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Abstract

The next generation of device smartness needs to go be-
yond being able to understand basic user commands. As
our systems become more efficient, they need to be taught to
understand user interactions and intents from all possible
input modalities. This is where the recent advent of large
scale multi-modal models can form the foundation for next-
gen technologies. However, the true power of such interac-
tive systems can only be realized with privacy conserving
personalization. In this paper, we propose an on-device vi-
sual question answering system that generates personalized
answers using on-device user knowledge graph. These sys-
tems have the potential to serve as a fundamental ground-
work for the development of genuinely intelligent and tai-
lored assistants, targeted specifically to the needs and pref-
erences of each individual. We validate our model perfor-
mance on both in-realm, public datasets and personal user
data. Our results show consistent performance increase
across both tasks, with an absolute improvement of ≈36%
with KVQA data-set on 1-hop inferences and ≈6% improve-
ment on user personal data. We also conduct and showcase
user-study results to validate our hypothesis of the need and
relevance of proposed system.

1. Introduction
In the last few weeks, large-scale multi-modal models

like GPT-4 have taken over the world. With its seemingly,
human-like understanding of images and its interaction with
languages, these models seem ready to make us re-think
how we do every day mundane tasks.

These powerful models, however, are battled by major
challenges. The extremely large sizes (GPT-3.5 has ap-
prox. 175B parameters) along with high training require-

*These authors contributed equally to this work

Figure 1. Example Scenario of systems powered by POP-VQA

ments ( 350+ GPU days) remains a major bottleneck to
make it device product compatible for widespread offline
usage. The system ability to answer questions based on
an input image frame (Visual Question Answering), is one
such application that can not only empower users but also
be an important, life-enhancing, service for any visually
challenged user. From mobile-based accessibility, to IOT
systems, such systems can allow an increased mode of in-
telligent interaction for users. Any such system, however,
needs to be compatible to on-device implementations (low
memory footprints) as well as have the power to generate
personalized answers. Cloud based systems will invariably
affect accessibility, especially across low income regions,
and generalized systems are not of a lot of use in real-life
daily scenarios. For example, in an IOT scenario, if the
user wants to know who switched on the TV (while they
are in a different room), they would ideally want the Smart
Hub to respond with the name of the person rather than the
generic answers of man or kid. Keeping this in mind, we
propose an end-to-end, on-device system that generates per-
sonalized, user centric answers for queries on a visual frame
using relevant meta-data information from on-device user
knowledge graph(KG).

We first build an on-device knowledge graph, centered
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around the user, using the information available from vari-
ous sources like user profile, calendar, contacts and gallery
meta-data. This knowledge graph stores information such
as relationships of user, places visited, past and future
events, occupation etc., in the form of triples. We enhanced
our Vision Language model (VLM) based VQA system to
generate personalized answers by empowering the model to
choose and select relevant information from the user-centric
knowledge graph, along with a deeper understanding of im-
age and query alignment. This methodology allows our sys-
tem to be trained on open-knowledge and to perform effec-
tive inference on user data. Proposed system significantly
varies from existing SOTA techniques, in terms of task def-
inition and training objective. Instead of relying on an ex-
ternal model to extract query-relevant entities from a KG,
we train our model to choose the relevant information and
generate answers. The complete system is then optimized
to ensure efficient, on-device performance. We provide de-
tailed results, on open as well as curated data-sets, to vali-
date the efficiency and accuracy of the proposed system. We
also provide extensive user survey results to corroborate the
need of a personalized VQA system in user devices. To the
best of our knowledge, this is the first work that creates an
end-to-end application for personalized question answering
based on an image input.
The rest of the paper is structured as follows: Section 2 talks
about the related prior work. In Section 3 we look at the
proposed approach, including details on knowledge graph
creation process and proposed novel training methodology,
followed by the description of all experiments in Section
4. Section 5 notes the environment and results of the con-
ducted user study. We discuss possible impacts in Section 6
followed by conclusion and future work in Section 7.

