Enhancing Multimodal Compositional Reasoning of Visual Language Models with Generative Negative Mining

Ugur Sahin*1, Hang Li*2,3, Qadeer Khan1,4, Daniel Cremers1,4, Volker Tresp2,4
1Technical University of Munich 2LMU Munich 3Siemens AG 4Munich Center for Machine Learning

Abstract

Contemporary large-scale visual language models (VLMs) exhibit strong representation capacities, making them ubiquitous for enhancing image and text understanding tasks. They are often trained in a contrastive manner on a large and diverse corpus of images and corresponding text captions scraped from the internet. Despite this, VLMs often struggle with compositional reasoning tasks which require a fine-grained understanding of the complex interactions of objects and their attributes. This failure can be attributed to two main factors: 1) Contrastive approaches have traditionally focused on mining negative examples from existing datasets. However, the mined negative examples might not be difficult for the model to discriminate from the positive. An alternative to mining would be negative sample generation 2) But existing generative approaches primarily focus on generating hard negative texts associated with a given image. Mining in the other direction, i.e., generating negative image samples associated with a given text has been ignored. To overcome both these limitations, we propose a framework that not only mines in both directions but also generates challenging negative samples in both modalities, i.e., images and texts. Leveraging these generative hard negative samples, we significantly enhance VLMs' performance in tasks involving multimodal compositional reasoning. Our code and dataset are released at https://ugorsahin.github.io/enhancing-multimodal-compositional-reasoning-of-vlm.html.

1. Introduction

Contrastive learning has been demonstrated to be an effective and popular technique for training large large-scale visual language models [26,34,50]. This is due to the availability of a large corpus of images and text reaching an order of millions of samples that can readily be scraped from the internet [39,40]. Training on human-curated supervised data of a similar scale would be infeasible due to the sheer amount of effort required for annotation. Meanwhile, training on the limited supervised data would not yield results of performance comparable to that of contrastive methods trained on data of much higher magnitude. In fact, this contrastive pretraining on a large corpus of data has led to
enhanced image and text representations that benefit downstream tasks including image and text retrieval [31, 49], text generation [24, 25, 30], and image generation [35, 37].

Despite the impressive results VLMs have achieved on the above tasks, one challenging problem that still remains is their limited compositional ability [29, 42, 49]. Compositional reasoning refers to the challenge where the samples have significantly different semantic scene depictions despite similar textual representations. For e.g. the two sentences 1) a black dog with a white cat and 2) a white dog with a black cat may appear to be textually similar but have very different scene depictions. While humans can easily discern the context between the two sentences, VLMs tend to struggle, posing a significant challenge in regards to this compositional reasoning [38, 42]. This is further exacerbated when words in the sentences are exactly the same but differ only in order, as is the case in the example described above. [42] proposed a new dataset to specifically evaluate this compositional reasoning of various VLMs. They showed that these VLMs tend to struggle with compositionality. A plausible explanation is given in recent work which identified that VLMs are prone to exploiting shortcut strategies [12]. Given a caption, the VLM may choose to focus on only a certain region among the rich scene representation while ignoring other objects in the scene. For e.g. given the source caption in Fig. 1: a bird is standing on a rock may decide to only focus on the bird and the rock while completely ignoring the background and placing less emphasis on the bird species or type of rock. This tends to happen because in the usual contrastive learning setting, the negative samples are already significantly different from one another. Hence, VLMs only need to detect these major differences, instead of truly understanding the complex structure of the entire scene [5].

