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Abstract

We present a novel framework for generating adversarial
benchmarks to evaluate the robustness of image classifica-
tion models. Our framework allows users to customize the
types of distortions to be optimally applied to images, which
helps address the specific distortions relevant to their de-
ployment. The benchmark can generate datasets at various
distortion levels to assess the robustness of different image
classifiers. Our results show that the adversarial samples
generated by our framework with any of the image classifi-
cation models, such as ResNet-50, Inception-V3 and VGG-
16, are effective and transferable to other models causing
them to fail. These failures happen even when these mod-
els are adversarially retrained using state-of-the-art tech-
niques, demonstrating the generalizability of our adversar-
ial samples. We achieve competitive performance in terms
of net L2 distortion compared to state-of-the-art bench-
mark techniques on CIFAR-10 and ImageNet; however, we
demonstrate that our framework achieves such results with
simple distortions like Gaussian noise without introducing
unnatural artifacts or color bleeds. This is made possi-
ble by a model-based reinforcement learning (RL) agent
and a technique that reduces a deep tree search of the im-
age for model sensitivity to perturbations, to a one-level
analysis and action. The flexibility of choosing distortions
and setting classification probability thresholds for multi-
ple classes makes our framework suitable for algorithmic
audits.

1. Introduction

Neural networks’ susceptibility to adversarial perturba-
tions has raised concerns about their reliability. Adversar-

*Corresponding author. †Equal contribution.

ial perturbations are slight alterations to input data that can
cause neural networks to make confident yet incorrect pre-
dictions. Despite efforts to understand and counter adver-
sarial perturbations, existing defense strategies have shown
limited improvements in robust accuracy. This empha-
sizes the need for alternative approaches to evaluate and en-
hance neural network robustness. Recent research suggests
that generating additional subsets from the main dataset
through perturbations/augmentations can improve robust-
ness in fully-supervised and semi-supervised settings [14].
To utilize the original training set more effectively, modifi-
cations are introduced. One popular recent approach, pro-
posed by Hendrycks and Dietterich (2018), aims to evaluate
model robustness and ultimately enhance it [14].

We propose a machine learning-driven adversarial data
generator that introduces natural distortions to create an ad-
versarial subset from an original dataset. Our approach for-
mulates the generation of adversarial samples as a Markov
Decision Process (MDP). By dividing the input sample into
patches, we aim to identify and add distortions to the most
vulnerable areas, leading to misclassification. Our genera-
tor utilizes an addition and removal mechanism, mimicking
a deep tree search to find vulnerabilities and add noise in
the right locations. Additionally, our method allows users
to incorporate custom datasets and distortion types for gen-
erating adversarial samples.

As part of our work, we provide adversarial subsets de-
rived from CIFAR-10 and ImageNet datasets. We evalu-
ated the performance of adversarially trained models us-
ing state-of-the-art techniques from the literature on our
dataset. The performance of these models on our dataset
is noticeably lower than on the clean dataset and a competi-
tor’s benchmark [14]. We achieved an average L2 value of
2.48 (evaluated over 1,000 ImageNet samples) and a maxi-
mum of 4.74. Our benchmark will assist future initiatives in
building robust architectures, which is crucial considering
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the increasing concerns and requirements for robust deep-
learning models.

The main contributions of this paper are as follows:

• We propose a framework to generate adversarial
benchmarks with a custom mix of distortions for eval-
uating the robustness of image classification models
against both true negatives and false positives.

• We enable robustness audits for distortions character-
istic of use cases at deployment for multiple distortion
thresholds.

• We achieve competitive performance with the state-
of-the-art on multiple metrics of minimum distortions
needed for misclassification.

• We are competitive with the state-of-the-art on improv-
ing robustness with adversarial training.

2. Related Works
2.1. Data augmentation and adversarial samples for

improving robustness

Several data augmentation techniques have been pro-
posed to enhance the robustness of deep learning models.
Cutout [8] masks out regions of input images which forces
models to rely on alternative informative features. Mixup
[33] generates virtual training samples by interpolating be-
tween pairs of images and labels, reducing overfitting and
increasing robustness. Manifold Mixup [29] extends this
idea by interpolating between feature representations. Cut-
Mix [32] combines Cutout and Mixup by replacing masked
regions with patches from other images. AugMix [15] ap-
plies diverse augmentations to images, encouraging mod-
els to learn from a wide range of variations. Randaug-
ment [7] applies random sequences of augmentation poli-
cies. RandConv [31] applies random convolutions as data
augmentation. ALT [12] uses adversarially learned trans-
formations to obtain both objectives of diversity and hard-
ness at the same time. AutoAugment [6] and other recent
works [22–26] uses Reinforcement Learning (RL) to dis-
cover optimal data augmentation policies. These techniques
manipulate training data through various transformations,
improving the models’ robustness and generalization to ad-
versarial perturbations.