2. Related Concepts

2.1. Vision Language Models

Vision language models (VLMs) leverage the synergy
between visual and linguistic features to perform multi-
modal tasks. While first proposed in the early 2010s, the re-
cent advancements in data availability and computing pow-
ers, supported by powerful algorithms, has led to significant
progress in the development of VLMs.

VLMs are trained on large parallel datasets of images
and texts, which teaches it the relationships between these
two modalities, via an aligned representation. This allows
VLMs to support a multitude of generative and classifying
tasks, such as image retrieval, image captioning, visual rea-
soning and visual question answering.

Most recent works [9, 10, 21, 28], use a cross-attention
based transformer to achieve this. The transformer is given
parallel image and text features and learns the alignment
between each other. A tighter coupling in the aligned space

is further realized by optimizing on various sub-tasks and
corresponding loss functions. In general, the cross attention
between language and vision features can be calculated as
(language to vision and vision to language respectively):
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where for the layer k, the language features are ĥk
i and

vision features are v̂ki . This cross attention is the “magic
sauce” behind teaching models the feature correlation.

2.2. Visual Question Answering

Visual question answering (VQA) is a rapidly growing
research area that enables machines to understand visual
content and answer questions about it. With rapid growth
in the fields of Computer Vision (CV), Natural Language
Processing (NLP) and Knowledge Representation and Rea-
soning, VQA performance has also seen rapid growths.
Earlier VQA models focused on combining the visual and
text information through handcrafted features. With the ar-
rival of Transformers [22] in 2017, along with significant
growth in NLP techniques, VQA models saw marked im-
provements. Recent models consist of three main compo-
nents: vision feature extractor, language feature extractor
and cross modal attention layers. Image (vision features)
and question (text features) are fed to cross modal attention
layers to build an aligned understanding. LXMERT [21]
gives fairly good accuracy than its predecessors using Faster
RCNN for image features and BERT encodings for question
features. Very recent models like COCA [27] and OFA [24]
uses ViT [6, 22] features for image feature extraction.

A branch of VQA task has been growing recently
known as Knowledge aware VQA (K-VQA). These mod-
els work on methods of efficiently integrating open knowl-
edge databases to effectively answer informative questions
from images. Earlier works looked at methods of “ques-
tion templating” to return external knowledge and form
the answers. Recent works look at methods of inject-
ing an external knowledge entity (returned from knowl-
edge graph datasets) to allow the model to learn and an-
swer [2,3,8,19,20]. The advent of Large Language Models
(LLMs) haven’t left this field untouched as well, with PICa
[26] using GPT-3 to answer from descriptive captions for an
image. All existing work, however, focuses on techniques
of answering from open knowledge sources like Wikipedia
entities. These works also limit themselves to only open
knowledge domain, and neither provide results on general
VQA performance nor do they extend their systems to per-
sonal knowledge integration.

2.3. Knowledge Graphs

Knowledge graphs are large-scale, multi-relational data
structures built to effectively capture the relationships be-
tween multiple real world entities. Coined in 1972 by Edgar
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W. Schenider [16] in the context of building modular in-
structional systems for courses, recent years have seen a
huge impetus into building efficient large scale graphs that
capture all common sense knowledge. This is achieved by
extracting information from a variety of sources such as text
corpora, databases, Wikipedia entries etc. Kertkeidkachorn
et. Al [7] proposed a hybrid approach that combined tradi-
tional rule based methodologies with learned vector similar-
ity for entity and relation extraction. More recently, Mondal
et. Al [12] presented a completely deep learning based ap-
proach to construct graphs from unstructured data. Once
created, SPARQL based techniques are used to query these
RDF (Resource Description Framework) graphs and extract
the relevant information.

A particular, and probably more relevant, extension of
knowledge graphs is “Personal Knowledge Graphs (PKG)”.
Unlike traditional KGs, these are device and user depen-
dent, and are built on top of all user related data that can be
collated from various on-device sources (contacts, calendar,
location etc.). This helps in building a structured graph re-
source about entities personally related to its user, their at-
tributes and the relations between them. Most mobile solu-
tions today build and use such personal KGs to help provide
users with a personalized device experience.