To train a model to truly compositionally reason about the scene and text, we would like to mine for hard negative samples. This hard negative mining is among the promising directions to tackle this problem [16, 26, 31, 36, 49]. It includes finding examples with minimal changes in the text or image but yielding different contexts. The bottom part of Fig. 1 shows four negative samples of the source data point. Note that the caption and image of the negative samples have a subtle difference from the source but it completely changes the context (bird species, rock formation). Such negative samples capture a more fine-grained representation of the image and text content. The model is now forced to learn the subtle differences between for e.g. a seagull and a bald eagle or volcanic rock and a tower of rocks. Just being aware that some bird is sitting on some rock would not be enough for the model. It has to additionally focus on the bird species and type of rock formation. However, such hard negative samples with subtle differences in text and images may not necessarily exist. Therefore, how do we mine for such non-existent hard negative samples in both modalities, i.e., text and images? For text, most existing works on negative mining augment the textual descriptions [9, 16, 49]. But how can we ensure that the generated sentences are even linguistically meaningful? Moreover, how do we mine hard negative samples in the image space?

Motivated by recent advances in image understanding and generation [14, 23, 25, 35, 37], we propose a framework to generate negative images to facilitate contrastive learning. Specifically, recent development in image understanding models such as SAM enables a reliable segmentation of objects from a complex scene. Moreover, large image generation models such as Stable Diffusion (SD) can convert text descriptions into images. The inpainting mode of SD allows it to modify part of the image while keeping the remaining part unchanged. As shown in the upper part of Fig. 1 with blue arrows, we are able to edit the original images with minimal changes in the pixel space thus constituting hard-to-discriminate image examples. This is done by replacing the word bird with the prompt bald eagle. Generating images similar in category (e.g., bird) but different in appearance for a large number of samples would be a tedious process for a human. Therefore, we automate the process using LLMs to generate such prompts. These LLMs automatically propose alternative concepts to replace the original words in the caption without losing the linguistic meaning. As shown in Fig. 1, the LLM changes the word bird into a specific category of bald eagle. In the end, we obtain a batch of hard negative examples at the bottom of Fig. 1. To match the left-most image from four texts with minimal word changes, the model needs to encode fine-grained bird and rock information from the image and texts.

We conducted extensive experiments using the dataset generated by our proposed method to demonstrate the power of our framework. In this regard, the contributions of our framework are summarized as follows:

- We show that our method which uses negative sample generation improves VLM performance on a wide range of benchmarks meant to assess compositional visual-language reasoning. These include Winoground, ARO, CREPE, and VL-Checklist.

- We release our dataset which is comprised of fine-grained object differences and attribute changes in the images and text. Such subtle differences in the dataset make it challenging for pre-trained state-of-the-art visual language models to correctly compositionally reason about the data points. The supplementary material contains a subset of our dataset. The complete dataset is accessible at our project page https://ugorsahin.github.io/enhancing-multimodal-compositional-reasoning-of-vlm.html.

5564
2. Related Work

Contrastive pre-training of VLMs

Contrastive pre-training of large-scale models trained together on both vision and language modalities have shown superior representation [26,34] and zero-shot transfer ability [16], leading to success on a wide spectrum of related tasks [25,30,37]. Due to the significant amount of image-text data crawled from the internet [39,40], the unsupervised contrastive learning paradigm stands out as a primary approach to pre-train VLMs [18,34,47]. Contrastive learning relies on negative examples which train models to discriminate between them and the positive examples. If the negative examples are significantly different from the positive, the model can easily discriminate between the two. In contrast, if the negative and positive samples are similar, the model can learn to correctly discriminate only if it understands the subtle, fine-grained differences between the two. Such hard negative samples provide the model with greater predictive power. Inspired by metric learning [36], hard negative mining based on learned embeddings became a popular approach to improve contrastive learning [36], with different methods for mining negative samples being proposed [4,6,17,33,45,51]. To address the limitation that certain negative examples are hard to find in existing datasets, recent works have rather explored synthesizing negative text, and hard negative captions on standard image-text datasets [27] by word shuffling [49], negative verbs [31], negative text augmentation [8,9,16,31,38]. Compared to these approaches, our method focuses on mining hard negatives from both image and text domains, leveraging large-scale generative language and vision models.

