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Figure 1. We introduce a method for predicting the radius parameter of the explicit reconstruction technique BPA. By utilizing contextual
bandits, we predict the optimal radius for the Ball-Pivoting Algorithm. This innovative approach allows us to attain a higher-quality mesh
in comparison to other state-of-the-art methods (BPA [2], α-shapes [11] and PSR [14]). Details best viewed zoomed in.

Abstract

The Ball-Pivoting Algorithm (BPA) is a notable tech-
nique for 3D surface reconstruction from point clouds,
heavily reliant on the ball radius. In practical application,
determining the optimal radius for BPA often necessitates
iterative experimentation to achieve better reconstruction
quality. BPA entails geometric computations like iterative
pivoting, inherently lacking differentiability. In this paper,
we tackle the dual challenges of radius selection and non-
differentiability in BPA. Inspired by contextual bandits, we
propose an innovative approach that learns the optimal ra-
dius based on local geometric features within point clouds.
We validate our method on the ModelNet10 and ShapeNet
datasets, showcasing superior surface reconstruction com-
pared to manual tuning and other classic methods both for
low and high point cloud densities. Our code is available
at https://github.com/houda-pixel/Auto-
BPA.

1. Introduction

Surface reconstruction is a fundamental task in computer
graphics and computer vision. In recent years, the inte-
gration of learning-based methods has opened up new av-
enues for improving classical surface reconstruction meth-
ods, such as Poisson Surface Reconstruction [14], Dual
Contouring [13], and Marching Cubes [17]. While deep
learning has proven to be a transformative tool in enhanc-
ing these classical methods, it is intriguing to note that cer-
tain methods, such as the Ball-Pivoting Algorithm (BPA)
[2], have yet to fully benefit from the potential offered by
learning-driven approaches. This is mainly due to the non-
differentiability of the BPA which presents a difficulty in
effectively incorporating it into a neural network. In addi-
tion, BPA is a parameterized algorithm, its performance is
significantly influenced by the value assigned to the radius
parameter. Opting for a smaller radius can lead to more sur-
face holes, while a larger radius might result in a loss of fine
details. Previous works set this radius empirically either by
manual intervention of the user [2] or a mathematical for-
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mula that provides an approximation of the radius based on
other parameters adjusted empirically [10].
To address these limitations of the BPA, we propose a novel
approach that leverages the contextual bandit problem to
compute the radius parameter. The idea consists of train-
ing a neural network to predict the optimal radius from the
given point clouds that can lead to better reconstruction
quality. The challenge here is that the value of the radius
is not known beforehand, the only available information is
the ground truth of the reconstructed objects, which will al-
low us to guide the training with the reconstruction loss, i.e.,
the difference between the reconstructed object and its cor-
responding ground truth. However, this is faced because of
the non-differentiability of the BPA. To overcome this lim-
itation, we reformulated the problem in a semi-supervised
manner where each selected radius for a given point cloud
is considered an action. This action is determined by a rein-
forcement learning agent and depends on the geometry and
density of the input object (observation). The agent updates
its policy from the global reward defined by the reconstruc-
tion loss.
The contextual bandit framework, integral to our proposed
approach, aligns with the essence of adaptive decision-
making. Contextual bandit problems involve scenarios
where an agent must make a sequence of decisions, each
associated with an action, and is guided by contextual in-
formation that provides relevant context for each decision
instance. In our context, the contextual information per-
tains to the features derived from our innovative integra-
tion of Fast Point Feature Histograms (FPFH) [22] and K-
means clustering [12]. These contextual attributes are uti-
lized to optimize the computation of the radius parameter.
By framing radius computation as a contextual bandit prob-
lem, we unlock the abilities of reinforcement learning, en-
abling adaptive and contextually informed radius decisions.
Thus, our aim is to elevate the capabilities of the BPA and
align it with the advancements achieved by other classical
methods through the integration of learning-based methods.
We highlight the contributions of this paper as follows:

• We propose Auto-BPA: an improved Ball-Pivoting
Algorithm. Unlike classical BPA, which sets the
ball radius parameter empirically, Auto-BPA utilizes a
trained RL model to automatically predict the optimal
ball radius. This approach harnesses the power of in-
telligent decision-making to dynamically adapt radius
selection based on locally extracted features from the
point cloud.