For our work, we first construct such a PKG using in-
formation available on user’s mobile device. This infor-
mation is converted to “triples” [1, 14] and inserted in the
knowledge graph. Further, some additional inferences are
performed to deduce personal data such as, but not limited
to, event-image associations, occasion, family and person
identification etc.

We use the above PKG information, at a one-hop level,
to power the model to generate relevant and personalized
answers. For our specific purpose, accuracy can only be
ascertained based on personal data, which by its defini-
tion is not publicly available. Hence, in order to com-
pare our results with other SOTA Knowledge VQA based
works, we include relevant common sense information from
KVQA dataset [18] as meta-data during training and infer-
ence. This allows us to compare our performance on public
datasets vis-à-vis other architectures (Section 4).

3. Proposed Approach
As described earlier, our aim is to build an end-to-end,

on-device compatible privacy preserving model, that can be
deployed on mobile and IOT devices to provide a seamless,
interactive and personalized question answering experience
for users.

Let us denote the VQA training data-set as D =
(Ii, Qi,Ki, Ai)

N
i=1, where Ii, Qi, Ki and Ai denote the im-

age, question, relevant knowledge and answer respectively
of the ith sample in a set of N samples. Meta-data knowl-
edge can be detailed as Ki = (Ek, Rk)

M
k=1, where Ek rep-

resents the recognized entity and Rk denotes its relation to
the primary user. Our training objective additionally targets
to ground the answer Ai generation to the corresponding
knowledge information Ki. Formally, the target is to maxi-
mize the conditional probability of the correct answer, given
the inputs:

maxP (Ai | Ii, Qi,Ki) (3)

In the following sections, we describe the steps involved
in building this system. Given the difference in task modal-
ities between training and inference, we also provide de-
tailed figures (Fig 2a and 2b, next page), describing the
individual systems. The model is trained on a set of pre-
processed, knowledge injected datasets (Section 3.3) that
empowers the model to learn to generate image aligned
answers for the user query and choose to “personalize” it
based on injected external knowledge. At inference time,
the model gets image information from user selection and
external knowledge from the User KG. The model extends
its learning to learn to pick and personalize the information
to generate answers relevant to the user needs.

3.1. On-device, User-Centric Knowledge Graph

To merge together the world of personalization with
visual question answering,enhance our answers with per-
sonal, user information. This graph is built using data from
the User Profile, Calendar, Contact, Gallery meta-data (in-
cluding location data) available on mobile devices. Further
details on data sources and usage is described in Appendix
B. KG construction primarily focuses on triples related to
the following categories:

• Relationships: family, friend, colleague, boss, pet etc.
• Events: annual events like birthday, anniversary etc.,

life events like graduation, marriage etc. and daily
events like exercise, meeting etc.

• Locations: places associated with user such as home,
work, school etc.

In cases where the desired information is not available in the
input data sources, we infer additional triples using image
processing techniques and pre-defined inference rules. A
few examples of such inferences are:

• Person and Person Name Inference
• Relationship with user
• Occasion of image
• Hero of event (e.g. for the event “daughter’s birthday”,

hero is daughter)
• Association b/w events and images

These triples are stored on an on-device embedded graph
database that is built on top of RDF4J 1 and made available
to applications via a SPARQL query interface. For every
chosen image, the external module returns a sub-graph that
includes all relevant entities and its relation to the user.

1https://www.rdf4j.org
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(a) Model Training with Open Knowledge entities

(b) On Device Model Inference with User Knowledge Entities

Figure 2. Diagrammatic representation of task definition and process during training and inference

3.2. Data-set Description and Curation

Most VQA models developed in recent years have been
trained and evaluated on the popular VQA2.0 data-set [4].
This data-set provides a diverse collection of image, ques-
tion and answer triplets. However, while the VQA2.0 data-
set has been instrumental in training and bench-marking
VQA models on good general understanding, it lacks any
data for knowledge-based VQA (K-VQA). For this task,
various independent data-sets have been introduced that in-
corporate the requirement of external knowledge to answer
user queries. KVQA [18], OK-VQA [11], A-OKVQA [17]
are a few examples of such openly available data-sets.

