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Abstract

Contemporary large-scale visual language models
(VLMs) exhibit strong representation capacities, making
them ubiquitous for enhancing image and text understand-
ing tasks. They are often trained in a contrastive manner
on a large and diverse corpus of images and corresponding
text captions scraped from the internet. Despite this, VLMs
often struggle with compositional reasoning tasks which re-
quire a fine-grained understanding of the complex interac-
tions of objects and their attributes. This failure can be
attributed to two main factors: 1) Contrastive approaches
have traditionally focused on mining negative examples
from existing datasets. However, the mined negative exam-
ples might not be difficult for the model to discriminate from
the positive. An alternative to mining would be negative
sample generation 2) But existing generative approaches
primarily focus on generating hard negative texts associ-
ated with a given image. Mining in the other direction,
i.e., generating negative image samples associated with a
given text has been ignored. To overcome both these limita-
tions, we propose a framework that not only mines in both
directions but also generates challenging negative samples
in both modalities, i.e., images and texts. Leveraging these
generative hard negative samples, we significantly enhance
VLMs’ performance in tasks involving multimodal compo-
sitional reasoning. Our code and dataset are released at
https://ugorsahin.github.io/enhancing-
multimodal-compositional-reasoning-of-
vlm.html.

1. Introduction
Contrastive learning has been demonstrated to be an ef-

fective and popular technique for training large large-scale
visual language models [26,34,50]. This is due to the avail-
ability of a large corpus of images and text reaching an or-
der of millions of samples that can readily be scraped from
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Figure 1. Top: Gives the overview of our proposed generative ap-
proach for image-text synthesis from a given source image and a
corresponding caption. Step 1: The source image is first passed
through a detection and segmentation algorithm to identify all the
relevant objects in the scene (bird and rock) and also create inde-
pendent masks of these objects (See Subsection 3.1.1). The re-
maining steps in this figure focus on the bird object. Step 2: A
large language model (LLM) then takes the detected objects to
create 1) an alternate representation of that object (bald eagle) 2)
A more fine-grained and descriptive representation of the same ob-
ject (a black and white bald eagle) (See Subsection 3.1.2). Step 3:.
The source caption is replaced with an alternate representation to
produce the target caption. Step 4: The original mask of the object
and the descriptive alternate caption are fed to an inpainting algo-
rithm to replace the bird with a black and white bald eagle in the
source image to produce the target image (See Subsection 3.1.4).
Bottom: Shows a batch of some other generated variations of the
same source image.

the internet [39,40]. Training on human-curated supervised
data of a similar scale would be infeasible due to the sheer
amount of effort required for annotation. Meanwhile, train-
ing on the limited supervised data would not yield results
of performance comparable to that of contrastive methods
trained on data of much higher magnitude. In fact, this
contrastive pretraining on a large corpus of data has led to
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enhanced image and text representations that benefit down-
stream tasks including image and text retrieval [31,49], text
generation [24, 25, 30], and image generation [35, 37].

Despite the impressive results VLMs have achieved on
the above tasks, one challenging problem that still remains
is their limited compositional ability [29,42, 49]. Composi-
tionality refers to the challenge where the samples have sig-
nificantly different semantic scene depictions despite simi-
lar textual representations. For e.g. the two sentences 1) a
black dog with a white cat and 2) a white dog with a black
cat may appear to be textually similar but have very differ-
ent scene depictions. While humans can easily discern the
context between the two sentences, VLMs tend to struggle,
posing a significant challenge in regards to this composi-
tional reasoning [38, 42]. This is further exacerbated when
words in the sentences are exactly the same but differ only
in order, as is the case in the example described above. [42]
proposed a new dataset to specifically evaluate this com-
positional reasoning of various VLMs. They showed that
these VLMs tend to struggle with compositionality. A plau-
sible explanation is given in recent work which identified
that VLMs are prone to exploiting shortcut strategies [12].
Given a caption, the VLM may choose to focus on only a
certain region among the rich scene representation while ig-
noring other objects in the scene. For e.g. given the source
caption in Fig. 1: a bird is standing on a rock may decide to
only focus on the bird and the rock while completely ignor-
ing the background and placing less emphasis on the bird
species or type of rock. This tends to happen because in
the usual contrastive learning setting, the negative samples
are already significantly different from one another. Hence,
VLMs only need to detect these major differences, instead
of truly understanding the complex structure of the entire
scene [5].