Benchmarking Visual-linguistic Compositional reasoning

Compositional reasoning is the ability to understand complex scenes and text with diverse structures [42]. This includes for e.g. the capacity to discern between sentences with the same words but in a different order, or a scene with the same objects but slightly different colors, etc. There are many datasets [7,29,42,52] used for benchmarking different aspects of compositional reasoning. For e.g. Winoground [42] tests for rich structures in text order, CREPE [29] for constituting objects, their relations, and attributes, ARO [49] for shuffled word order. These benchmarks demonstrated that most SOTA VLMs showed poor performance when probed for compositional reasoning. Our method on the other hand is capable of understanding the subtle visual-linguistic cues thereby demonstrating superior performance.

Additional Image and Text Data Generation

Synthetic image generation using text-to-image models has proven effective in various computer vision tasks such as image classification [13], object detection [32,46], image captioning [44], and contrastive learning [2]. Generated images can complement existing datasets with a diverse set of images that may not be present in the existing datasets, enriching the overall range of available visual examples. [2] propose to improve contrastive learning with synthetic image generation, which is probably the closest to our work. However, it generates synthetic images from scratch, whereas we edit realistic images from a human-curated dataset. Generating additional text samples from LLMs is a very promising direction. LLMs such as ChatGPT and LLaMA exhibit well modeling of language structure [1,11] and thus can be utilized to manipulate text to enrich the text samples [9]. For example, [10] proposes to rewrite texts in COCO to improve contrastive image-text pertaining [22]. Similarly, we utilize LLM to generate contrastive text samples for detected objects in the image. Then we utilize text-to-image models to edit the original image to obtain negative examples.

3. Method

This section first outlines our data generation pipeline that leverages the latest state-of-the-art LLMs and multi-modal generative models for high-quality sample generation (See Fig. 1). We then present the finetuning framework that exploits our new dataset of hard negative examples to enhance the compositional reasoning abilities of VLMs.

3.1. Hard Negative Example Generation

Our framework can be used to enhance the richness of any image-caption pair dataset. For our experiments, we use data generated based on the human-curated image-text pair COCO dataset, but our approach can be extend to other datasets. In the following, we describe the core components of our generation pipeline. The main objective is to generating challenging negative examples which modifies local semantics of the scene and preserves the main context.

3.1.1 Image Analysis and Object Extraction

To accurately identify the regions of an image that need modification, we utilize a comprehensive annotation approach to decompose the scene into its constituent parts. Firstly we utilize off-the-shelf image-to-text models, specifically Tag2Text [15], for object detection and caption generation. As shown on the left side of Fig. 2, the Tag2Text model outputs a list of detected object labels in the image, along with a descriptive caption summarizing the entire scene. The descriptive caption is needed to ensure that all the identified objects have been covered in the caption.

However, Tag2Text lacks precise object localization capabilities and cannot demarcate precise object boundaries in the scene. To circumvent this issue, we integrate a segmentation model, such as Grounded-SAM [20,28] into our framework. The segmentation model takes as input both the image and a label of one of the objects in the same image.
its output generates a binary mask that highlights the corresponding object region within the image.

3.1.2 Concept Augmentation Using LLM

A detected object is transformed into a similar concept. Our aim focuses on modifying the object’s appearance, attributes, and categories while keeping other things and the overall context the same. This includes transforming an object into a more fine-grained instance with richer attributes (e.g., transforming a house to a Victorian one with a wooden entrance), or modifying the background into different environments (transforming the sky into rocky mountains). For that, we resort to LLMs, such as open-sourced LLaMA [43] and ChatGPT which offer impressive possibilities due to their in-context learning capacity [43]. Given a few examples and a test sample, LLMs generate the output that adheres to the structures implied by the set of given examples. For instance, as illustrated in Fig. 3, the input prompt presents an example where the word bread is modified into freshly baked loaf. When the LLM is prompted with a test case water, it generates a mountain lake that follows a similar modification pattern. To enhance the generation, a source caption is fed to the LLM as context information, encouraging the generation of object variations that are more compatible with the background. Additionally, the prompt is manually designed to guide the LLM toward producing the desired output, i.e., instructions such as using a maximum of three words give more control over the style of the generated outputs. Further, the LLM is instructed to generate keywords summarizing the detailed descriptions. The detailed descriptions are used in image editing, whereas the keywords are used to replace the caption. This strategy ensures a relatively precise image caption, as well as adding more fine-grained details to the visual scene in the image generation stage. Our approach can automate the entire process by conveniently utilizing the ChatGPT API.