Our target objective however, doesn’t directly align to
either of the tasks. Our objective is more user-centered, to
build an application that users can use in their real day-to-
day lives. This model should, therefore, not only have high
accuracies on general VQA but also be able to integrate
user personal information and provide enhanced, personal-
ized answer when needed. With this in mind, we curate our
training and testing data-sets by a combination of VQA2.0
and KVQA data-sets (60 : 40 ratio of KVQA samples to
VQA2.0 samples), to allow the model to learn a general
alignment (from VQA2.0) as well as knowledge inference
capabilities (from KVQA). Our experiments in Section 4.1
also validate the need for mixed data usage. While KVQA
only contains open knowledge, our training methodology
ensures that the model is efficiently able to mold itself to

integrate any knowledge graph (user-centric for our appli-
cation) at inference.

• VQA2.0 Data-set: The VQA2.0 data comprises of
658k question and 121k images. The data-set covers a
wide range of topics, image types and question types.
The significance of the VQA2.0 data-set in our work
stems from our objective of developing a VQA system
that possesses a comprehensive understanding of the
scene depicted in the image and can generate answer
accordingly

• KVQA Data-set: The KVQA data-set comprises of
a collection of 184k question-answer pairs, centered
around 18k distinct individuals with 24k images. The
questions within the data-set requires sophisticated
reasoning abilities of multiple entities and relations to
answer. The information about the 18k entities can
be readily found in the Wikidata. The KVQA pa-
per proposes models that have been trained and evalu-
ated using both closed and open world experiments.

Date of birth Place of birth Date of death Place of death

Occupation Gender Religion Linguistic Ability

Spouse Alma Mater Career Details Current Organization

Table 1. List of chosen closed-world relations from KVQA data-
set
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As described earlier, we want to target only closed
world experiments to closely align our model to the
task of personal answer generation - grounded to the
user on-device knowledge graph. Hence, for our ex-
periments, we chose to use the 12 closed world entity
relations (Table 1), to closely align the experiment with
the context of our on-device VQA system We particu-
larly make the choice of not including any multi-hop
categories as the data-set required multiple levels of
open knowledge facts (eg, “Who is the founder of the
party that the person in the right belongs to?”). Within
the scope of on-device knowledge, such information
would never be available at the user level. However,
we include multi-entity and multi-relation categories
as they are more relevant to our target task.

3.3. Pre-processing

We face a unique situation with respect to modality dif-
ferences during training and inference. During on-device
inference, the user knowledge graph API returns all the re-
lated meta-data (at a 1-hop level) with respect to the cho-
sen image. Such an interaction, while crucial at a system
level where multiple applications access the same knowl-
edge graph, makes the training process more challenging for
us. Instead of having an external system that “selects” the
correct answer from the complete graph [13,29], our system
needs this “personal” knowledge integrated with each sam-
ple meta-data. Our model, thus, needs to be trained to not
only understand the question and its relation with the image,
but also needs to be taught how the meta-data provided re-
lates to the selected image. For example, for a query on the
lines of “Who is standing on the left of Mark”, the system
not only needs to be taught what “standing on left” repre-
sents, but also needs to learn the alignment in the location
co-ordinate (Bbox) of Mark and Marie. Our pre-processer
is thus, designed to merge the user query with the returned
meta-data information into a combined space with a [SEP]
token. To further refine performance over generative accu-
racies and keep token length in check, we implement the
following enhancements:

• Spatial Information: In keeping with the pre-training
objective of OFA [24], we add the entity bounding box
(BBox) information to the sample meta-data. During
training and inference, these entity BBoxes are ex-
tracted using MTCNN [5]. We integrate this along
with the entity name to teach the model spatial align-
ment to person name.

• Personal Entity Names : One issue we noticed dur-
ing the generative process was the system’s inability
to correctly spell out more complex names (Jacobo
Árbenz → Jacob Arbenz). To handle these errors and
reduce the token length, we replace all names with

placeholder information and re-map it to the required
answer in post-processing.