To train a model to truly compositionally reason about
the scene and text, we would like to mine for hard negative
samples. This hard negative mining is among the promis-
ing directions to tackle this problem [16, 26, 31, 36, 49]. It
includes finding examples with minimal changes in the text
or image but yielding different contexts. The bottom part of
Fig. 1 shows four negative samples of the source data point.
Note that the caption and image of the negative samples
have a subtle difference from the source but it completely
changes the context (bird species, rock formation). Such
negative samples capture a more fine-grained representation
of the image and text content. The model is now forced to
learn the subtle differences between for e.g. a seagull and
a bald eagle or volcanic rock and a tower of rocks. Just be-
ing aware that some bird is sitting on some rock would not
be enough for the model. It has to additionally focus on the
bird species and type of rock formation. However, such hard
negative samples with subtle differences in text and images
may not necessarily exist. Therefore, how do we mine for

such non-existent hard negative samples in both modalities,
i.e., text and images? For text, most existing works on nega-
tive mining augment the textual descriptions [9,16,49]. But
how can we ensure that the generated sentences are even
linguistically meaningful? Moreover, how do we mine hard
negative samples in the image space?

Motivated by recent advances in image understanding
and generation [14, 23, 25, 35, 37], we propose a framework
to generate negative images to facilitate contrastive learn-
ing. Specifically, recent development in image understand-
ing models such as SAM enables a reliable segmentation of
objects from a complex scene. Moreover, large image gen-
eration models such as Stable Diffusion (SD) can convert
text descriptions into images. The inpainting mode of SD
allows it to modify part of the image while keeping the re-
maining part unchanged. As shown in the upper part of Fig.
1 with blue arrows, we are able to edit the original images
with minimal changes in the pixel space thus constituting
hard-to-discriminate image examples. This is done by re-
placing the word bird with the prompt bald eagle. Generat-
ing images similar in category (e.g., bird) but different in ap-
pearance for a large number of samples would be a tedious
process for a human. Therefore, we automate the process
using LLMs to generate such prompts. These LLMs auto-
matically propose alternative concepts to replace the origi-
nal words in the caption without losing the linguistic mean-
ing. As shown in Fig. 1, the LLM changes the word bird
into a specific category of bald eagle. In the end, we obtain
a batch of hard negative examples at the bottom of Fig. 1.
To match the left-most image from four texts with minimal
word changes, the model needs to encode fine-grained bird
and rock information from the image and texts.

We conducted extensive experiments using the dataset
generated by our proposed method to demonstrate the
power of our framework. In this regard, the contributions
of our framework are summarized as follows:

• We show that our method which uses negative sam-
ple generation improves VLM performance on a
wide range of benchmarks meant to assess compo-
sitional visual-language reasoning. These include
Winoground, ARO, CREPE, and VL-Checklist.

• We release our dataset which is comprised of fine-
grained object differences and attribute changes in
the images and text. Such subtle differences in the
dataset make it challenging for pre-trained state-of-
the-art visual language models to correctly composi-
tionally reason about the data points. The supple-
mentary material contains a subset of our dataset.
The complete dataset is accessible at our project
page https : / / ugorsahin . github . io /
enhancing-multimodal-compositional-
reasoning-of-vlm.html.
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2. Related Work

