Early 53.11 58.91 63.88 67.48
+ TSP 63.16 66.17 68.45 71.88

Mid 57.13 61.17 65.95 69.29
+ TSP 64.2 67.47 68.15 71.21

Late 56.28 60.91 64.51 68.72
+ TSP 59.61 63.71 66.18 70.15

Table 5. Accuracy@1 for different fusions (early, mid, late) with
varying amounts of data from IP2P.

Task Dataset Rand Cond

RAIV
Im-Im (T) 72.67 74.12
Im-Vid (T) 67.1 68.3
Vid-Vid (T) 60.64 61.82

Reasoning
Im-Im (T) 59.55 64.11
Im-Vid (T) 52.15 56.32
Vid-Vid (T) 48.87 51.85

Table 6. Accuracy@1 for Random vs Conditional Sampling for
RAIV and Reasoning tasks. By default, conditional sampling is
used for task-specific pre-training.

Effect of Fusion Strategies In Table 5 we compare dif-
ferent strategies for fusing information for IP2P dataset. As
noted earlier, by default we use Late-Fusion where infor-
mation from both visual inputs and text is processed by the
model and then the [CLS] feature from both inputs is used
for classification. In addition, we also compare Mid-Fusion
where instead of using [CLS] feature directly, we add two
transformer encoder layers to the output before classifica-
tion. For Early-Fusion, we directly input the two images
and the text. We find that when using 100% of the data,
early fusion performs slightly worse than both mid and late
fusion but performs slightly better when using task-specific
pre-training. We attribute this to early fusion being more
data-hungry. We also find Mid-Fusion slightly outperforms

Late-Fusion (71.21 compared to 70.15) likely due to addi-
tional transformer layers.

Using Limited Fine-Tuning Data In Table 5, we also
compare effect of using limited data for fine-tuning. We note
that obtaining high-quality data tailored for downstream
tasks is often expensive. Thus, task-specific pre-training
which leverages existing pre-training data with different ob-
jectives is an attractive alternative. We find this to be the
case, especially for Mid-Fusion where using task-specific
pre-training and fine-tuning on just 10% of IP2P data leads
to similar performance as directly fine-tuning on the entire
downstream dataset.

Sampling strategy in Task-specific Pre-training During
the task-specific pre-training stage, since creating the visual
pairs is performed on the go and different sampling strategies
can be utilized. For a given image, we could either sample
a random image (Rand) or we could condition it on some
objective such as having at least one common object (Cond).
Comparing the two for both RAIV and the Reasoning task,
we find the conditional sampling to be useful likely due to
training on harder examples.

Visualization We provide qualitative analysis of our
model outputs in Appendix C.

5. Conclusion
In this work, we explore Reasoning Across Images and

Video (RAIV) task which involves classifying a statement
about a pair of visual inputs (images, videos or a mixed
combination) as true or false. We introduce multiple datasets
to study RAIV with semantically rich queries, and visually
similar inputs as well as allow reasoning for the provided
answers. We investigate the potential for task-specific pre-
training which involves additional pre-training on objectives
similar to the downstream task but confined to the original
pre-training dataset. Our experiments validate the effective-
ness of including task-specific pre-training for improved
downstream performance.
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