2.2. Adversarial training for improved robustness

Recent research has explored various approaches to im-
prove the robustness and out-of-distribution (OOD) per-
formance of deep networks. Diffenderfer et al. [9] fo-
cused on compressing deep networks to enhance OOD ro-
bustness, demonstrating improved performance in handling
OOD samples through network compression techniques.

Kireev et al. [16] investigated the effectiveness of adver-
sarial training against common corruption, identifying the
strengths and limitations of this approach. They explored
the performance of adversarially trained models and sug-
gested areas for improvement. Modas et al. [19] proposed
PRIME, a framework that leverages primitive transforma-
tions during training to enhance robustness against common
corruptions, achieving significant improvements in model
performance on corrupted inputs. Wang et al. [30] intro-
duced better diffusion models in adversarial training to en-
hance its effectiveness against adversarial attacks. Tian et
al. [28] conducted a comprehensive analysis of the robust-
ness of Vision Transformers (ViTs) towards common cor-
ruptions. Geirhos et al. [11] presented a study on the bias
toward texture in ImageNet-trained Convolutional Neural
Networks (CNNs), showing their reliance on texture rather
than shape cues. Erichson et al. [10] developed NoisyMix,
a framework that combines data augmentations, stability
training, and noise injections to improve the robustness of
deep neural networks.

2.3. Benchmark to evaluate robustness

Data augmentation techniques and benchmark datasets
play a crucial role in evaluating and enhancing the robust-
ness of image classification models. Hendrycks and Diet-
terich [14] introduced multiple datasets based on ImageNet
and used them as benchmarks for evaluating the robustness
of models to input corruptions. ImageNet-C contains com-
mon visual corruptions applied to the ImageNet dataset and
allows researchers to assess model performance under var-
ious types of visual distortions. ImageNet-A focuses on
evaluating robustness to common image corruptions by pro-
viding a standardized evaluation environment. ImageNet-
P, on the other hand, assesses the vulnerability of models to
subtle perturbations by introducing imperceptible changes
to deceive the models while maintaining visual similar-
ity. The Adversarial Robustness 101 (AR101) benchmark
[5] provides a comprehensive evaluation of model robust-
ness against different attack types using the CIFAR-10 and
CIFAR-100 datasets. PACS, Office-Home, MNIST-C, and
WILDS benchmark datasets [1, 18, 20, 21] are designed to
evaluate the domain adaptation and out-of-distribution ro-
bustness of the models. Lastly, the Robustness via Dataset
Manipulation (RoD) [27] benchmark focuses on evaluat-
ing adversarial robustness against physical-world attacks by
including real-world images with physical modifications.
These benchmarks enable researchers to compare the per-
formance of models and defense techniques in challenging
scenarios.

3. Design of the Benchmark Generator
The evaluation for a machine learning model can be rep-

resented as y = argmaxf(x; θ), where x denotes the in-
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Figure 1. Adversarial samples with multiple distortion types (original picture from ImageNet)

put image, y represents the prediction, θ represents the
model parameters, and the function f represents the ma-
chine learning model’s output,

3.1. Markov Decision Process (MDP) formulation

3.1.1 MDP for un-targeted attack

An un-targeted black-box adversarial sample generator,
used for true negative evaluation, without access to the θ,
generates a perturbation δ such that ytrue ̸= f(x + δ; θ).
Lp norms specify the distance between the original and the
adversarial sample, D(x, x + δ). Our objective is to cause
misclassification while keeping D to a minimum.

State St contains a number of lists related to the clas-
sification probability and sensitivity of the image regions.
Action At represent the perturbation to obtain the adversar-
ial sample defined as:

At : x → x+ δt, (1)

where δt defines the perturbation at time step t, or more
specifically which patches of the original sample x are go-
ing to be distorted. We define a probability dilution (PD)
metric, which measures the extent to which the classifica-
tion probability shifts from the ground truth to the other
classes. The difference between the PD of the altered and
the original image as a result of an action at each step
(∆PD), is a measure of the effectiveness of the action.
Moreover, the change in L2 distance (∆L2) as a measure
of the distortion added is the cost for action. The reward is
defined by the normalized PD as represented in equation 2.