• We introduce a new approach for extracting relevant
features from 3D point clouds through the combina-
tion of Fast Point Feature Histograms (FPFH) and K-
means clustering. This fusion enables the extraction
of compact and informative feature representations, ef-

fectively capturing local geometric features present in
the point cloud data.

• Through extensive experimentation, we prove the su-
periority of our proposed approach over other solutions
for 3D surface reconstruction from point clouds. This
superiority is also achieved with objects that are de-
picted with a restricted set of point clouds.

The remainder of this paper is organized as follows. We
review the related work in Section 2. Our method is then
described in Section 3. Experimental results are reported in
Section 4. In Section 5, we discuss the limitations of our
approach. We finally summarize our work in Section 6.

2. Related Work
Surface reconstruction from 3D point clouds is crucial in

computer vision and computer graphics by creating water-
tight and manifold surfaces through the triangulation of pro-
vided point sets. In this section, we review methods most
closely related to ours that we divided into three groups:
Firstly, we review the BPA and its variant, then, we discuss
the classical solutions adopted for surface reconstruction.
We finish the discussion with the learning-based solutions.

BPA related methods.
The Ball-Pivoting Algorithm (BPA) [2] is a surface re-
construction method that generates a triangular mesh from
point clouds. The operational framework of the algorithm
involves selecting three points to serve as the vertices of a
triangle if a sphere with a user-defined radius can contact
these points without encompassing any additional points.
The BPA is sensitive to the selected ball radius. Opting for a
smaller radius can lead to more surface holes, while a larger
radius might result in a loss of fine details. To mitigate this
radius dependence, Bernardini et al. [2] proposed the use
of multiple radii. The user specifies a sequence of radii as
input parameters, initiating the process with the smallest ra-
dius. The set of boundary edges established at this initial
radius serves as the basis for the rotation of the ball with
progressively larger radii. However, the effectiveness of the
algorithm is still reliant on manual intervention for tuning
the radii values. In this context, Julie Digne [10] introduced
enhancements to the algorithm, including a parallel variant
that utilizes the octree data structure for faster triangulation
of oriented point clouds. Julie Digne [10] also presented a
formula for approximating the radius, however, this formula
involves empiric coefficients. Different from these previous
solutions, we propose an approach that automatically sets
the radius parameters given the extracted features from the
point clouds.

Classical methods for surface reconstruction.
Methods from computational geometry, e.g., Delaunay tri-
angulation [9], α-shapes [11], and ball pivoting [2] can di-
rectly output a mesh from the input point cloud. Never-
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theless, explicit representations usually require meticulous
parameter selection and are dependent on point sets that are
uniformly and densely sampled. The Poisson Surface Re-
construction (PSR) [14] is a traditional method in implicit
surface functions, however, it requires the computation of
the oriented normals of the input point clouds for good per-
formance. Marching Cubes [17] and Dual Contouring [13]
use signed distance fields to extract the triangle meshes of
isosurfaces.