• Entity Personal information: We scan the KVQA
data-set and choose the subset of examples most rel-
evant to us (Table 1). For these samples, all the re-
quired information (birth details, occupation etc.) is
tokenized and added to the meta data. This allows for
task commonality between training and inference.

• Open Knowledge: Certain questions in the training
data, even at 1-hop level, needed external knowledge
(such as the dates of World War II). While such sam-
ples are irrelevant for our inference, we wanted to in-
clude it to allow for comparisons with SOTA models.
Such information is integrated with the question itself
(open knowledge not needed for on-device inference
as it is out of scope for our solution).

The VQA2.0 data-set doesn’t include any open knowledge
information. However, to ensure fair data representation,
placeholder information is added in the meta-data for such
training samples.

3.4. Model Description and Training Methodology

We build our POP-VQA model on top of a pre-trained
VLM model. We choose OFA [24] as the foundation of our
experimentation due to:

• OFA-base model reports a size of 180M parameters,
making it more suitable for on-device optimizations
than the recent extremely large scale models that go
into billions of parameters.

• OFA builds task-agnostic capabilities by mapping var-
ious alignment tasks such as question-answer prob-
lems, making its understanding stronger.

• OFA’s pre-training data-structure aligns with our meta-
data injection methodology, making the model easier
to adapt to external knowledge

OFA uses a transformer based architecture to build the
aligned space on top of RESNET101 (for image feature ex-
traction). They also use the techniques of sparse coding to
reduce the sequence length of image representation. This
model is pre-trained on 5 tasks (visual grounding, grounded
caption generation, image text matching, image caption-
ing and visual question answering) on ≈50M images. The
model is optimized with cross entropy loss and uses beam
search for effective generation. This is pre-trained for 300K
steps with Adam Optimizer.

We use this pre-trained model to fine-tune for our task
of personal knowledge based VQA. Training data consists
of a combination of VQA2.0 and KVQA datasets, as de-
scribed in Section 3.2. No personal data is used for the
training procedure, as an important metric for our system
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was its ability to effectively generalize to user personal data.
We inject external knowledge (relevant to 1-hop from user)
while training using the methodology described in Section
3.3. All images are resized to 480X480. This model is
then fine-tuned for 30K steps with a learning rate of 5e− 5
and label smoothing of 0.1. Exponential moving average
with a decay of 0.999 is used to further refine and general-
ize the model. Such a training technique allows for a two-
step alignment process. The text encoder self-attention al-
lows the model to learn the relation between the query and
the relevant meta-data information, while the multi-modal
causal self-attention learns the relation from image to query
and meta-data . This allows the system to generalize ef-
fectively, even when the task is modified from a generic
knowledge based VQA to a more personalized, user spe-
cific VQA. The system is able to retain its visual reasoning
knowledge, allowing for high performance on general vi-
sual queries as well.

3.5. On-Device Deployment

The model is implemented and trained using Pytorch li-
brary [15]. We follow the pruning method as proposed
in [25] followed by int8 quantization to reduce the model
size and make it suitable on on-device deployments. We are
able to achieve a compression ratio of 80% by following
this approach. The optimized model is then converted to
ONNX format 2 for efficient inference on mobile devices.

4. Experiments & Results

We aim to evaluate our model on two crucial founda-
tions - (i) Real-time, user personal data performance and
(ii) Performance on open-datasets. This two pronged ap-
proach helps us validate that not only does our model learn
the taught objectives, but also easily generalizes to out-of-
scope, open situations with person-centric knowledge. Ad-
ditionally, as we target a solution that can be integrated in
mobile and IOT systems, performance validation on real
user data becomes mandatory. We thus split our testing into
two phases:

• General Testing: We test our model on two benchmark
data-sets - KVQA and VQA2.0. As described earlier,
these data-sets are chosen for its closest relevance to
our task. Our model is evaluated on the curated test-
sets of both these samples (43K image-question pairs
combined from KVQA test data and VQA2.0 valida-
tion data).

