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Abstract

Open-Set Object Detection (OSOD) has emerged as a
contemporary research direction to address the detection
of unknown objects. Recently, few works have achieved re-
markable performance in the OSOD task by employing con-
trastive clustering to separate unknown classes. In contrast,
we propose a new semantic clustering-based approach to
facilitate a meaningful alignment of clusters in semantic
space and introduce a class decorrelation module to en-
hance inter-cluster separation. Our approach further incor-
porates an object focus module to predict objectness scores,
which enhances the detection of unknown objects. Further,
we employ i) an evaluation technique that penalizes low-
confidence outputs to mitigate the risk of misclassification
of the unknown objects and ii) a new metric called HMP
that combines known and unknown precision using har-
monic mean. Our extensive experiments demonstrate that
the proposed model achieves significant improvement on the
MS-COCO & PASCAL VOC dataset for the OSOD task.

1. Introduction

Object detection task has seen significant advancements
in the past decade. However, many of the current object
detectors often fail to localize or classify objects of novel
or unseen classes. To address this, Open-Set Object Detec-
tion (OSOD) has been introduced, which aims to detect new
or unidentified objects as “unknown” class along with the
known objects with their respective categories. One of the
key challenges in OSOD is the issue of misclassification of
unknown class with high confidence. This is especially for
the case of unknown objects that exhibit semantic closeness
to a known class. For instance, an open-set detector that is
trained on VOC classes [3] might misclassify an unknown
class, e.g., “zebra” to a close known class like “horse”.
Such a misclassification has been observed in contrastive
clustering-based previous OSOD works [6,8,29] due to the
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(a) Illustration of cluster evolution through incremental component inclu-
sion. Colored dots denote known classes, black dots indicate unknown
classes. With semantic clustering, known class clusters align semanti-
cally. Class decorrelation further enhances cluster separation.

(b) Visual comparison between the proposed and OpenDet [6] methods.

Figure 1. Effectiveness of semantic clustering, class decorrelation,
and visual comparison with OpenDet [6].

semantic proximity of known and unknown classes. More-
over, the methods utilizing classification-based Region Pro-
posal Network (RPN) to predict objectness, obtain lower
performance on objects with different geometric attributes
than the known classes.
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This study proposes a new framework to address the
aforementioned concerns. To tackle the issue of unknown
misclassification, we introduce a new semantic clustering
module that aligns region proposal features with their re-
spective semantic class embeddings. This enables the de-
tector to establish meaningful class decision boundaries,
thereby preventing unknown misclassification, as illustrated
in Figure 1(a). Moreover, we impose an orthogonality con-
straint on the features to ensure a clear separation of the
clusters. For this purpose, we introduce a new class decor-
relation module inspired by [24] that utilizes the feature
decorrelation-based softmax-formulated orthogonality con-
straint on the cluster features. This module facilitates an
increase in inter-class cluster distance, yielding improved
unknown separation, as demonstrated in Figure 1(a).

Previous approaches [6, 8] employ binary classification-
based objectness prediction that tends to overfit on the train-
ing categories and constraints the effectiveness of RPN, es-
pecially in OSOD setting as discussed in [10, 29]. We alle-
viate this constraint with object focus loss, that learns ob-
jectness with the help of centerness and classification-based
objectness loss. Here, the centerness helps the detector to
predict how far a proposal is from a ground-truth bounding
box. This enables a more robust learning of the RPN, as
it prevents overfitting on the training categories by learn-
ing from object cues, such as location, geometry and other
spatial relationships. This, in turn, facilitates easier and un-
constrained detection of unknown objects.

The proposed model accurately identifies unseen objects
as unknown class and enhances detection performance com-
pared to previous state-of-the-art (SOTA) methods. In Fig-
ure 1(b), results obtained from the proposed method and
OpenDet [6] are illustrated that demonstrates our method
detects the unknown classes accurately as compared to
OpenDet [6]. For instance, the proposed model accurately
predicts the “zebra” as an “unknown” object, while Open-
Det [6] fails and identifies it as a “horse”. Furthermore,
in another example, OpenDet [6] predicts “dog” as an “un-
known” class, where our model correctly identifies its class.
We summarize the contributions of this paper as follows.