Learning-based methods for surface reconstruction.
Inspired by standard methods such as Marching Cubes
(MC) [17], Dual Contouring (DC) [13], and Delaunay trian-
gulations [9], recent learning-based approaches have been
developed to leverage the properties of classical computa-
tional geometry and 3D learning. In [21], the author capital-
izes on the properties of 2D Delaunay triangulations. This
method involves constructing a mesh from manifold surface
elements using local logmaps learned through networks.
Neural Marching Cubes (NMC) [6] represents an advance-
ment in deep learning applied to the classical MC technique.
In contrast to employing coarse tessellation templates, the
authors introduce innovative tessellation templates. These
templates consider contextual information from neighbor-
ing cubes, achieved by learning vertex positions and mesh
topologies from training meshes. Within the same frame-
work of data-driven mesh reconstruction, Neural Dual Con-
touring (NDC) [5] stands out as an enhanced version of dual
contouring [13]. This approach relies on a neural network
for predicting vertex locations and edge crossings, avoiding
the need for hand-crafted functions. While most learning
approaches are based on 3D deep learning, there remains a
scarcity of works that center around 3D reconstruction uti-
lizing reinforcement learning. In [16], deep reinforcement
learning is employed to acquire 3D modeling policies that
mimic human modeling techniques. The approach involves
a two-step neural framework, where the Prim-Agent ini-
tially estimates the shape using primitives, then, the Mesh-
Agent refines the mesh to create more detailed geometry.
In alignment with leveraging state-of-the-art explicit-based
techniques and incorporating reinforcement learning frame-
works, our research introduces an innovative approach that
employs a continuous contextual bandit problem (single-
step reinforcement learning) to determine the radius of the
Ball-Pivoting Algorithm, a critical parameter within this
classical technique.

3. Proposed Method

In this section, we describe our approach, covering the
motivations behind the proposed methodology and its key
stages. We start with the background related to our ap-
proach, followed by a description of the proposed solution.

3.1. Background

Fast Point Feature Histograms. Fast Point Feature
Histograms (FPFH) [22] represent an advanced iteration of
Point Feature Histograms (PFH) [23], primarily in terms
of computational complexity. FPFH enhances the compu-
tational efficiency from O(k2) to O(k), with k represent-
ing the number of neighbors of point p, while retaining the
favorable attributes of the PFH approach. FPFH charac-
teristics involve multidimensional features that capture the
local geometric properties surrounding a point p within a
given point set. These features are derived based on the
geometric relationships between the point and its nearest
k-neighbors. The computation of a Fast Point Feature His-
togram at a specific point p necessitates the availability of
3D coordinates (x,y,z) and estimated surface normals (nx,
ny , nz). For every query point pq , a set of tuples denoted
as α , ϕ, and θ, describing the relationships between pq and
its neighbors, is computed in alignment with the descriptors
for Point Feature Histograms (PFH) [23]. This resulting set
of tuples is referred to as the Simplified Point Feature His-
togram (SPFH). This process is then repeated for all points
within the dataset, followed by a re-evaluation of the SPFH
values of pq, achieved by leveraging the SPFH values of
its k-neighbors. This step contributes to the creation of the
FPFH for pq as mentioned in Equation 1. The entire proce-
dure is iterated for all points in the dataset.

FPFH(pq) = SPFH(pq) +
1

k

k∑
i=1

1

ωi
.SPFH(pi) (1)

Contextual bandits with continuous actions. The
learning policy is based on the CATS algorithm for con-
tinuous contextual bandits [18]: an innovative approach in-
volving a smoothing method for action selection and a tree-
based policy with a hierarchical structure for mapping ac-
tions to contexts. The algorithm’s process involves two pro-
cedures:

1. Tree training: where cost-sensitive examples are pro-
cessed to generate a set of tree policies. It involves
training (binary) classifiers in a bottom-up fashion,
routing contexts to actions with the smallest expected
cost. Each tree policy is a binary tree with a depth
D. This tree comprises a total of K leaves each corre-
sponding to an action, where K is the discretization
factor defined as: K = 2D. Each node V within
the tree contains a classifier denoted as fV and we
call the set of all binary classifiers used in a tree of
depth D = log2(K) as FK. Eventually, we can build
binary decision trees of infinite depth, which leads
to an infinite set of policy classes noted F∞. Us-
ing such structured policy classes for solving cost-
sensitive multiclass classification (CSMC) problems
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Figure 2. Pipeline of our Auto-BPA approach. It includes three stages. First, the codebook vectors are generated from an input point cloud
using FPFH combined with K-means clustering. Then, the obtained features represent the input context vector of the contextual bandit
algorithm which is responsible for producing the radius. In the final step, the BPA is executed with the produced radius and reconstructs
the mesh. In the training phase, the policy of the contextual bandit algorithm is updated using the reconstruction loss.

can provide computational efficiency, with a running
time of O(log(K)) per example.