• Personal Testing: With the aim of getting real-time
validation, we choose a group of 100 independent
users (age and gender demographics equally spread).

2https://github.com/microsoft/onnxruntime

Question Type MemNet UNITER POP-VQA(K) POP-VQA(K+V)

1-hop 61.0 65.7 89.8 83.7
Boolean 75.1 94.6 95.7 97.8

Comparison 50.5 90.4 89.6 94.1
Counting 49.5 79.4 73.2 75.0

Intersection 72.5 79.4 72.3 69.5
Multi-Entity 43.5 77.1 94.9 90.0

Multi-Relation 45.2 75.2 93.27 92.7
Spatial 48.1 21.2 83.89 68.6

Subtraction 40.5 34.4 37.0 26.7

Overall – – 85.8 83.5

Table 2. Comparison of model accuracy on KVQA test data-set
based on question type. POP-VQA(K) refers to model trained only
on knowledge data. POP-VQA(K+V) refers to model trained on
both KVQA and VQA2.0 data-set. Overall accuracies not men-
tioned for SOTA models due to task mismatch.

Category OFA-base POP-VQA Category OFA-base POP-VQA

Activity 65.99% 61.04% Complex Features 71.38% 62.16%
Boolean 89.73% 75.78% Complex Inference 69.24% 62.74%

Color 84.19% 72.54% Object identification 85.62% 74.89%
Comparison 84.24% 73.68% Person identification 37.30% 86%

Counting 69.10% 77.24% Spatial understanding 69.52% 93.8%
Location identification 42.78% 97.01% Miscellaneous 66.79% 73.49%

Overall 75.77% 71.31%

Table 3. Comparison of POP-VQA (K+V) model on VQA2.0 cu-
rated data-set with OFA-base performance. Categories have been
manually generated from the VQA2.0 mentioned question types

For the purposes of evaluation, we collect their per-
sonal images (total of 5k questions on 1.5k images)
with relevant user KG information. The system is
also integrated on their personal devices, to allow fur-
ther testing and relevant reporting of user experience.
All participants are clearly explained the target of
our model, and encouraged to ask questions that they
would in their daily lives. More details are described
in supplementary materials.

4.1. Model Performance : Knowledge VQA

Our first and most important performance metric remains
the model performance on knowledge based VQA samples.
As described in Section 3.2, we made the deliberate deci-
sion to focus on only 1-hop data. This choice was driven
by the fact that, in our scenario, only the entity depicted
in the image and its direct relationships with other entities
within the image hold significance, and best aligns with the
requirements of our personalized VQA system. We first
fine-tune our model on this subset of 134K image-question-
answer triplet and evaluate the performance on a similar
subset of KVQA test data. We utilized the works of Gar-
cia et.al in [2] and Vickers et.al in [23] as our baselines for
performance evaluation. We choose these works primarily
because of their closest similarity to our target applications.
Other works are less relevant as they focus on analysis of
external knowledge graph to answer questions instead of
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training the model to build this understanding.
In Table 2, we note the performance of our model, with

comparisons across the various chosen subsets. We saw a
remarkable 36.7% improvement in accuracy for 1-hop data
when compared to the [23]. We attribute this significant
enhancement to the improved training of self-attention lay-
ers. Spatial reasoning also saw a huge accuracy jump of
74%. This progress can be credited to the incorporation
of grounded captioning during the pre-training phase of the
OFA model. An interesting observation is seen on subtrac-
tion question types (eg. calculating the age gap between
two individuals). As can be noted, there is no significant
improvement compared to earlier models. On analyzing the
predictions we found out our model tends to predict a num-
ber that was relatively close (±1) to the correct answer but
not same. We aim to delve deeper into this issue and iden-
tify potential solutions, ultimately enhancing its accuracy
and robustness.