• We propose a new OSOD framework which aligns class
representations effectively and detects the unknown ob-
jects accurately.

• We introduce i) a novel semantic clustering module to
group the features in the semantic space that facili-
tates improved cluster boundary separation, especially
between semantically similar objects, ii) a class decor-
relation module to further encourage separation of the
formed clusters, iii) a new loss known as object focus loss
to enable a more resilient learning process of RPN that fa-
cilitates the unconstrained detection of unknown objects.

• A new evaluation technique, entropy thresholding, is em-
ployed to penalize low-confidence outputs, thereby miti-

gating the risk of misclassifying the unknown objects as
known classes. In addition, a new evaluation metric, Har-
monic Mean Precision (HMP), is employed to combine
the precision scores of known and unknown objects.

• We performed extensive experiments on benchmark
datasets, showing significant improvements over prior
work. We also conducted various ablation studies to vali-
date the usefulness of the proposed method.

2. Related Works
Open-Set Recognition (OSR) aims to identify the

known objects along with unknown or novel objects that
were not seen during the training phase. Bendale et al.
[1] were the first to introduce a deep learning-based OSR
method. Subsequently, several reconstruction-based meth-
ods have been proposed to enhance the performance of the
OSR task. Few works [4, 13] have employed the genera-
tive adversarial network to generate potential open-set im-
ages to train an open-set classifier. While other approaches
[14, 18, 25] utilized the auto-encoder to recover latent fea-
tures and identify unknown class by reconstruction errors.

Open-Set Object Detection (OSOD) is an extension
of OSR that aims to detect unseen object as unknown.
Dhamija et al. [2] have first formalized OSOD and found
that the performance of most detectors is exaggerated in
open-set conditions. Joseph et al. [8] proposed ORE
method by introducing an energy-based unknown iden-
tifier. Subsequently, several works have been proposed
[5, 21, 23, 26, 31] to improvise the performance of the ORE
model. Recently, Gupta et al. [5] adapted the Deformable
DETR model [30] for the open world objective and intro-
duced OW-DETR. Zohar et al. [31] proposed a method by
integrating the probabilistic objectness into the deformable
DETR model [30]. Miller et al. [12] have implemented the
dropout sampling technique to estimate uncertainty in ob-
ject detection, aiming to mitigate open-set errors. Recently,
Han et al. [6] have introduced contrastive feature learner to
encourage compact features of known classes and unknown
probability learner to separate known and unknown classes.
Zhou et al. [29] have enhanced the generalization ability for
unknown object proposals using a classification-free RPN.
These methods [6, 8, 29] adopt a contrastive-based cluster-
ing approach to distinguish the unknown objects from the
known clusters. However, these methods underperform in
cases where an unknown object is semantically closer to
a known class. To address this issue, we propose seman-
tic clustering and class decorrelation modules that aims to
learn a clear cluster boundary between semantically similar
cluster and encourage separation among them.

Classification-free object detection (CFOD) has
emerged recently which focuses on object detection by
learning general objectness features rather than relying on
class information. This allows to detect previously unseen
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Figure 2. Overview of our proposed method. Object Focus loss: Object focus loss is a combination of LC (classification free loss)
and Lobj (classification based loss). Semantic Clustering: {T1, T2, T3, . . . , Tk} represents the class embeddings of k classes and
{F1, F2, F3, . . . , Fm} represents m feature embeddings. Each Fi gets aligned with its corresponding class embedding. Class Decor-
relation: We sample one feature per unique class to create {F ′

1, F
′
2, F

′
3, . . . , F

′
s}, where s represents the total count of unique classes

within an iteration. These sampled features are subsequently orthogonalized against the remaining features to ensure orthogonality.

object classes using these learned features. Recently, Kim
et al. [10] incorporates centerness features to learn object-
ness, demonstrating that substituting classification-based
loss with a classification-free variant enhances performance
for open world proposals. In [29], Zhou et al. utilized a
classification-free RPN approach for detecting unknown
object proposals. Wu et al. [22] investigated the direct
integration of CFOD into an open-set setting, resulted in a
70% decrease in unknown object recall. Inspired by these
findings, we propose a new object focus loss that uses a
combination of classification-free and classification-based
object detection for learning objectness.