Contrastive pre-training of VLMs Contrastive Pre-
training of large-scale models trained together on both vi-
sion and language modalities have shown superior represen-
tation [26,34] and zero-shot transfer ability [16], leading to
success on a wide spectrum of related tasks [25,30,37]. Due
to the significant amount of image-text data crawled from
the internet [39, 40], the unsupervised contrastive learn-
ing paradigm stands out as a primary approach to pre-train
VLMs [18, 34, 47]. Contrastive learning relies on nega-
tive examples which train models to discriminate between
them and the positive examples. If the negative examples
are significantly different from the positive, the model can
easily discriminate between the two. In contrast, if the
negative and positive samples are similar, the model can
learn to correctly discriminate only if it understands the sub-
tle, fine-grained differences between the two. Such hard
negative samples provide the model with greater predic-
tive power. Inspired by metric learning [36], hard nega-
tive mining based on learned embeddings became a pop-
ular approach to improve contrastive learning [36], with
different methods for mining negative samples being pro-
posed [4,6,17,33,45,51]. To address the limitation that cer-
tain negative examples are hard to find in existing datasets,
recent works have rather explored synthesizing negative
text, and hard negative captions on standard image-text
datasets [27] by word shuffling [49], negative verbs [31],
negative text augmentation [8, 9, 16, 31, 38]. Compared to
these approaches, our method focuses on mining hard neg-
atives from both image and text domains, leveraging large-
scale generative language and vision models.

Benchmarking Visual-linguistic Compositional reason-
ing Compositional reasoning is the ability to understand
complex scenes and text with diverse structures [42]. This
includes for e.g. the capacity to discern between sen-
tences with the same words but in a different order, or a
scene with the same objects but slightly different colors,
etc. There are many datasets [7, 29, 42, 52] used for bench-
marking different aspects of compositional reasoning. For
e.g. Winoground [42] tests for rich structures in text or-
der, CREPE [29] for constituting objects, their relations,
and attributes, ARO [49] for shuffled word order. These
benchmarks demonstrated that most SOTA VLMs showed
poor performance when probed for compositional reason-
ing. Our method on the other hand is capable of understand-
ing the subtle visual-lingustic cues thereby demonstrating
superior performance.

Additional Image and Text Data Generation Synthetic
image generation using text-to-image models has proven
effective in various computer vision tasks such as image
classification [13], object detection [32,46], image caption-
ing [44], and contrastive learning [2]. Generated images can

complement existing datasets with a diverse set of images
that may not be present in the existing datasets, enriching
the overall range of available visual examples. [2] propose
to improve contrastive learning with synthetic image gener-
ation, which is probably the closest to our work. However,
it generates synthetic images from scratch, whereas we edit
realistic images from a human-curated dataset. Generating
additional text samples from LLMs is a very promising di-
rection. LLMs such as ChatGPT and LLaMA exhibit well
modeling of language structure [1, 11] and thus can be uti-
lized to manipulate text to enrich the text samples [9]. For
example, [10] proposes to rewrite texts in COCO to improve
contrastive image-text pertaining [22]. Similarly, we utilize
LLM to generate contrastive text samples for detected ob-
jects in the image. Then we utilize text-to-image models to
edit the original image to obtain negative examples.

3. Method
This section first outlines our data generation pipeline

that leverages the latest state-of-the-art LLMs and multi-
modal generative models for high-quality sample genera-
tion (See Fig. 1). We then present the finetuning framework
that exploits our new dataset of hard negative examples to
enhance the compositional reasoning abilities of VLMs.

3.1. Hard Negative Example Generation

Our framework can be used to enhance the richness of
any image-caption pair dataset. For our experiments, we
use data generated based on the human-curated image-text
pair COCO dataset, but our approach can be extend to other
datasets. In the following, we describe the core components
of our generation pipeline. The main objective is to gener-
ating challenging negative examples which modifies local
semantics of the scene and preserves the main context.

3.1.1 Image Analysis and Object Extraction

To accurately identify the regions of an image that need
modification, we utilize a comprehensive annotation ap-
proach to decompose the scene into its constituent parts.
Firstly we utilize off-the-shelf image-to-text models, specif-
ically Tag2Text [15], for object detection and caption gen-
eration. As shown on the left side of Fig. 2, the Tag2Text
model outputs a list of detected object labels in the im-
age, along with a descriptive caption summarizing the entire
scene. The descriptive caption is needed to ensure that all
the identified objects have been covered in the caption.