We also evaluate our POP-VQA(K) model on the VQA
2.0 val data, with the assumption that pre-training on VQA,
would allow more decent performance in general, non-
knowledge based scenarios. However, our findings indicate
that the results obtained were rather poor. These outcomes
suggest that although the model demonstrated proficiency
in KVQA tasks, its performance on the more extensive and
diverse VQA2.0 data-set was not as successful - proof that
the latent space had become aligned to a specific tasks. This
highlights the need for further fine-tuning the model in or-
der to enhance the generalized answering capabilities.

4.2. Model Performance : Integrated VQA

As described above, to enhance the system performance
of generalized answering, we conduct fine-tuning and ex-
perimentation with a mixture of data-sets. We combine the
data-sets described in Section 3.2, and empirically deter-
mine that a 60 : 40 ratio of knowledge VQA to generalized
VQA data samples (134K and 90K samples respectively)
provides the best performance. This aligns with our intu-
ition as well, where while learning to understand an im-
age to answer queries is difficult, the difference in modality
for personalized VQA (as compared to pre-training) needs
significant training samples. OFA pre-trains with the ques-
tion answering task, making it easier for the model to retain
that ability with fewer samples during fine-tuning. This data
was then pre-processed (Section 3.3) and used to fine-tune
the model. All hyper-parameters remain same as earlier.
We note the detailed results and analysis in Table 2 [POP-
VQA(K+V)] and Table 3. In Table 3, the category-wise
performance is provided after collating the 63 mentioned
question type in the data-set [4].

A quick comparison of results in Table 2 and Table 3
show that not only is our system now able to generate per-
sonalized answers, but it still retains the image understand-

ing capabilities. Especially in questions that cover person
and location identification, and counting, we note an in-
crease in performance on both knowledge mixed data-set
(Table 2) and VQA2.0 data-set (Table 3). This is a direct
reflection of the commonality of tasks, and shows a strong
alignment between the image representation to the meta-
data information.

We also note slight drop in general VQA performance
(Table 3) as compared to OFA-base model. Especially in
cases of complex understanding and comparisons, POP-
VQA under-performs with respect to OFA-base. This how-
ever, seems a direct casualty of the reduced VQA2.0 train-
ing samples to maintain the required sample ratios. How-
ever, as we discuss next, this degradation is not noted in
real-time performance. This is also a reflection of the kind
of questions that are asked in daily scenarios, which are
more aligned to identification of the person, location and
activities and their interaction with each other. When tasked
with more generalized questions, aligned to daily life situa-
tions mobile, IOT and smart robot applications, POP-VQA
outperforms a generic VQA model in all aspects.

In further work, we will include other open-knowledge
datasets, accordingly giving us the power to increase the
VQA2.0 training samples. This, we believe, would lead to
more performance gains, especially in the cases where there
is significant scope of improvement.

4.3. Model Robustness

Strong performance on open-datasets only prove model
validity within the same data domain. While necessary, it
is by no means sufficient to prove the robustness and real
world applicability of a solution. We, thus, test our model
on user’s personal data post solution integration with their
devices. We collect 1.5K images with 5K questions and its
related meta-data. Model performance on this data-set is
noted in Table 4. As we cannot compare performance with
other SOTA models on this data-set (due to mismatch in
task definitions), we instead compare our performance with
a general, non-personalizing, model (OFA-base). We com-
pare the core KPIs of accuracy and latency to get a measure
of system performance. Accuracy@N is measured as the
percentage of times the required answer came in the top-N
options. Latency is the end-to-end system processing time
on Samsung S22 device. Integration of personalization does
increase system latency, due to increased data processing at
inference time. However, this marginal increase (≈ 90ms)
leads to significant accuracy improvements (≈ 7%) as well
as increased answer relevance. Especially in cases like per-
son/gender identification, counting and location/event un-
derstanding, this additional meta-data grounds the output to
a relevant domain and provides validation for generated an-
swers - thus reducing erroneous cases. Further qualitative
examples to validate increase in answer relevance has been
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Model Accuracy Latency Model
SizeTop-1 Top-3 Top-5

Generic
VQA 77.71% 89.79% 92.23% 682ms 220MB

POP-VQA 82.91% 93.57% 93.89% 770ms

Table 4. Model Performance on personal data testing and
on-device KPIs

provided in supplementary materials.