3. Proposed Framework
3.1. Problem Statement & Notations

Given an object detection training dataset Dtr =
{(x, y), x ∈ Xtr, y ∈ Ytr} with known classes Ck =
{c1, c2, ..., ck} and testing dataset Dte = {(x′, y′), x′ ∈
Xte, y

′ ∈ Yte} containing k known classes (Ck) as well
as u unknown classes (Cu), the objective of OSOD is to
accurately detect all known objects belonging to Ck, while
also identifying novel objects as “unknown” class. In this
context, Xtr and Xte represent the input images of training
and testing dataset, respectively, while Ytr and Yte are set

of training and testing labels containing corresponding class
labels and bounding boxes. As it is unfeasible to enumer-
ate infinite unknown classes, we denote unknown classes as
Cu = ck+1.

The proposed framework introduces three alignment
modules to effectively segregate the known class clusters
and detect unknown classes accurately. (i) The CLIP-based
semantic clustering module that facilitates the formation of
clusters in the semantic space. (ii) The class decorrelation
module, which enforces an orthogonality constraint among
features of different clusters and helps to separate the clus-
ters. (iii) The object focus loss that enhances the unknown
detection capabilities. Detailed explanations of these mod-
ules are discussed in the subsequent subsections.

3.2. Semantic Clustering

Contrastive learning has significantly enhanced the deep
clustering of images by capturing distinct visual attributes
customized to each instance [7, 9, 15, 19, 27]. Nonetheless,
its capacity to explicitly infer class decision boundaries still
needs to be explored. This can be attributed to the absence
of class sensitivity within the instance discrimination strat-
egy, leading to clusters in the feature space that are not ef-
fectively aligned with class decision boundaries. This issue
is further compounded when applied in the OSOD setting,
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where an unknown object is misclassified to its semantically
closer known class.

To address this issue, we have introduced a semantic
clustering module inspired by CLIP [16]. This module fa-
cilitates the formation of clusters in the semantic space,
thereby establishing clear semantic decision boundaries.
Consequently, the module mitigates the confusion between
semantically similar objects, thus minimizing the misclas-
sification of unknown objects to known classes. In this
regard, we utilize the CLIP-based text encoder to gener-
ate label embeddings {T1, T2, T3, . . . , Tk} that correspond
to k ground truth VOC classes [3]. Subsequently, a MLP
layer is appended after the ROI align module to generate
1024-dimensional image features {F1, F2, F3, . . . , Fm} for
m sampled proposals. For each proposal feature Fi, we cal-
culate the cosine similarity with each text embedding. The
cosine similarity between the ith image feature and the jth

label feature is then calculated as

cos-simij =
Fi · Tj

∥Fi∥ · ∥Tj∥
, (1)

The resulting output (i.e., cos-simij) is subsequently uti-
lized to evaluate the cross-entropy loss with respect to the
ground-truth labels. The final semantic clustering loss is
defined as

LSC =

m∑
i=1

k∑
j=1

Υij · log
(

ecos-simij∑n
l=1 e

cos-simil

)
. (2)

Here, Υij denotes the one-hot encoding belonging to ith

feature proposal and jth class. This approach assists in
achieving compact semantic clusters of the known classes
and it creates clear separation boundaries between clusters
of similar semantics (see Figure 1(a)).

3.3. Class Decorrelation

To encourage separation among known clusters, we
propose a class decorrelation module inspired by [24].
This module imposes an orthogonality constraint on the
proposal features, effectively enhancing the inter-cluster
distance, thus facilitating better separation of known
classes. Initially, one feature from the set of proposal
features {F1, F2, . . . , Fm} is sampled for each distinct
class within the batch, resulting in a subset of s features
{F ′

1, F
′
2, . . . , F

′
s} for s unique classes. Subsequently, we

proceed to orthogonalize this subset of features that reduces
potential correlations among features, enhancing cluster
separation and enabling the model to focus on class-specific
differences.