Rt = ∆PDnorm = ∆PD/∆L2 (2)

The change in the distribution of the probabilities across
classes is updated in the state vector at every step such that
the RL agent can choose the optimum action at every step,
maintaining the Lp and the number of steps (queries).

3.1.2 MDP for targeted attack

A targeted black-box attack, used for false positive evalua-
tion, without access to the θ generates a perturbation δ such

that ytarget = f(x+δ; θ) s.t. ytarget ̸= ytrue. Lp norms specify
the distance between the original and the adversarial sam-
ple, D(x, x+ δ). Our objective is to cause misclassification
while keeping D to a minimum. The action At will be de-
fined as in equation 1.

We define a probability enhancement (PE) metric, which
measures the extent to which the classification probability
of the non-ground truth target class goes up. The difference
between the PE of the altered image and the original image
as a result of an action at each step (∆PE), is a measure of
the effectiveness of the action. Moreover, the change in L2

distance (∆L2) as a measure of the distortion added is the
cost for action. The reward is defined by the normalized PE
as represented in equation 3.

Rt = ∆PEnorm = ∆PE/∆L2 (3)

The change in the distribution of the probabilities across
classes is updated in the state vector at every step such that
the RL agent can choose the optimum action at every step,
maintaining the Lp and the number of steps/queries.

3.2. Dual-action speedup for Deep Tree Search

3.2.1 Overview and Modification to MDP

In the proposed method, the input image is divided into
square patches of size n × n. For a true negative case, the
sensitivity of the ground truth probability (PGT) to addition
and removal of distortion is computed for each patch. Based
on this sensitivity information, our agent takes two actions
at each step: select patches to which distortions are added
and selected patches to which distortions are removed. In
such a case we can define the state St and action At for
timestep t as:

St = S+
t + S−

t (4)

At : x → x+ δ+t − δ−t , (5)

where for timestep t, S+
t is the state after the add distortions

perturbation δ+t is performed, and S−
t is the state after the

remove distortions perturbation δ−t is applied.
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Deep Tree Search (DTS) Vanilia DTS  requires search of multiple levels of the tree for the best action at each step
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Figure 2. Dual-action architecture simplifying deep tree search

This process is iteratively performed until the model mis-
classifies an image or until the budget for the number of
maximum allowed steps is reached. In the case of mixed
filter setting, the RL agent also needs to choose the opti-
mal type of distortion filter for each step. For introducing
the distortion at different threshold levels for untargeted ad-
versarial samples, the process continues until the threshold
level of distortion is reached.

A similar technique is adopted for false positive bench-
mark generation with targeted adversarial samples, where
the distortions are added to improve the classification prob-
ability of a non-ground truth class.

3.2.2 Intuition for dual-action

The idea of having two actions, addition, and removal, is in-
spired by the limitations of the RL techniques used in board
games. In that setting, the most effective moves are deter-
mined through a computationally expensive process called
Deep Tree Search (DTS), which looks ahead multiple layers
on a longer time horizon as the game progresses. However,
unlike board games, in this problem, we have the ability

to undo previous moves if we realize they are suboptimal.
In our framework, this is achieved by removing distortions
added to patches in earlier steps and adding distortions to
other patches, considering the current state of the modified
image. This is similar to replaying all the moves in one step
while analyzing the sensitivity of the image only at its cur-
rent state, without performing a complete tree search.

By adopting this approach, we can significantly reduce
the computational complexity from O(Nd) to O(N). Here,
N represents the computation complexity of evaluating one
level and corresponds to the image size, while d represents
the depth of the tree search, which indicates how far ahead
we look in the decision-making process.

3.2.3 Sensitivity Analysis

For the sensitivity analysis, distortion filters (masks) of
size n × n are created with specific hyperparameters like
distortion levels. These hyperparameters remain constant
throughout the experiment. The filters are applied to
square patches during training and validation to measure the
change in the ground truth classification probability (PGT).
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Figure 3. Mix of distortions for Adversarial Sample Generation

The hyperparameters of the distortion filters are chosen with
minimal values to gradually introduce distortion and con-
trol the Lp norm effectively. The distorted samples are con-
strained to the range of [0, 1]d, where d is the dimensional-
ity of the data. When multiple filters are available for the
reinforcement learning (RL) agent to choose from, the hy-
perparameters are selected to have the same impact on the
Lp norm after applying any filter.