However, Tag2Text lacks precise object localization ca-
pabilities and cannot demarcate precise object boundaries
in the scene. To circumvent this issue, we integrate a seg-
mentation model, such as Grounded-SAM [20, 28] into our
framework. The segmentation model takes as input both the
image and a label of one of the objects in the same image.
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Figure 2. Overview of data generation pipeline. Left: The portion to the left of the red dotted line demonstrates the process for determining
segmentation masks of all objects in the scene, which is elaborated in Subsection 3.1.1. The Tag2Text model is first utilized to generate
a list of tags for all objects in the scene. Segmentation masks from the source image are then created for all the individual tags (Masks
for the seagull and water tags are shown). Note that the human-annotated source caption may not contain all the identified tags, e.g., city.
Therefore, Tag2Text also generates a caption for the source image to encompass all the detected objects. The replacement of concepts for
a new caption generation is explained in Subsection 3.1.3. Right: The portion to the right of the red dotted line figure corresponds to the
process of generating images having subtle variations from the source image, as explained in Subsection 3.1.4. For this, we use the Stable
Diffusion model which takes the segmentation masks along with the fine-grained description of objects with which the masks are replaced.
The new descriptions are produced using ChatGPT.

Its output generates a binary mask that highlights the corre-
sponding object region within the image.

3.1.2 Concept Augmentation Using LLM

A detected object is transformed into a similar concept.
Our aim focuses on modifying the object’s appearance, at-
tributes, and categories while keeping other things and the
overall context the same. This includes transforming an ob-
ject into a more fine-grained instance with richer attributes
(e.g., transforming a house to a Victorian one with a wooden
entrance), or modifying the background into different envi-
ronments (transforming the sky into rocky mountains). For
that, we resort to LLMs, such as open-sourced LLaMA [43]
and ChatGPT which offer impressive possibilities due to
their in-context learning capacity [43]. Given a few ex-
amples and a test sample, LLMs generate the output that
adheres to the structures implied by the set of given exam-
ples. For instance, as illustrated in Fig. 3, the input prompt
presents an example where the word bread is modified into
freshly baked loaf. When the LLM is prompted with a
test case water, it generates a mountain lake that follows
a similar modification pattern. To enhance the generation, a
source caption is fed to the LLM as context information, en-
couraging the generation of object variations that are more
compatible with the background. Additionally, the prompt
is manually designed to guide the LLM toward producing

the desired output, i.e., instructions such as using a maxi-
mum of three words give more control over the style of the
generated outputs. Further, the LLM is instructed to gen-
erate keywords summarizing the detailed descriptions. The
detailed descriptions are used in image editing, whereas the
keywords are used to replace the caption. This strategy en-
sures a relatively precise image caption, as well as adding
more fine-grained details to the visual scene in the image
generation stage. Our approach can automate the entire pro-
cess by conveniently utilizing the ChatGPT API.

Note that this generation process is open-ended and can
synthesize an arbitrary number of data samples. Being able
to train on a large dataset is where the power of contrastive
learning comes from. This is as opposed to supervised
methods whose training is restricted to the number of la-
beled samples which are expensive and tedious to collect.

3.1.3 Caption Editing

We replace the object in the original source caption with
the newly generated phrase. For example, in Fig. 2, we re-
place the seagull with a bald eagle to create a caption for
the newly generated image. Specifically, the source human-
annotated caption a seagull flying over the water near a
large ship is changed into a bald eagle flying over the water
near a large ship. However, Tag2Text may produce tags,
e.g., city, that are not presented in the source caption. For
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Modify each of the given words in three different ways.
You can add colors, shapes and material information whenever necessary.
You can change the word with semantically similar words.
Add a short description of the portrayal up to three words in parenthesis.

Input:
Objects: bread, bag
Context: a person holding a piece of bread with bananas and a bag

Output:
Bread:
1) A warm, freshly baked loaf (freshly baked loaf)
2) A crumbly gluten-free muffin (gluten-free muffin)
Bag:
1) A leather satchel with intricate patterns (leather satchel)
2) A sturdy canvas backpack with patches (canvas backpack)

Input:
Objects: seagull, water, city, ship
Context: a seagull flying over the water near a large ship

Output:

Seagull:
1) a majestic bald eagle (bald eagle)
2) a colorful parrot (parrot)
Water:
1) a serene mountain lake (mountain lake)
2) a rushing river cutting through a rocky canyon (rocky canyon)
...