To perform orthogonalization, we first compute the co-
sine similarity for all the sampled features, forming a simi-
larity matrix.

simi,j =
F ′
i · F ′

j

∥F ′
i∥ · ∥F ′

j∥
(3)

Then we calculate the corresponding correlation between
the ith and jth feature (i.e., corri,j) as given in Equation 4.

corri,j =
esimi,j∑k
l=1 e

simi,l

(4)

Here, corri,j gauges both the self-correlation of a feature
vector and its dissimilarity from other vectors. The pri-
mary objective of this step is to establish inter-dependencies
among the chosen features, thereby reflecting the innate
properties of various classes present within the feature set.
Finally, the class decorrelation loss (i.e., LCD) is calculated
via cross-entropy between resulting correlation matrix and
s unique class-based identity matrix (i.e., I).

LCD =

s∑
i=1

s∑
j=1

Ii,j · log (Corri,j) (5)

Our objective revolves around diagonalizing this correlation
matrix, which enforces decorrelation among the features as-
sociated with distinct classes. This not only enhances the
clarity of class boundaries but also contributes to improving
cluster formation (see Figure 1(a)).

3.4. Object Focus Loss

In Faster R-CNN [17], the RPN places significant em-
phasis on ground truth objects to acquire knowledge of
the objectness score. Nevertheless, this methodology fre-
quently results in the issue of overfitting on the known train-
ing classes. This inclination towards overfitting impedes the
model’s ability to identify new and previously unseen object
classes during inference efficiently.

To address this limitation, we introduce object focus
loss, which leverages the concept of centerness [10, 20].
This centerness enables the model to consider critical at-
tributes such as object location, shape, and geometric prop-
erties to learn objectness. As a result, we develop a class-
agnostic object proposal detection mechanism encompass-
ing a broader range of object characteristics. The centerness
loss is computed using centerness logits (i.e., Clogits) and
centerness targets (i.e., Ctargets). In our proposed frame-
work, we have added a single convolution layer after RPN
network, which gives us the Clogits. Furthermore, the cor-
responding Ctargets are generated inspired by [20, 29]. It
measures how far the center of an object proposal is from
the center of a ground-truth bounding box as depicted in
Figure 3(a). The details of generating Ctargets are pre-
sented in Supplementary material. The centerness loss (i.e.,
LC) can be accomplished by evaluating the disparity be-
tween the Clogits and Ctargets as given below.

LC = |Clogits − Ctargets|1 (6)

Finally, the object focus loss is calculated as the geomet-
ric mean of the centerness loss (LC) and the classification-
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(a) Illustration of centerness score in the calculation of object focus loss.
Green colored bounding box indicate ground-truth annotation while ma-
genta colored bounding box is predicted proposal annotation. d denotes
the distance between ground-truth annotation and predicted proposal an-
notation.

(b) Importance of object focus loss in detecting unknown objects
Figure 3. Demonstrates the process of object focus loss along with
a visual comparison with and without object focus module.

based objectness loss (LObj) [17] as

LObj−Focus =
√
LC · LObj . (7)

The object focus loss (i.e., LObj−Focus) bridges the gap
between classification-free and classification-based detec-
tion. The introduction of the centerness loss is a powerful
remedy, enhancing the model’s capability to generalize and
detect more objects belonging to unknown classes during
evaluation. By shifting the focus towards the geometric as-
pects of objects, we enable the model to develop a more
comprehensive understanding of objects’ inherent features.
This results in an enhanced object detection that can effec-
tively handle known and previously unseen classes, improv-
ing overall performance and generalization capabilities. We
demonstrate its efficacy in Figure 3(b), where we compare
results on methods with and without object focus loss. We
observe that in selective cases, without object focus loss
leads to the failure of detecting certain unknown objects,
a problem rectified by incorporating object focus loss.