3.2.4 State Vector

The state vector was designed with the output of the image
sensitivity analysis ordered based on the drift in PGT for
patches during addition (LIST+) and removal (LIST−)
of distortions. In addition, the classification probabilities
of each class at every step (LISTP ) and the Lp norm are
included in the state vector.

3.3. Flexibility to use custom distortions

Our framework offers great versatility by allowing users
to apply any type of distortion of their choice. The RL algo-
rithm within the framework learns a policy that can adapt to
different filters, ensuring that adversarial samples are gen-
erated with minimal distortion, denoted as D. Additionally,
the algorithm can handle a combination of filters. At each
step, the agent determines which filter (e.g., Gaussian noise,
Gaussian blur, brightness adjustment) to use and the num-
ber of patches to which the filter should be applied. In our
experiments, we explored multiple filters and presented four
naturally occurring distortion filters in this paper. Figure 1
displays adversarial examples generated using different fil-
ters, while Figure 3 showcases adversarial examples gener-
ated with a mixture of various distortion filters.

4. Metrics and Experiments

We evaluate our proposed method with two different
types of distortions: Gaussian noise and Gaussian blur.
Since these types of common corruptions can be subtle

or destructive, we generate data with five levels of sever-
ity s and aggregate their scores. Clean error (Eclean) is
defined as the top-1 misclassification of samples from the
clean test set by evaluating the pre-existing classifier on the
un-perturbed dataset. Corrupt error (Ecorrupt) is defined as
the top-1 misclassification of the samples from the corrupt
dataset by evaluating the pre-existing classifier on the per-
turbed dataset. The performance of the classifier across the
different severities levels of corruption can be represented
as:

CEcorrupt =

5∑
s=1

Ecorrupt
s (6)

Accuracycorrupt = 1− CEcorrupt (7)

CEdegradation =

5∑
s=1

(
Eclean

s − Ecorrupt
s

)
(8)

Furthermore, different corruptions pose different levels of
difficulty as the effect of adding Gaussian noise, Gaus-
sian blur, and illumination do not have the same impact on
the sample. Note that in our results, for better robustness,
we calculate the mean across the different corruption tech-
niques used in this work (denoted as mCE). Finally, accu-
racy degradation is the decline in the classifier performance
when evaluated on both clean and corrupted datasets.

Our benchmark is used to evaluate models from Robust-
Bench [4], which is a reputable and continuously updated
resource that both tracks and benchmarks adversarial ro-
bustness methods. The state-of-the-art models are selected
by evaluating methods among thousands of papers on diffi-
cult benchmarks: L2-constrained attacks, L∞-constrained
attacks, and corruptions on standard image classification
datasets. As RobustBench has built its reputation as a core
scientific resource for tracking robustness progress, we treat
the best-performing methods as state-of-the-art in the liter-
ature. This is further substantiated as methods are included
selectively: they cannot generally have non-zero gradients
with respect to the input, have a fully deterministic forward
pass, nor lack an optimization loop. It is known that the

4422



violation of these guidelines does not substantially improve
robustness in general [2, 3].

4.1. Compute Details

The computation for the complete pipeline is GPU-
dependent and is efficiently batched and scaled on GPUs.
Caching techniques were used for pre-computed informa-
tion such as the noise masks for improved efficiency. Apollo
servers with 8 V100 32GB GPUs were used for training and
validation, as well as the evaluation of robustness methods.
We processed 16 (images per GPU) × 8 (GPUs) = 128 im-
ages in a batch for the complete pipeline.

5. Results and Discussion
5.1. CIFAR-10

To validate the effectiveness of our generated bench-
mark, we compare the performance of state-of-the-art ro-
bustness methods between our distorted version of CIFAR-
10 [17] and CIFAR-10-C [14]. CIFAR-10-C comprises dis-
torted versions of the CIFAR-10 test set that are applied
at five different severity levels. For a fair comparison, we
compute the average L2 distance between the original test
set and the CIFAR-10-C test set for each type of distortion.
We then employ our framework to generate distorted ver-
sions of those data splits for the approximate average L2 of
each CIFAR-10-C severity. Due to our sample generation
procedure, we do not set a target L2 (nor do the generators
of CIFAR-10-C) so we must approximate the target average
L2. In experiments, we set generation parameters empiri-
cally and keep splits that have an average L2 of within 25%.
Often, especially with Gaussian blur, our average L2 is far
lower than that of CIFAR-10-C.