Note that this generation process is open-ended and can synthesize an arbitrary number of data samples. Being able to train on a large dataset is where the power of contrastive learning comes from. This is as opposed to supervised methods whose training is restricted to the number of labeled samples which are expensive and tedious to collect.

3.1.3 Caption Editing

We replace the object in the original source caption with the newly generated phrase. For example, in Fig. 2, we replace the seagull with a bald eagle to create a caption for the newly generated image. Specifically, the source human-annotated caption a seagull flying over the water near a large ship is changed into a bald eagle flying over the water near a large ship. However, Tag2Text may produce tags, e.g., city, that are not presented in the source caption. For
that, the caption produced by the Tag2Text model is used to generate the ground truth caption for the modified image. For example, if the tag city is augmented to historic town by the LLM (explained in Subsection 3.1.2), we label the augmented image with caption: a seagull in the ocean near a harbor with a ship and a historic town in the background. We label the generated image with our edited caption as a ground-truth image-text pair.

3.1.4 Image Editing

To enable fine-grained modification of an image region, we adopt the concept of image inpainting for transforming the original object in the image into the target object. In this scenario, image inpainting involves removing a specific region and filling it with content that seamlessly integrates with the image’s context while considering the input information. The inpainting model takes multiple inputs, as illustrated on the right side in Fig. 2. One of the inputs is the binary mask that identifies the object region that is desired to be replaced with a new object in the source image (See Subsection 3.1.1). The other important input to the inpainting model is the object description obtained from the LLM, which indicates the target object we want the region to be changed into (See Subsection 3.1.2). The model’s output is a modified image that aims to replace the content with the desired object description while the remaining parts are unchanged. This process ensures that the modified images are realistic and similar to the original images.

3.1.5 Filtering

For each image, we randomly sample M objects to input to the LLM, which subsequently generates K text variations for each selected object. We employ filters to eliminate certain examples, e.g., wrong segmentation mask, missing parts in segmentation, confusion due to multiple objects, or the text is not descriptive enough. To address these issues, we utilize BLIP’s [25] ITM head, which outputs a confidence value if a given image and text pair matches. Notice that generated image might be too noisy that it barely changes even in pixels, to filter the generated images, we first calculate the standard deviation across them followed by averaging. Then we calculate the average of standard deviation within channels. Images are removed if the difference is smaller than a threshold value. More implementation details are in Appendix A.

3.2. Finetuning Framework

3.2.1 Preliminary: Contrastive Loss

The CLIP model operates on a pair of image I and text T, encoding them separately into embedding space \mathbb{R}^d, denoted as $e_I = E(I)$ and $e_T = E(T)$. The image-text similarity score is computed as

$$S(T, I) = \exp\left(\frac{e_T^T e_I}{|e_T| |e_I|}\right),$$

where temperature τ is a learnable parameter. During the training process, we sample a batch of N pairs of images and texts from the training dataset. The training objective aims to maximize the similarity between matched pairs and minimize the similarity between unmatched pairs. This is achieved through the contrastive loss, formulated as

$$\mathcal{L} = \sum_{i}^{N} \log\left(\frac{S(T_i, I_i)}{\sum_{j}^{N} S(T_i, I_j)}\right) + \log\left(\frac{\sum_{k}^{N} S(T_k, I_i)}{S(T_i, I_i)}\right).$$

The first part of the loss ensures that for each text T_i, we increase the similarity to its paired image I_i while decreasing the similarity to the remaining images in the batch. Similarly, the second part iterates over texts for a sampled image, encouraging similarity to the paired text and discouraging similarity to other texts in the batch. By employing this loss function, we finetune CLIP on our dataset.