3.5. Architectural Details

We have utilized Faster R-CNN [17] as the baseline net-
work. Further, we add a convolutional layer with a kernel
size of 1 × 1 into the RPN head to enable the regression of
centerness logits and the objectness logits generated by the
convolutional layer. Moreover, to cluster the m proposal

features in the semantic space, two MLP layers are added
after the ROI align sampling process. The resultant 1024-
dimensional m proposal features are aligned with their cor-
responding 1024-dimensional text embeddings. The CLIP
text encoder [16] is employed to generate the 1024 text em-
beddings. Unlike the CLIP approach [16], we adopt the
class name as a prompt instead of one or more prompts.
This setting is validated via ablation analysis presented in
Supplementary material. Furthermore, m proposals are also
forwarded to the class decorrelation module, where they are
preprocessed to sample one feature from each distinct class
in the batch.
Overall Optimization: The proposed framework is trained
using final loss LFinal i.e., the combination of RPN loss
(i.e., LRPN ) and detector loss (i.e., LDet).

LFinal = LRPN + LDet where,

LDet = α1LSC + α2LCD + LUPL + LReg + LCE

LRPN = α3LObj−Focus + LRPN−Reg

(8)
Here, LRPN is a weighted combination of object focus
loss (i.e., LObj−Focus) and RPN-based regression loss (i.e.,
LRPN−Reg). LDet is a weighted combination of seman-
tic cluster loss (i.e., LSC), class decorrelation loss (i.e.,
LCD), unknown probability loss LUPL and standard Faster
R-CNN based regression loss (i.e., LReg) and cross-entropy
loss (i.e., LCE). The LUPL is employed from [6] to learn
the unknown probability of a proposal for each instance
based on the uncertainty of predictions.

4. Experiments & Result Analysis

4.1. Implementation details

Dataset details: Following [6], we use the widely-used
PASCAL VOC [3] and MS COCO [11] benchmark datasets
for training and testing purpose. The trainval set of VOC is
employed for closed-set training, while 20 VOC classes and
60 non-VOC classes from COCO are adopted to assess the
effectiveness of our approach under diverse open-set condi-
tions. Specifically, two settings have been designed, namely
VOC-COCO-{T1, T2}.

• VOC-COCO-T1: The first setting involves gradu-
ally increasing open-set classes to create three joint
datasets. Each dataset comprises n = 5000 VOC test-
ing images, as well as {n, 2n, 3n} COCO images with
{20, 40, 60} non-VOC classes, respectively.

• VOC-COCO-T2: This setting involves gradually in-
creasing the Wilderness Ratio (WR) to create four joint
datasets. Each dataset comprises n = 5000 VOC test-
ing images and {0.5n, n, 2n, 4n} COCO images that
are disjoint with VOC classes.
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Table 1. Comparison with SOTA methods on VOC-COCO-T1 setting. The best-performing measures are highlighted with bold font, while
the second-best is highlighted with underlined italic font. * indicates the re-trained methods.

Method VOC VOC-COCO-20 VOC-COCO-40 VOC-COCO-60
mAPk ↑ WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑ WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑ WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑

ResNet50 as Backbone
Faster R-CNN [17] 80.10 18.39 15118 58.45 0.00 0.00 22.74 23391 55.26 0.00 0.00 18.49 25472 55.83 0.00 0.00
ORE [8] 79.80 18.18 12811 58.25 2.60 4.98 22.40 19752 55.30 1.70 3.30 18.35 21415 55.47 0.53 1.05
DS [12] 80.04 16.98 12868 58.35 5.13 9.43 20.86 19775 55.31 3.39 6.39 17.22 21921 55.77 1.25 2.45
PROSER [28] 79.68 19.16 13035 57.66 10.92 18.36 24.15 19831 54.66 7.62 13.38 19.64 21322 55.20 3.25 6.14
OpenDet [6] 80.02 14.95 11286 58.75 14.93 23.81 18.23 16800 55.83 10.58 17.79 14.24 18250 56.37 4.36 8.09
Openset RCNN [29] 82.94 11.58 10839 59.19 — — 14.48 16652 56.12 — — 12.41 19631 57.01 — —
Our (proposed) 78.06 9.55 9267 58.52 18.45 28.05 11.89 14057 56.10 12.56 20.52 10.96 19153 56.47 5.10 9.36
ConvNet-small as Backbone
Faster R-CNN* [17] 84.88 13.31 16019 63.85 0.00 0.00 17.15 24444 61.25 0.00 0.00 13.68 26077 62.18 0.00 0.00
DS* [12] 83.24 11.22 15257 62.80 6.75 12.19 14.62 23406 60.24 4.81 8.91 12.51 27951 60.58 1.79 3.48
PROSER* [28] 84.78 16.32 14222 62.72 18.06 28.04 20.39 21296 60.20 11.97 19.97 15.40 21889 61.03 4.57 8.50
OpenDet* [6] 83.22 9.43 11700 63.22 17.49 27.40 11.79 16823 60.83 12.28 20.43 9.61 19963 61.98 4.72 8.77
Our (proposed) 83.28 9.06 9441 64.15 20.60 31.19 11.20 13695 61.56 14.00 22.81 9.46 17561 62.26 5.34 9.84

Entropy Thresholding: We employ a technique called
entropy thresholding to penalize the low-confidence out-
puts during evaluation. This involves calculating the en-
tropy of the classification head output logits and comparing
them with a fixed threshold. In cases where the entropy
(−p · log(p)) of a logit exceeds the threshold, we classify
it as the “unknown” label. This approach ensures that if the
open-set detector is not confident in its prediction regarding
an object proposal, it is most likely an unknown object that
is not encountered during training. After empirical analy-
sis, we have selected a threshold 0.85 for all settings. This
thresholding mechanism helps to prevent misclassification
of unknown objects as known classes.
Evaluation metrics: We have performed the evaluation
on open-set metrics such as Wilderness Impact (WI) [2],
Absolute Open-Set Error (AOSE) [12], and APu (Av-
erage Precision of unknown classes), along with closed-
set metric i.e., mAPk (mean Average Precision of known
classes). The purpose of WI [2] is to determine the de-
gree to which unknown objects have been misclassified into
known classes.

WI =
( Pk

Pk∪u
− 1

)
× 100, (9)

where Pk and Pk∪u denote precision of closed-set and
open-set classes, respectively. We report the WI under 0.8
recall level as suggested by [8]. Furthermore, AOSE [12]
is utilized to quantify the number of unknown objects that
have been misclassified. Lowering the WI and AOSE
scores indicates better detection performance.
Harmonic Mean Precision: We introduce a new metric
called Harmonic Mean Precision (HMP) that encapsulates
the performance of a detector on both known and unknown
classes in one metric. This is achieved by calculating the
harmonic mean of the mAPk and APu.

HMP =
2×mAPk ×APu

mAPk +APu
(10)

Training details: For a fair comparison with existing
OSOD methods, we have adopted the Faster R-CNN [17]
architecture as our baseline and incorporated our modules
to transform it into an open-set detector. During the train-
ing phase, for experiments with the ConvNet backbone, we
utilized the AdamW optimizer with a learning rate of 1e-
4 and trained for 50,000 iterations. Our training process
has involved using a single GPU with a batch size of 6. In
the case of experiments with the ResNet50 backbone, we
opted for the SGD optimizer with a learning rate of 0.002
and trained for 32,000 iterations as well. Like the ConvNet
experiments, the training has been conducted using a sin-
gle GPU but with a larger batch size of 16. We empirically
set the weight coefficients α1 and α2 to 0.05, and α3 to
1. For comparison, we choose recent OSOD methods such
as Faster R-CNN [17], ORE [8], DS [12], PROSER [28],
OpenDet [6], and Openset RCNN [29]. These methods are
re-trained on the exact configuration to compare the results
on the CovnNet backbone. Furthermore, we have also com-
pared our method with open world object detection methods
such as ORE [8], OW-DETR [5], PROB [31] on OSOD-
based evaluation protocol proposed in [8] and the corre-
sponding results are presented in Supplementary material.