2. Policy selection: where actions are chosen by travers-
ing the generated policies and using supervised learn-
ers as routing functions. The ϵ-greedy strategy bal-
ances exploration and exploitation. With probability
ϵ, a random action is chosen for exploration, and with
probability 1 - ϵ, the action associated with the high-
est predicted reward is chosen for exploitation. The
smoothing approach involves considering a range of
actions rather than a single action. The width of this
action range is determined by a parameter called the
bandwidth h. The discretization strategy can still com-
pete with policies that are not restricted to AK, as
long as the value of h is not too large, thus provid-
ing a computationally efficient approach to tackle con-
tinuous problems. Furthermore, we can prove that
the error induced by the discretization can be con-
trolled with the h parameter since the loss function
is 1/h-Lipschtiz: The concept of Lipschitz continuity
refers to how much a function can change as its input
changes. A function that is 1/h-Lipschitz means that it

can change by at most 1/h units for every unit change
in its input.

These components collectively guide the algorithm’s
decision-making process within the contextual bandit prob-
lem with continuous actions.

3.2. Methodology

Our proposed approach combines established techniques
(FPFH [22] and K-means [12]) with innovative strategies
(such as the contextual bandit algorithm) to optimize the
prediction of the radius parameter of the BPA. The process
is outlined through the subsequent stages:

i Codebook generation: In this step, we use the Fast
Point Feature Histograms (FPFH) [22] method to com-
pute a 33-dimensional feature vector for each point
in the point cloud dataset. The FPFH [22] method
is effective in capturing fine details based on neigh-
borhood, which makes it a powerful descriptor for our
use case. After computing the feature vectors, we ap-
ply the K-means [12] clustering algorithm to generate
cluster centers in the feature space. These cluster cen-
ters form the foundation for generating feature vectors
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for each point cloud.

ii Context generation: Within this step, we select 100
keypoints uniformly distributed for each point cloud in
the dataset. For each sampled point, we find the near-
est cluster center (using Euclidean distance) and assign
the cluster index to the sampled point feature vector.
The combined sequence of cluster indices results in the
generation of the feature vector, which is then normal-
ized. This normalized feature vector serves as the input
(context) for the subsequent phase.

iii Policy learning: In the final stage, the contextual ban-
dit algorithm is employed to predict a radius value for
each context. Employing the predicted radius param-
eter and the Ball-Pivoting Algorithm (BPA), we per-
form mesh reconstruction. The loss, computed via the
Chamfer Distance between the reconstructed mesh and
the ground truth, empowers the agent to learn the pre-
diction of enhanced radii values, thus enhancing the
quality of surface reconstruction.

The proposed approach innovatively applies the FPFH
method in the context of surface reconstruction. Its ad-
vantages will be further explored in the experiments sec-
tion through a comparative study with alternative surface re-
construction methodologies: The classic Ball-Pivoting Al-
gorithm employing an empirical radius parameter, Poisson
Surface Reconstruction (PSR) [14] and α-shapes [11].

3.3. Contextual bandits for BPA radius prediction

Estimating the optimal radius for the Ball-Pivoting Algo-
rithm possesses distinctive characteristics that align seam-
lessly with the framework of a continuous contextual bandit
problem. This framing brings to light the following speci-
ficities:

i Contextual descriptors from point cloud: The uti-
lization of contextual bandits proves highly suitable
due to the rich and informative features that can be de-
rived from the point cloud data using feature extraction
methods such as FPFH combined with the K-means
clustering. These descriptors effectively capture the
essential attributes of the point cloud, making them
ideal contextual cues for making radius predictions.