3.2.2 Mixing of Hard Negative Examples

As our data generation method is unsupervised, it may produce images that do not correspond well with the expected
text. To mitigate the negative impact of noise in the dataset, we combine the generated samples with the original human-annotated COCO image-text pairs. Moreover, these image-text pairs, despite being of a smaller scale compared to the dataset used for pertaining CLIP, serve as a valuable resource to prevent the model from overfitting. We employ a simple strategy to sample a batch. For a batch, we sample rN pairs from our generated data and $(1 - r)N$ pairs from the original COCO dataset. These pairs are then concatenated to form a single batch of size N.

4. Experiments

This section describes the experimental setups, including the datasets used for evaluation, implementation details of the finetuning pipeline, evaluation metrics, and baseline models for a comprehensive comparison.

Datasets We evaluate our model on composition-oriented benchmarks of different scales and different compositional aspects. The following benchmarks are included in our experiments. 1) Winoground is a hand-crafted dataset of 800 image-text pairs, for each set of two texts, the texts have exactly the same words but with different word orders, the texts are mapped to two visually distinct images. 2) ARO has more than 50,000 text images paired with automatically built text examples with changed attributes, relationships, and word order, leveraging VG [21], COCO [27], and Flickr [48]. 3) CREPE introduces new negative texts for existing images in CC-12M [3], YFCC-5M [41], LAION-400M [40], where the number of changed words in the text is gradually increased, treated as different levels of complexity. For ARO and CREPE, their texts are generated with unique methods which are not covered in our training data. This makes them perfect candidates to verify the generalization ability of our approach. For the ablation study, we primarily perform experiments on Winoground, as it is manually verified and more challenging [7], since each text in this dataset has a corresponding hard negative image with complex semantics.

Our training dataset is generated based on the COCO dataset, which has a training split with 110k image-text pairs. In our experiments, we created variations for 12,656 unique images, where for each image, we selected approximately three objects on average and generated four text variations for each object. After filtering out low-quality generations, we ended up with 82,010 image and text pairs. We generate our test set from the COCO Karpathy test split [19] with 5k image-text pairs. Additionally, we manually verify the generation to better inform the model selection and more importantly, serve as sources for the community to facilitate visual language research. For our test set, we have 278 unique images with different image-text pairs for each of them due to our manual filtering. In the end, we obtained 122 images with 4 variations for each image, 139 images with 3 variations, and 17 images with 2 variations.

Implementation Details For dataset generation, we utilize the public implementation of Tag2Text1, Grounded-SAM2, and Stable Diffusion3. For finetuning, we follow the strategies in similar work [31, 49] and combine our generated sample with human-annotated labels. We set the ratio of real and synthetic data as $r = 0.5$. We utilize the OpenAI CLIP ViT/B-32 architecture. We use a batch size of 400, a learning rate of 1e-6, and a weight decay of 0.2, and fine-tune the model for 20 epochs. We employ the default image augmentation techniques that were used during pretraining CLIP. The experiments are conducted on an Nvidia A10G GPU with 24GB memory.

Evaluation We adopt the evaluation metric for different datasets, which are basically formulated as image-to-text and text-to-image retrieval tasks. For Winoground, we report image score, text score, and group score, meaning that the model should correctly choose the text among the two text candidates for each image. For CREPE, we report the hits@1 image-to-text retrieval score on the productivity set with complexity ranging from 4 to 12. For ARO, we employ their evaluation metric and report the mean of the performance for each subcategory.

5. Results

In this section, we present the comprehensive experimental results of our proposed method in comparison to the baseline across a diverse range of tasks. Moreover, we further verify the effectiveness of our generated dataset through an extensive ablation study.