ChatGPT

Figure 3. Text variation generation by LLM, explained in Sub-
section 3.1.2. Following the pattern defined in the prompt which
changes the objects bird and rock into different instances with rich
attributes, LLM completes the text for the test sample, i.e., trans-
forming water into different types of water.

that, the caption produced by the Tag2Text model is used
to generate the ground truth caption for the modified image.
For example, if the tag city is augmented to historic town
by the LLM (explained in Subsection 3.1.2), we label the
augmented image with caption: a seagull in the ocean near
a harbor with a ship and a historic town in the background.
We label the generated image with our edited caption as a
ground-truth image-text pair.

3.1.4 Image Editing

To enable fine-grained modification of an image region, we
adopt the concept of image inpainting for transforming the
original object in the image into the target object. In this
scenario, image inpainting involves removing a specific re-
gion and filling it with content that seamlessly integrates
with the image’s context while considering the input infor-
mation. The inpainting model takes multiple inputs, as il-
lustrated on the right side in Fig. 2. One of the inputs is the
binary mask that identifies the object region that is desired
to be replaced with a new object in the source image (See
Subsection 3.1.1). The other important input to the inpaint-
ing model is the object description obtained from the LLM,
which indicates the target object we want the region to be
changed into (See Subsection 3.1.2). The model’s output is
a modified image that aims to replace the content with the
desired object description while the remaining parts are un-

changed. This process ensures that the modified images are
realistic and similar to the original images.

3.1.5 Filtering

For each image, we randomly sample M objects to input to
the LLM, which subsequently generates K text variations
for each selected object. We employ filters to eliminate
certain examples, e.g., wrong segmentation mask, missing
parts in segmentation, confusion due to multiple objects, or
the text is not descriptive enough. To address these issues,
we utilize BLIP’s [25] ITM head, which outputs a confi-
dence value if a given image and text pair matches. No-
tice that generated image might be too noisy that it barely
changes even in pixels, to filter the generated images, we
first calculate the standard deviation across them followed
by averaging. Then we calculate the average of standard
deviance within channels. Images are removed if the differ-
ence is smaller than a threshold value. More implementa-
tion details are in Appendix A.

3.2. Finetuning Framework

3.2.1 Preliminary: Contrastive Loss

The CLIP model operates on a pair of image I and text
T , encoding them separately into embedding space Rd, de-
noted as eI = EI(I) and eT = ET (T ). The image-text
similarity score is computed as

S(T, I) = exp
( eTT eI/τ

||eT ||2||eI ||2
)
,

where temperature τ is a learnable parameter. During the
training process, we sample a batch of N pairs of images
and texts from the training dataset. The training objective
aims to maximize the similarity between matched pairs and
minimize the similarity between unmatched pairs. This is
achieved through the contrastive loss, formulated as

L =

N∑
i

log
( S(Ti, Ii)∑N

j S(Ti, Ij)

)
+log

( S(Ti, Ii)∑N
k S(Tk, Ii)

)
.

The first part of the loss ensures that for each text Ti, we in-
crease the similarity to its paired image Ii while decreasing
the similarity to the remaining images in the batch. Simi-
larly, the second part iterates over texts for a sampled image,
encouraging similarity to the paired text and discouraging
similarity to other texts in the batch. By employing this loss
function, we finetune CLIP on our dataset.

3.2.2 Mixing of Hard Negative Examples

As our data generation method is unsupervised, it may pro-
duce images that do not correspond well with the expected
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text. To mitigate the negative impact of noise in the dataset,
we combine the generated samples with the original human-
annotated COCO image-text pairs. Moreover, these image-
text pairs, despite being of a smaller scale compared to the
dataset used for pertaining CLIP, serve as a valuable re-
source to prevent the model from overfitting. We employ
a simple strategy to sample a batch. For a batch, we sample
rN pairs from our generated data and (1− r)N pairs from
the original COCO dataset. These pairs are then concate-
nated to form a single batch of size N .

4. Experiments

This section describes the experimental setups, includ-
ing the datasets used for evaluation, implementation details
of the finetuning pipeline, evaluation metrics, and baseline
models for a comprehensive comparison.