ii Non-episodic continuous actions: Actions (the radii
values) influence the reward instantly, eliminating the
need for waiting until a terminal state is reached. The
rewards are based on the negative Chamfer Distance
between the reconstructed and ground truth meshes.
Each action is independent, allowing the agent to in-
stantly learn from its choices. This responsiveness
aligns perfectly with the real-time decision-making ca-
pabilities offered by the continuous contextual bandit
framework.

iii Continuous action space: The choice of radius for
the Ball-Pivoting Algorithm falls within a continuous
action space, where decisions span a range of possi-
ble values. The continuous contextual bandit setting
aligns well with this aspect, as it accommodates use
cases that involve making decisions within a continu-
ous spectrum, mirroring the reality of radius selection.

iv Learning robust policies: The goal of framing the
radius estimation as a continuous contextual bandit
problem is to learn a robust policy that maps the ex-
tracted contextual features to the optimal radius. This
learned policy adapts and generalizes across varying
point clouds and input contexts, ensuring effective ra-
dius predictions for diverse scenarios.

We can conceptualize the task of predicting radius values
as a contextual bandit problem, where the dataset of point
clouds serves as the environment. In this formulation: Each
single point cloud corresponds to a distinct state within the
environment. The features associated with each point cloud
are interpreted as contextual cues that characterize the state.
Meanwhile, every radius value linked to a particular point
cloud is treated as an action. Formally, we consider an envi-
ronment defined by a context space X , and an action space
A. The agent engages with this environment over a se-
quence of time steps. In each round denoted as t, the agent
observes a context xt from the context space X , selects an
action at ∈ A, and subsequently receives as feedback from
the environment a loss ℓt (at). The learner’s objective cen-
ters on minimizing its cumulative loss

∑T
t=1 ℓt (at). No-

tably, the loss function in our case quantifies the Chamfer
Distance between the sampled points from the ground truth
mesh S1, and the sampled points from the reconstructed
mesh S2, generated using the chosen action. It is given by,

dCD1 (S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

∥x− y∥2

+
1

|S2|
∑
x∈S2

min
y∈S1

∥x− y∥2 (2)

4. Experiments
To validate the effectiveness of our proposed approach,

we conduct a comparative study involving Auto-BPA,
empiric-radius-based BPA [10, 19], and classic methods
such as PSR [14] and α-shapes [11]. Moreover, we com-
pare the results obtained by the geometric-based feature ex-
tractor FPFH [22] with those of the learning-based feature
extractor PointNet [20]. Additionally, we assess the ability
of Auto-BPA to accurately predict radii across distributions
of non-uniform point clouds.
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Surface quality
Overall SharpDataset Number

of points Method
CD1 (×102) ↓ CD2 (×105) ↓ F1↑ NC↑ NR↓ ECD1 (×102) ↓ EF1↑

Number of
missing
meshes

BPA1 [10] 0.8712 8.9814 0.5328 0.8612 18.8917 7.1022 0.1308 0
BPA2 [19] 6.6658 883.2448 0.0740 0.7213 33.4799 48.3293 0.0083 898

Auto-BPA(ours) 0.8449 8.034 0.5464 0.866 18.583 6.753 0.1382 2
α-shapes-3% [11] 17.0603 2661.6707 0.0488 0.5391 51.3607 22.5279 0.0130 1
α-shapes-5% [11] 1.5860 55.9103 0.4681 0.8343 22.6868 6.9556 0.1332 0

1024

PSR [14] 4.6530 519.1728 0.1808 0.7347 34.6196 12.8894 0.00894 0
BPA1 [10] 0.491 1.7581 0.7238 0.922 10.8112 3.6303 0.2893 0
BPA2 [19] 0.6928 14.231 0.6903 0.9061 12.6294 4.8474 0.2771 6

Auto-BPA(ours) 0.4818 1.7483 0.7384 0.9246 10.6315 3.6636 0.2684 0
α-shapes-3% [11] 1.4780 71.0208 0.5725 0.8652 17.6552 4.7172 0.2228 0
α-shapes-5% [11] 1.5449 56.3179 0.5523 0.8608 17.7502 5.8921 0.2087 0