We select the top-10 ranked robustness methods, which
includes state-of-the-art diffusion models, on CIFAR-10-
C that are reported on the RobustBench benchmark [4]
for evaluation: Binary CARD(-Deck) [9], LRR CARD(-
Deck) [9], AugMix-ResNeXt [15], AugMix-WRN [15],
RLAT-AugMix(-JSD) [16], PRIME-ResNet18 [19], and
EDM-WRN-70-16 [30]. For each severity and victim
model, we generate two sets of samples with Gaussian noise
and Gaussian blur distortions, respectively. We consider
VGG-16, Inception-V3, and ResNet-50 as the victim mod-
els in experiments. As discussed in Section 3, our frame-
work does not generate a sample if the victim model mis-
classifies it initially. Hence, we generate distorted samples
on a subset of the test set. For a fair comparison, we take the
same subset from both CIFAR-10 and CIFAR-10-C to com-
pute clean and corrupted performance, respectively. This
sample-wise comparison ensures that harder samples are
not excluded or easier samples are not included by one split
or another. This is done by storing the indices of every sam-
ple in each split, including the original split, CIFAR-10-C

split, and our split to prevent samples from inflating or de-
flating accuracy between splits. The results of these eval-
uations are shown in Figure 4. For each victim model and
distortion, the scores on each CIFAR-10 test set are aggre-
gated across all five levels of severity. For the blur distor-
tion, we cause greater or equal degradation in performance
than CIFAR-10-C across all robustness methods and victim
models. The except lies with EDM-WRN-70-16 on sam-
ples generated with the Inception-V3 victim model, albeit
marginally. Typically, the degradation value is much higher
on ours and, sometimes, over double that of CIFAR-10-C.
For the noise distortion, we cause greater or equal degra-
dation in performance than CIFAR-10-C across robustness
methods and each victim model.

5.2. ImageNet

To validate the effectiveness of our generated bench-
mark, we also compare the performance of state-of-the-art
robustness methods between our distorted version of Im-
ageNet and ImageNet-C. Figures 5a and 5b show some
examples of the images in original ImageNet, ImageNet-
C, and our distorted version of ImageNet. The images
shown are for severity level 5 of the Gaussian noise and
blur distortions, respectively. Note that ImageNet-C comes
center-cropped and thus the full images are not shown. The
evaluation here is conducted in the same manner as with
CIFAR-10, ensuring that noise levels are similar and that
a sample-wise comparison is conducted properly. We se-
lect the top-10 ranked robustness methods, which includes
state-of-the-art ViTs, on ImageNet-C that are reported on
the RobustBench benchmark for evaluation: DeepAug-
ment+AugMix [13], CondANTSpeckle-DeiT-{S,B} [28],
SIN(+IN(+IN)) [11], AugMix [15], standard ResNet-50,
and NoisyMix(-tuned) [10].

The results of these evaluations are shown in Figure 6.
Similar to our results on CIFAR-10, our distorted version of
ImageNet results in greater accuracy degradation across the
robustness methods than that of ImageNet-C. Notably, the
mean L2 level of ImageNet-C (99.3) is 69.0% higher than
the mean L2 level on our distorted version of ImageNet
(58.8) for Gaussian noise for the severity level of 5. Further-
more, the mean L2 level of ImageNet-C (79.8) is over 3×
higher than the mean L2 level on our distorted version of
ImageNet (25.6) for Gaussian blur. In both cases, we cause
greater accuracy degradation across all robustness models.