Datasets We evaluate our model on composition-oriented
benchmarks of different scales and different compositional
aspects. The following benchmarks are included in our ex-
periments. 1) Winoground is a hand-crafted dataset of 800
image-text pairs, for each set of two texts, the texts have
exactly the same words but with different word orders, the
texts are mapped to two visually distinct images. 2) ARO
has more than 50,000 test images paired with automati-
cally built text examples with changed attributes, relation-
ships, and word order, leveraging VG [21], COCO [27], and
Flickr [48]. 3) CREPE introduces new negative texts for
existing images in CC-12M [3], YFCC-5M [41], LAION-
400M [40], where the number of changed words in the text
is gradually increased, treated as different levels of com-
plexity. For ARO and CREPE, their texts are generated
with unique methods which are not covered in our training
data. This makes them perfect candidates to verify the gen-
eralization ability of our approach. For the ablation study,
we primarily perform experiments on Winoground, as it is
manually verified and more challenging [7], since each text
in this dataset has a corresponding hard negative image with
complex semantics.

Our training dataset is generated based on the COCO
dataset, which has a training split with 110k image-text
pairs. In our experiments, we created variations for 12.656
unique images, where for each image, we selected approxi-
mately three objects on average and generated four text vari-
ations for each object. After filtering out low-quality gener-
ations, we ended up with 82.010 image and text pairs. We
generate our test set from the COCO Karpathy test split [19]
with 5k image-text pairs. Additionally, we manually ver-
ify the generation to better inform the model selection and
more importantly, serve as sources for the community to fa-
cilitate visual language research. For our test set, we have
278 unique images with different image-text pairs for each
of them due to our manual filtering. In the end, we obtained

122 images with 4 variations for each image, 139 images
with 3 variations, and 17 images with 2 variations.
Implentation Details For dataset generation, we utilize the
public implementation of Tag2Text1, Grounded-SAM2, and
Stable Diffusion3. For finetuning, we follow the strategies
in similar work [31, 49] and combine our generated sample
with human-annotated labels. We set the ratio of real and
synthetic data as r = 0.5. We utilize the OpenAI CLIP
ViT/B-32 architecture. We use a batch size of 400, a learn-
ing rate of 1e-6, and a weight decay of 0.2, and fine-tune
the model for 20 epochs. We employ the default image
augmentation techniques that were used during pretraining
CLIP. The experiments are conducted on an Nvidia A10G
GPU with 24GB memory.
Evaluation We adopt the evaluation metric for different
datasets, which are basically formulated as image-to-text
and text-to-image retrieval tasks. For Winoground, we re-
port image score, text score, and group score, meaning that
the model should correctly choose the text among the two
text candidates for each image. For CREPE, we report the
hits@1 image-to-text retrieval score on the productivity set
with complexity ranging from 4 to 12. For ARO, we em-
ploy their evaluation metric and report the mean of the per-
formance for each subcategory.

5. Results
In this section, we present the comprehensive experi-

mental results of our proposed method in comparison to
the baseline across a diverse range of tasks. Moreover,
we further verify the effectiveness of our generated dataset
through an extensive ablation study.

Model Text Score Image Score Group Score
CLIP 30.75 11.0 8.75
Ours 34.25 12.5 10.0

Relative Gains +11.1% +13.6% +14.2%

Table 1. Comparison of our method with CLIP on Winoground
benchmarks. We report the text score, image score, and group
score which measure if the model can correctly match a text for an
input image, or vice versa. The best performance is shown in bold.
Our finetuned CLIP surpasses the baseline model by a substantial
margin.