ModelNet10

10000

PSR [14] 6.6125 1649.6779 0.1041 0.7892 27.8882 37.7751 0.0022 0
BPA1 [10] 0.9644 15.5389 0.5060 0.8153 24.4747 6.7014 0.1165 0
BPA2 [19] 2.6407 298.0794 0.3463 0.7816 29.4330 13.5284 0.1235 961

Auto-BPA(ours) 0.7731 7.228 0.597 0.8408 22.001 5.536 0.1692 0
α-shapes-3% [11] 1.9194 112.8260 0.4426 0.7587 31.6756 5.4515 0.1521 0
α-shapes-5% [11] 1.4520 39.7176 0.4959 0.8053 25.9362 6.3746 0.1423 0

1024

PSR [14] 14.2130 3101.6140 0.0832 0.5530 51.6776 15.5309 0.0141 107
BPA1 [10] 0.4515 2.0824 0.7583 0.8940 14.6503 3.2356 0.3209 0
BPA2 [19] 0.4899 3.1695 0.7750 0.8936 14.8226 3.2204 0.3835 0

Auto-BPA(ours) 0.4209 1.385 0.7948 0.905 13.485 2.903 0.3747 0
α-shapes-3% [11] 1.2005 39.0331 0.5920 0.8373 21.0963 4.4232 0.2173 0
α-shapes-5% [11] 1.4309 37.6407 0.5539 0.8244 22.0679 5.7177 0.1931 0

ShapeNet

10000

PSR [14] 21.5310 4424.2539 0.0220 0.4956 56.7280 28.2783 0.0055 78

Table 1. Quantitative comparison of Auto-BPA with the state-of-the-art solutions. Best results are indicated in red.

4.1. Experiment setup

Datasets. We evaluate our proposed approach using two
publicly available datasets: ModelNet10 [24] and ShapeNet
[4]. We employ the train/test split protocol for both datasets,
aligning with methodologies employed in prior mesh re-
construction works [7, 8]. More specifically, the evaluation
process for ShapeNet concentrates on eight distinct object
classes, while the evaluation for ModelNet10 includes all
ten classes. For validation purposes, we conducted a ran-
dom sampling of 200 point clouds from the training dataset
for model checkpointing. All models are normalized to the
origin of the canonical frame, with a diameter of 1. This
normalization process is particularly advantageous for the
subsequent radius prediction, given that the action space
belongs to the interval [0,1]. For each model, we em-
ploy poisson-disk sampling [3] to generate both sparse point
clouds (∼ 1024 points) and dense point clouds (∼10,000
points) on the mesh surface. While this method ensures
well-distributed point clouds, it doesn’t fix the number of
samples. This lack of a fixed number of samples doesn’t
pose a challenge to geometric feature extraction. However,
when using the PointNet [20] feature extractor, the points
are standardized to a size of 1024 through random replica-
tion, serving as the input point cloud. Both the FPFH and
Ball-Pivoting Algorithm require normals. To calculate sam-
ple positions and normals, we utilize the face indices of each
sample along with barycentric coordinates.

Evaluation metrics. Following Lie et al. [15], we assess
the overall surface quality of the reconstructed meshes us-
ing Chamfer Distances (CD1, CD2), F-Score (F1), normal
consistency (NC), and normal reconstruction error (NR) in
degrees. Additionally, we use the Edge Chamfer Distance
(ECD1) and Edge F-score (EF1) metrics to evaluate the
ability of each method to preserve the sharp details on the
surface. More details about these metrics can be found in
the supplementary material.

Baselines. We compare our approach with classic BPA
using two different parameter tuning techniques; BPA1 [10]
and BPA2 [19]. We also compare our method with α-
shapes [11] using α = 3% and α = 5% similar to previous
works [15, 21]. The comparison was also performed with
Poisson Surface Reconstruction (PSR) algorithm [14].