<table>
<thead>
<tr>
<th>Model</th>
<th>Text Score</th>
<th>Image Score</th>
<th>Group Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIP</td>
<td>30.75</td>
<td>11.0</td>
<td>8.75</td>
</tr>
<tr>
<td>Ours</td>
<td>34.25</td>
<td>12.5</td>
<td>10.0</td>
</tr>
<tr>
<td>Relative Gains</td>
<td>+11.1%</td>
<td>+13.6%</td>
<td>+14.2%</td>
</tr>
</tbody>
</table>

Table 1. Comparison of our method with CLIP on Winoground benchmarks. We report the text score, image score, and group score which measure if the model can correctly match a text for an input image, or vice versa. The best performance is shown in bold. Our finetuned CLIP surpasses the baseline model by a substantial margin.

5.1. Evaluation on Visuo-Linguistic Benchmarks

Table 1, 2, 3 provide a detailed comparison of our fine-tuned CLIP model on our generated hard negatives with the released COCO checkpoints. We evaluate the model performance across a wide range of visual language reasoning

1https://tag2text.github.io/
2https://github.com/IDEA-Research/Grounded-Segment-Anything
3https://github.com/CompVis/stable-diffusion
Table 2. Comprehensive analysis of method performance on Winoground subsets [7] which evaluate distinct reasoning abilities. Numbers in the parenthesis indicate the number of samples in that subcategory. Our model excels in compositional reasoning tasks, while it may face challenges in tasks that require an understanding of unusual text which entails background knowledge.

tasks with various aspects of reasoning ability. Our findings demonstrate that our method outperforms CLIP by a substantial margin in the majority of these tasks. Specifically, in Tab. 1, we highlight the significant improvement achieved by our method in terms of complex image text matching tasks. Furthermore, we achieved a relative improvement of 22.5% in text score and 27.2% in image score on the compositional split filtered by [7]. This subset ensures image-text matching with only compositional ability, instead of other abilities such as visual difficulty. We report the performance of our method on detailed subcategories of Winoground with most test cases in Tab. 2. Our approach exhibits lower performance on the unusual text subset, which emphasizes understanding the nuanced meaning of the text. For example, matching the brave in the face of fear with an image that depicts a small cub confronting a fierce lion, is challenging for our approach. The presence of repetitive text samples in our augmented dataset may impact the finetuning of the text encoder (see Appendix B).

table with various aspects of reasoning ability. Our findings demonstrate that our method outperforms CLIP by a substantial margin in the majority of these tasks. Specifically, in Tab. 1, we highlight the significant improvement achieved by our method in terms of complex image text matching tasks. Furthermore, we achieved a relative improvement of 22.5% in text score and 27.2% in image score on the compositional split filtered by [7]. This subset ensures image-text matching with only compositional ability, instead of other abilities such as visual difficulty. We report the performance of our method on detailed subcategories of Winoground with most test cases in Tab. 2. Our approach exhibits lower performance on the unusual text subset, which emphasizes understanding the nuanced meaning of the text. For example, matching the brave in the face of fear with an image that depicts a small cub confronting a fierce lion, is challenging for our approach. The presence of repetitive text samples in our augmented dataset may impact the finetuning of the text encoder (see Appendix B).

dder category, wherein the word order is randomly changed, e.g., a white cat into cat a white. This outcome is expected as our training data does not encompass sentences that are grammatically incorrect. Tab. 3 confirms similar findings for CREPE. Our model demonstrates a significant improvement, especially in the atom category, where the objects and their attributes are changed. However, our model struggles with the negate category, such as transforming a dog into not a dog. This outcome is expected as our training dataset lacks such examples.

Figure 4. Model performance with increasing numbers of samples. Finetuning our model on incrementally increased generated data shows a consistent trend: as the data size grows, the model’s performance is improved. This suggests the potential for generating more training examples to further enhance the model. Note the x-axis shows the number of unique images.

Table 3. Comparison of our method with the baseline on ARO and CREPE datasets for text retrieval. Our method can discriminate texts which can be mapped to real scenes with different semantics (ARO-Attribute, ARO-Relation, CREPE-Atom) but struggles with linguistic phenomenons such as negation not in CREPE, or grammatically incorrect sentences in ARO-Order.