5.1. Evaluation on Visuo-Linguistic Benchmarks

Table 1, 2, 3 provide a detailed comparison of our fine-
tuned CLIP model on our generated hard negatives with the
released COCO checkpoints. We evaluate the model per-
formance across a wide range of visual language reasoning

1https://tag2text.github.io/
2https://github.com/IDEA-Research/Grounded-Segment-Anything
3https://github.com/CompVis/stable-diffusion
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Compositional (171) Complex (78)
CLIP 31.58 11.70 9.36 23.08 6.41 3.85
Ours 38.01 14.62 10.53 29.49 8.97 6.41
Gains +22.5% +27.2% +12.5% +23.9% +39.9% +66.5%

Unusual Image (56) Unusual Text (50)
CLIP 26.79 8.93 5.36 34.0 14.0 10.0
Ours 28.57 8.93 8.93 30.0 10.0 10.0
Gains +6.7% 0.0% +66.3% -11.8% -28.5% 0.0%

Table 2. Comprehensive analysis of method performance on
Winoground subsets [7] which evalute distinct reasoning abilities.
Numbers in the parenthesis indicate the number of samples in that
subcategory. Our model excels in compositional reasoning tasks,
while it may face challenges in tasks that require an understanding
of unusual text which entails background knowledge.

tasks with various aspects of reasoning ability. Our find-
ings demonstrate that our method outperforms CLIP by a
substantial margin in the majority of these tasks. Specifi-
cally, in Tab. 1, we highlight the significant improvement
achieved by our method in terms of complex image text
matching tasks. Furthermore, we achieved a relative im-
provement of 22.5% in text score and 27.2% in image score
on the compositional split filtered by [7]. This subset en-
sures image-text matching with only compositional ability,
instead of other abilities such as visual difficulty. We re-
port the performance of our method on detailed subcate-
gories of Winoground with most test cases in Tab. 2.Our
approach exhibits lower performance on the unusual text
subset, which emphasizes understanding the nuanced mean-
ing of the text. For example, matching the brave in the face
of fear with an image that depicts a small cub confronting
a fierce lion, is challenging for our approach. The presence
of repetitive text samples in our augmented dataset may im-
pact the finetuning of the text encoder (see Appendix B).

ARO [49] CREPE [29]
Model Attribute Relation Order Atom Swap Negate
CLIP 0.59 0.62 0.48 0.20 0.19 0.35
Ours 0.65 0.65 0.45 0.23 0.19 0.13
Gains +10.1% +4.8% -6.3% + 15.0% 0.0% -31.5%

Table 3. Comparison of our method with the baseline on ARO and
CREPE datasets for text retrieval. Our method can discriminate
texts which can be mapped to real scenes with different seman-
tics (ARO-Attribute, ARO-Relation, CREPE-Atom) but struggles
with linguistic phenomenons such as negation not in CREPE, or
grammatically incorrect sentences in ARO-Order.

Table 3 presents a comprehensive comparison of the per-
formance between our CLIP and the baseline on the ARO
and CREPE datasets. This analysis of the ARO dataset
reveals an interesting phenomenon, wherein our method
performs significantly better in the attribute category, e.g.,
matching the adjective white to the object dog, while
demonstrating comparatively low performance in the or-
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Figure 4. Model performance with increasing numbers of sam-
ples. Finetuning our model on incrementally increased generated
data shows a consistent trend: as the data size grows, the model’s
performance is improved. This suggests the potential for generat-
ing more training examples to further enhance the model. Note the
x-axis shows the number of unique images.

der category, wherein the word order is randomly changed,
e.g., a white cat into cat a white. This outcome is expected
as our training data does not encompass sentences that are
grammatically incorrect. Tab. 3 confirms similar findings
for CREPE. Our model demonstrates a significant improve-
ment, especially in the atom category, where the objects and
their attributes are changed. However, our model struggles
with the negate category, such as transforming a dog into
not a dog. This outcome is expected as our training dataset
lacks such examples.

VG SWIG VAW
Data Object Attribute Relation Object Attribute
CLIP 79.0 69.8 58.2 71.8 65.7
Ours 85.1 70.7 53.8 75.8 66.4

TSVLC [9] 82.8 75.5 62.6 78.2 68.4

Table 4. Comparison of our method with CLIP and TSVLC on
VL-Checklist. The scores are obtained by averaging each subcat-
egory within object, attribute, and relation.

Similar to previous findings, Table 4 presents the im-
provements of our approach over CLIP on the VL-Checklist
dataset in the object and attribute categories. The perfor-
mance in the relation category is decreased as expected.
Furthermore, we compare our method to a state-of-the-art
approach proposed in TSVLC, which solely utilizes text
augmentations. It is crucial to note that the comparison is
not fair as the SOTA approach has been trained on a much
larger dataset with a larger batch size and curated losses.
Nevertheless, our model demonstrates comparable perfor-
mance to that approach. A comprehensive analysis of de-
tailed subsets of the VL-Checklist is in Appendix D.