Implementation details. Concepts from contextual ban-
dits with continuous actions can be adapted and extended
to predict parameters for algorithms, such as determining
the radius for the Ball-pivoting Algorithm. In the learning
policy of our proposed approach, we utilize the CATX li-
brary [1]. This library provides a well-suited toolkit for
addressing this challenge within the framework of contin-
uous contextual bandits. By harnessing CATX’s capability
to implement custom neural network architectures and in-
tegrate them into the contextual bandit algorithm, we en-
hance our ability to capture direct relationships between
contextual features and optimal choices for the radius. The
CATX algorithm relies on several hyperparameters. We
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Figure 3. Qualitative results. We compare four meshes reconstructed by our method to the results of the baselines. The first two rows
correspond to the ModelNet10 datasets with 1024 and 10000 points, respectively, while the last two rows correspond to the ShapeNet
dataset with 1024 and 10000 points, respectively. Details best viewed zoomed in.

tune these hyperparameters on the validation set using a ran-
dom search. We set the ϵ parameter in the range [0.05, 0.2]
and the discretization parameter, K, to take values from {8,
16, 32, 64}. At each depth level, a neural network is em-
ployed, and the output layer dimension of each neural net-
work is set to 2D+1. The depth is set as D = 8, 16, 32, and
the action space, AK, is defined within the interval [0.001,
0.1]. This range is determined based on the model’s predic-
tions for radii. The Ball-Pivoting Algorithm exhibits high
sensitivity to variations in radius, and thus, this interval is
chosen to ensure meaningful and effective radius selections.
Learning rate values are set to 0.0001, and the dropout rate
varies across {0.1, 0.2, 0.3, 0.4, 0.5}. The number of steps
for the ModelNet10 dataset is 1000, and for the ShapeNet
dataset, it is 5000. These parameters are crucial components
of our learning policy. On the other hand, for generating
feature vectors, we set the codebook size as a hyperparam-
eter. Specifically, the integer values of the codebook size
are uniformly distributed within the closed interval [4, 14]

for the FPFH feature extraction. In the case of the PointNet
feature extractor, the feature vector size is fixed at 256.

4.2. Evaluation of mesh reconstruction

Quantitative results. Table 1 shows a quantitative com-
parison between our method and the baselines on ShapeNet
and ModelNet10 datasets with both low (1024) and high
(10000) point cloud density. The results demonstrate that
our approach (Auto-BPA) significantly outperforms other
baselines. On both datasets, our approach yields the lower
Chamfer and squared Chamfer Distances (CD1) and (CD2)
and the higher F-Score (F1) which demonstrates the high
quality of the reconstructed surfaces with our approach.
It also shows the high quality of the surface normals by
achieving the best Normal Consistency (NC) and the lower
Normal Reconstruction error (NR). The performance of our
approach in preserving sharp edges is confirmed by the re-
sults obtained with ECD1 and EF1 metrics on the recon-
structed meshes. While it’s worth noting that a few other
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approaches may marginally outperform ours in these two
metrics, overall, our approach consistently show the best
results.
Table 1 also indicates the number of missing meshes,
which corresponds to the number of objects that the
method couldn’t reconstruct. Notably, our approach en-
countered difficulties in reconstructing two objects across
both datasets, while the other methods, BPA1, PSR, and α-
shapes were not able to reconstruct several objects even in
the case of dense point clouds.

Qualitative results. In consistency with the quantitative
results reported in Table 1, the qualitative results illustrated
in Figure 3 evidence the superiority of the quality of the
reconstructed meshes with our proposed approach over the
other baselines. The reported examples in Figure 3 show the
ability of our approach to reconstruct objects while main-
taining the details of the surface. The figure demonstrates
also that the other baselines, especially α-shapes and PSR
suffer with surface normals in contrast to our reconstructed
samples that show good normals orientations. We also ob-
served that the reconstructed objects with the other base-
lines have several significant holes, whereas our approach
infrequently exhibits small holes.