5.3. Results on Adversarial Retraining

Table 1 shows the retrained robustness of the target
model with our framework when compared to retraining
with the other competitor approaches. The table presents
the degradation error percentages for image classification
architectures on the CIFAR-10-C dataset, comparing state-
of-the-art techniques. The degradation errors for each tech-
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Figure 4. Evaluation of state-of-the-art robustness methods on corrupted versions of CIFAR-10: our corruptions with three victim models
(ResNet-50, Inception-V3, and VGG-16) and CIFAR-10-C. Across two kinds of distortions, Gaussian noise, and blur, our corrupted version
of CIFAR-10 reduces accuracy more than CIFAR-10-C in most cases. Lower accuracy means better performance.
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Figure 5. A subset of images from each of original ImageNet, ImageNet-C, and our distorted version of ImageNet. The images shown
are for severity level 5 of the Gaussian (a) noise and (b) blur distortions. For the same severity level, images from ours retain much more
clarity while being more challenging to classify.
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Figure 7. Evaluation of transferability of adversarial samples
across other models

nique are provided for three different models: ResNet-50,
DenseNet, and Inception-V3.

The results show that our framework outperforms the
other techniques across all three models. For ResNet-50,
we achieved a significantly lower degradation error of 6.0%,
compared to Mixup (29.0%), CutMix (31.5%), and Aug-
Mix (13%). Similarly, for DenseNet and Inception-V3, our
framework also demonstrates superior performance, with
degradation errors of 11% and 9.5%, respectively, com-
pared to the other techniques. These findings suggest that
our framework effectively has the lowest degradation errors
in image classification tasks on the CIFAR-10-C dataset,
surpassing the performance of other state-of-the-art tech-
niques like Mixup, CutMix, and AugMix.

Table 1. Degradation error % for image classification architectures
on CIFAR-10-C for state-of-the-art techniques. For fairness, all of
the techniques were evaluated with the same seed.

Model Mixup CutMix AugMix Ours

ResNet-50 29.0 31.5 13 6.0
DenseNet 24.0 33.5 15 11

Inception-V3 29 23 11.5 9.5
Mean 27.3 29.3 13.1 8.83

5.4. Transferability across different models

Table 2 represents the ability to transfer the adversar-
ial samples across other primitive models. The adversar-
ial samples are generated to deceive the pre-trained model
shown in each row and are tested on the model shown in
each column.

From the table, it can be understood that adversarial sam-
ples that were generated and evaluated on the same models
have 0 accuracy. Furthermore, these adversarial samples
still have a significant impact on the other primitive mod-
els showing the ability of the proposed method to gener-
alize well. The values are averaged across both Gaussian

blur and Gaussian noise types of distortions. Figure 7 il-
lustrates the transferability of samples generated using the
ResNet-50 model with the ImageNet dataset. These sam-
ples were tested on Inception-V3 and Vgg16 models under
various noise levels. It can be observed that the samples
generated by ResNet-50 still exhibit substantial correlation
errors across different models. Also, as the noise level in-
creases, the performance tends to decrease.

Table 2. Transferability of adversarial samples generated from
CIFAR-10 across other primitive models. The values represent
the classification accuracy mCE.

ResNet-50 Inception-V3 VGG-16

V
ic

tim

ResNet-50 0 12.19 8.93
Inception-V3 20.17 0 12.16
VGG-16 16.90 16.70 0

6. Limitations
The proposed method focuses on vulnerabilities of im-

age classifiers from distortions present at deployment by
providing the customization option. Our results with the
CIFAR-10-C benchmark show that our method is more ef-
fective in identifying vulnerabilities with optimal distor-
tions that are generalizable across models. The nature of
the distortion filters used by our model uncovers the broad
vulnerabilities of the deployed model but does not enable
unnatural artifacts.

7. Conclusion and Future Work
This paper presents a novel approach to address the chal-

lenge of evaluating and improving the robustness of neu-
ral networks against adversarial perturbations. The pro-
posed ML-driven adversarial data generator introduces nat-
urally occurring distortions to the original dataset, creating
an adversarial subset. By formulating the problem as an
MDP, the generator effectively identifies and adds distor-
tions to the most vulnerable areas of the input. This ap-
proach demonstrates competitive performance with state-
of-the-art techniques, providing a benchmark for evaluating
the robustness of image classification models. Additionally,
the framework allows for the inclusion of custom distortion
types, adversarial thresholds, and datasets, enabling tailored
evaluations and audits for specific use cases. The results
highlight the importance of building robust deep-learning
models and offer valuable insights for future research and
development in this area. Overall, this work contributes
to the advancement of reliable and resilient deep learning
architectures through the generation of adversarial bench-
marks and the exploration of improved adversarial training
methods. In the future, we will include evaluations on addi-
tional naturally occurring perturbations.
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