Table 4. Comparison of our method with CLIP and TSVLC on VL-Checklist. The scores are obtained by averaging each subcategory within object, attribute, and relation.

Similar to previous findings, Table 4 presents the improvements of our approach over CLIP on the VL-Checklist dataset in the object and attribute categories. The performance in the relation category is decreased as expected. Furthermore, we compare our method to a state-of-the-art approach proposed in TSVLC, which solely utilizes text augmentations. It is crucial to note that the comparison is not fair as the SOTA approach has been trained on a much larger dataset with a larger batch size and curated losses. Nevertheless, our model demonstrates comparable performance to that approach. A comprehensive analysis of detailed subsets of the VL-Checklist is in Appendix D.

5.2. Ablation Study

The influence of human-curated dataset COCO. Table 5 provides a comparison between our generated dataset and the use of only the COCO dataset, which contains ground truth image text pairs from human annotators. The COCO image text pairs are part of our constructed dataset,
and it was not clear if CLIP has incorporated COCO in its pretraining. To ensure the rigor of our analysis and examine the effect of existing labeled image-text pairs, we conduct an experiment comparing the performance of our method with CLIP that is finetuned only on the COCO dataset. Even though finetuning on COCO bring marginal improvement, our improvement is much more significant. This supports the assumption that the existing dataset may not contain sufficient hard negative examples.

Table 5. The influence of training data on the model performance on the Winoground dataset. CLIP-COCO is a finetuned CLIP model using our finetuning protocol on the COCO dataset. Ours denotes our final model finetuned on the mixture of our generated dataset and COCO.

<table>
<thead>
<tr>
<th>Model</th>
<th>Text All</th>
<th>Image All</th>
<th>Group All</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIP</td>
<td>30.75</td>
<td>11.0</td>
<td>8.75</td>
</tr>
<tr>
<td>CLIP-COCO</td>
<td>30.75</td>
<td>12.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Ours</td>
<td>34.25</td>
<td>12.5</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Table 6. Comparison of our finetuned model to the CLIP baseline on our generated test set, evaluated in a similar metric as Winoground [42].

<table>
<thead>
<tr>
<th>Model</th>
<th>Text All</th>
<th>Image All</th>
<th>Group All</th>
<th>Text 1</th>
<th>Image 1</th>
<th>Group 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIP</td>
<td>21.51</td>
<td>20.79</td>
<td>10.75</td>
<td>60.21</td>
<td>57.87</td>
<td>40.64</td>
</tr>
<tr>
<td>Ours</td>
<td>27.96</td>
<td>24.01</td>
<td>13.62</td>
<td>62.23</td>
<td>60.21</td>
<td>43.19</td>
</tr>
</tbody>
</table>

6. Limitations

Our work is limited by the performance of generative models such as ChatGPT and Stable Diffusion. We rely on the capacity of such models to produce high-quality examples. The diversity is mostly constrained by the power of LLMs. Additionally, we primarily manipulate local features such as objects and background, while may restrict the scope of negative examples generated, e.g., manipulating the relationship between two objects. Addressing these limitations is crucial for future improvements.

7. Conclusion

Our work tackles the limitations of existing visual language models in terms of compositional reasoning between text and images. We proposed a data generation pipeline that leveraged generative models to introduce challenging negative examples required for contrastive learning. Our proposed method effectively improves the compositionality and discriminative capabilities of VLMs. Experimental results demonstrate that training with our method consistently outperforms existing VLMs on various compositional reasoning benchmark datasets. This was done by addressing the scarcity of hard negative examples for both the image and text modalities. Our work highlights the importance of generative approaches in advancing the field of visual language understanding and bridging the gap between humans and VLMs on compositional reasoning tasks.

Acknowledgement This work was supported by the ERC Advanced Grant SIMULACRON.
References

[18] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. In International Conference on Machine Learning, pages 4904–4916. PMLR, 2021. 3

[41] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications of the ACM, 59(2):64–73, 2016. 6