Robustness of Auto-BPA. We evaluate the influence of
the feature extraction method and the robustness of our ap-
proach concerning various point cloud distributions. In our
evaluation, we employ a set of 1024 sampled points from
the ModelNet10 dataset for ablation experiments. Gener-
ally, our method is designed to excel with evenly distributed
point clouds. To explore its robustness against different
point cloud distributions, we subject our approach to tests
using randomly sampled point clouds that are not uniformly
distributed across the surface. The results presented in Ta-
ble 2 demonstrate that, even with non-uniform distributions,
our proposed approach continues to outperform other meth-
ods, including BPA2 and classic reconstruction techniques
such as PSR, α-shapes-3%, and α-shapes-5%.
For feature extraction, we employ two distinct methods for
comparison. The first method utilizes a geometric approach
based on point neighborhood in the FPFH feature extrac-
tion, while the second method employs the encoder from the
PointNet [20] architecture. To conduct these experiments,
we train PointNet [20] on a set of 1024 sampled points from
the ModelNet10 dataset. We notice under uniform distribu-
tion, the geometric method outperforms the learning-based
approach. However, in cases of non-uniform distribution,
the learning-based method exhibits superior performance.

5. Discussion and Limitations
The proposed approach consistently outperforms

empirically-based radius selection methods, such as BPA1
and BPA2, as well as classic reconstruction approaches like
PSR, α-shapes-3%, and α-shapes-5%. This performance

Points distribution Uniform Non-uniform
Features extraction PointNet FPFH PointNet FPFH

CD1 (×102) ↓ 1.0132 0.8449 1.1678 1.1720
CD2 (×105) ↓ 13.6501 8.034 16.8203 17.1958

F1↑ 0.4899 0.5464 0.4392 0.4371
NC↑ 0.8481 0.866 0.8240 0.8247
NR↓ 20.3805 18.583 24.1916 24.0598

ECD1 (×102) ↓ 8.2686 6.753 8.1219 8.3293
EF1↑ 0.1090 0.1382 0.0611 0.0588

Table 2. Comparative evaluation of Auto-BPA performance with
regard to points distribution and feature extraction methods.

can be attributed to the detailed features that describe
the geometric properties of point sets. Additionally, the
smoothing approach of the CATS algorithm enhances the
selection of robust parameters, accommodating variations
in point cloud sampling levels. The hierarchical structure,
based on tree policies, plays a pivotal role in effectively
mapping diverse actions to distinct contexts. The radii
predictions generated by our model underscore the sen-
sitivity of the Ball-Pivoting Algorithm to variations in
radii. Through our proposed approach, manual tuning of
user-selected radii is optimized. A promising aspect of
our method is its potential application beyond empirically
chosen radii. Instead of relying on a predetermined list of
radii choices in the case of the BPA with multiple passes,
the proposed approach holds promise in setting radii values
after density-based post-processing of point clouds. The
model will assign the optimal radius to each single patch
of points. In such cases, the model effectively will surpass
the challenge of non-uniform point set distribution and will
be efficient in the case of 3D scene reconstructions that are
characterized by varying point cloud densities, noise, and
outliers.

6. Conclusion
In conclusion, the innovative approach presented in this

study signifies a notable advancement in optimizing radii
value prediction for the Ball-Pivoting Algorithm. Through
the fusion of geometric-based feature extraction and the
capabilities of the continuous contextual bandit algorithm,
we showcase a technique with significant potential. This
method not only enhances radii prediction accuracy but
also broadens its applicability across diverse reconstruction
techniques reliant on a user-driven parameter selection pro-
cess, such as the depth parameter in the Poisson Surface
Reconstruction. Thus, our innovative framework represents
the strength of merging geometric insights with advanced
learning approaches, offering a pathway toward enhanced
accuracy, and user experience in the field of 3D reconstruc-
tion.
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