5.2. Ablation Study

The influence of human-curated dataset COCO. Ta-
ble 5 provides a comparison between our generated dataset
and the use of only the COCO dataset, which contains
ground truth image text pairs from human annotators. The
COCO image text pairs are part of our constructed dataset,
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a goose with its beak in the
air on mosaic pavement
near grass

a goose with its beak in the
air on cracked cobblestone 
pavement near grass
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Figure 5. Examples of retrieved text for a given image (left) and retrieved images for a given text (right) by our method and the baseline.
Correct matches are shown in blue, while the incorrect predictions are marked in orange.

and it was not clear if CLIP has incorporated COCO in its
pretraining. To ensure the rigor of our analysis and examine
the effect of existing labeled image-text pairs, we conduct
an experiment comparing the performance of our method
with CLIP that is finetuned only on the COCO dataset. Even
though finetuning on COCO bring marginal improvement,
our improvement is much more significant. This supports
the assumption that the existing dataset may not contain suf-
ficient hard negative examples.

Model Text Image Group
CLIP 30.75 11.0 8.75

CLIP-COCO 30.75 12.5 9.5
Ours 34.25 12.5 10.0

Table 5. The influence of training data on the model performance
on the Winoground dataset. CLIP-COCO is a finetuned CLIP
model using our finetuning protocol on the COCO dataset. Ours
denotes our final model finetuned on the mixture of our generated
dataset and COCO.

Impact of the number of generated samples. In Fig.
4, we analyze the impact of the data size of our generated
samples on the Winoground performance. As seen from
the figure, when the number of generated data samples in-
creases, our model’s performance on the image-text reason-
ing task improves. This demonstrates the value of incorpo-
rating more data in training to enhance the model’s capa-
bilities. This highlights the advantage of our method which
utilizes large generative models, such as LLMs and text-
to-image models, to generate high-quality examples, essen-
tial for tackling the vast image space. Due to hardware
issues, our experiments are conducted until the data scale
shown in the figure. Nonetheless, the results reveal a clear
upward trend, indicating the potential for further improve-
ments with a larger dataset.

5.3. Qualitative Results

Fig. 5 shows a qualitative comparison of our model and
the naive CLIP model on our test benchmark. For each input
image or text, the most similar text or images among the
two candidate texts or images are found by our method and

CLIP. While our method can distinguish the details of the
image, the CLIP model fails on this task. We report the
performance of our models on our test set in Tab. 6.

Model Text All Image All Group All Text 1 Image 1 Group 1
CLIP 21.51 20.79 10.75 60.21 57.87 40.64
Ours 27.96 24.01 13.62 62.23 60.21 43.19

Table 6. Comparison of our finetuned model to the CLIP base-
line on our generated test set, evaluated in a similar metric as
Winoground [42].

6. Limitations
Our work is limited by the performance of generative

models such as ChatGPT and Stable Diffusion. We rely
on the capacity of such models to produce high-quality ex-
amples. The diversity is mostly constrained by the power
of LLMs. Additionally, we primarily manipulate local fea-
tures such as objects and background, while may restrict
the scope of negative examples generated, e.g., manipulat-
ing the relationship between two objects. Addressing these
limitations is crucial for future improvements.

7. Conclusion
Our work tackles the limitations of existing visual lan-

guage models in terms of compositional reasoning between
text and images. We proposed a data generation pipeline
that leveraged generative models to introduce challenging
negative examples required for contrastive learning. Our
proposed method effectively improves the compositionality
and discriminative capabilities of VLMs. Experimental re-
sults demonstrate that training with our method consistently
outperforms existing VLMs on various compositional rea-
soning benchmark datasets. This was done by addressing
the scarcity of hard negative examples for both the image
and text modalities. Our work highlights the importance of
generative approaches in advancing the field of visual lan-
guage understanding and bridging the gap between humans
and VLMs on compositional reasoning tasks.
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