4.4. Model Efficiency

Another major metric for any on-device solution to be
commercially viable is in terms of its memory-space and la-
tency. As described in Section 1, on-device deployment was
crucial for wide-spread and inclusive application. Along
with low footprints, real-time answering is imperative for
a seamless and interactive experience. We thus, evaluate
our model on these parameters and note the performance in
Table 4. Note that all latency numbers are provided as an
average of inference runs on user devices.

5. User Study
In an effort to understand the true impact of the proposed

solution, we conducted a user study with test participants.
We integrate our system with user’s personal devices and
allow participants to ask the system any question from their
personal gallery photos. The results of this study are noted
in Table 5. As we can see, users not only found this sys-
tem more accurate and relevant than a generic VQA system,
but also believe that such solutions are the need-of-hour to
make smart systems truly intuitive and interactive. Partici-
pants also noted and liked that with an on-device solution,
their data is truly private but they can still interact with the
systems at a personal level. This study further validates the
need of personalization with generated answers.

Model System
Accuracy

Answer
Relevance

Need for
Solution

Ease of
Usage

Generic VQA 8.1 2.6 N/A N/A
POP-VQA 8.8 9.3 9.5 9.1

Table 5. User Study: Average scores (/10) from 100 participants

6. Societal Impact - The Good & the Bad
Our work is motivated with solving some of the various

challenges that the recent, large-scale models create. As our
model name suggests - we build our model to have 3 major
features, namely (i) privacy conserving, (ii) low model sizes
and (iii) personalized inferencing. The targeted aim of on-
device compatibility manages to “kill 2 birds with 1 stone”.

On-device inferencing not only preserves user data privacy
(as no information is moved out of device), but also pro-
vides users with limited internet access (especially in low
resource locations), an equivalent experience. This allows
for a more universal usage. Optimized model sizes also di-
rectly translates to a faster inference time, which coupled
with personalized inferences creates a seamless, human-like
interaction experience for users. This is especially useful
for visually challenged users, empowering them to indepen-
dently navigate and interact with the world. It goes a long
way in promoting inclusion and autonomy, enhancing their
overall quality of life.

However, no story is complete without some limitations.
To meet our objective of an on-device, personalized solu-
tion, we had to trade-off with model capabilities. Keeping
a product perspective, we limit our model’s knowledge to a
1-hop, personal level. This curtails the scope of queries the
system can answer. Our solution, is also limited by the ac-
curacy and speed of knowledge graph creation. Using a pre-
trained model on open-datasets also increases the chances
of bias and skewed representation in the model. As we con-
ceptualize this model for real-life implementation, having
systems in place to keep the bias (gender/race/sexuality) in
check, becomes more crucial.

7. Conclusion
In this work, we propose a personalized, on-device,

VLM to answer any user query for an input image. While
we show our experiments on top of a pre-trained OFA
model, we believe our training methodology can be in-
tegrated with any SOTA model after task targeted pre-
training. We use attention layers to build a dual alignment,
i.e. alignment of meta-data knowledge to queries and strong
aligned visual representations. This ensures that the gener-
ated answers are personalized and more relevant to the user
query. We show significant improvements in 1-hop and spa-
tial performance from previous SOTA models (aligned to
our task objective). Our results also note a ≈6% increase
in accuracies with our training methodology for the chosen
architecture, on user’s personal data. With an aim to build
a system that can truly empower user experience, we also
conduct a user study to qualitatively evaluate our model.
Our participants found the personalized results significantly
more relevant and noted a very high need for integration
of proposed solution into the device ecosystems. In future
work, we want to extend this model to be trained with a
larger data-set (combining other open knowledge data-sets
post domain validation), to improve system performance.
Our model currently lacks OCR capabilities. We want to
build and integrate such a solution to allow the model to
“read & answer”. Our final target is to build contextual
understanding into our model, allowing for a more natural,
dialog-like, interaction system.
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