4.2. Result Analysis

Comparison on T1 setting: Table 1 presents a compar-
ison of state-of-the-art (SOTA) methods on VOC-COCO-
T1 setting. This comparison is conducted by utilizing
the ResNet50 and ConvNet backbone in terms of open-
set and closed-set metrics. The results from Table 1 indi-
cate that, in the context of ResNet50 backbone compari-
son, the proposed method improves APu by 17-24% from
OpenDet [6] all dataset settings. Our method also reduces
AOSE by 450-2600 and gains 11-18% in WI compared
to previous best-performing Openset RCNN [29] method.
For the open-set mAPk measure, the proposed model per-
forms better than the OpenDet [6] method on all the set-
tings except VOC-COCO-20. When comparing the results
based on the ConvNet backbone, the proposed framework
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Table 2. Comparison with SOTA methods on VOC-COCO-T2 setting. The best-performing measures are highlighted with bold font, while
the second-best is highlighted with underlined italic font. * indicates the re-trained methods.

Methods VOC-COCO-n VOC-COCO-2n VOC-COCO-4n
WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑ WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑ WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑

ResNet50 as Backbone
Faster R-CNN [17] 16.14 12409 74.52 0.00 0.00 24.18 24636 70.07 0.00 0.00 32.89 48618 63.92 0.00 0.00
ORE [8] 15.36 10568 74.34 1.80 3.51 23.67 20839 70.01 2.13 4.13 32.40 40865 64.59 2.14 4.14
DS [12] 15.43 10136 73.67 4.11 7.79 23.21 20018 69.33 4.84 9.05 31.79 39388 63.12 5.64 10.35
PROSER [28] 16.65 10601 73.55 8.88 15.85 25.74 21107 69.32 10.31 17.95 34.60 41569 63.09 11.15 18.95
OpenDet [6] 11.70 8282 75.56 12.30 21.16 18.69 16329 71.44 14.96 24.74 26.69 32419 65.55 16.76 26.69
Openset RCNN [29] 11.59 7705 74.90 — — — — — — — 25.14 34382 64.88 — —
Our (proposed) 9.51 6875 73.47 14.13 23.70 15.39 13615 69.44 16.36 26.48 22.31 27362 64.28 17.77 27.84
ConvNet-small as Backbone
Faster R-CNN* [17] 14.23 11611 79.04 0.00 0.00 23.47 23190 73.63 0.00 0.00 33.52 46418 67.11 0.00 0.00
DS* [12] 14.18 11166 76.29 5.15 9.65 22.85 22200 71.39 6.46 11.85 32.84 44648 64.98 7.69 13.75
PROSER* [28] 13.35 10053 78.04 12.85 22.07 22.01 20255 72.63 15.07 24.96 32.39 40389 65.98 17.02 27.06
OpenDet* [6] 9.05 7615 79.27 13.79 23.49 15.80 15150 74.79 16.64 27.22 24.53 30159 69.20 18.74 29.49
Our (proposed) 9.43 6969 79.69 15.33 25.71 15.60 11977 75.74 17.87 28.92 24.29 27654 70.27 19.47 30.49

Figure 4. Visual comparison between our proposed model and baseline methods such as Faster R-CNN [17] and OpenDet [6]. More results
can be visualized from the Supplementary materials. (Zoom-in for a better view)

outperforms other methods across all metrics, achieving
an increase by 13-18% in APu and reducing AOSE by
approximately 2200-3200 compared to the previous best-
performing method [6]. We also show a gain in HMP by
11-18% across all settings on both backbones against [6].

Comparison on T2 setting: In Table 2, a comparison be-
tween the proposed and existing SOTA methods on the
VOC-COCO-T2 setting is presented. In the context of
ResNet50-based comparison, the proposed model outper-
forms other methods in terms of WI , AOSE, and APu

across all dataset settings. For example in VOC-COCO-
n, we show an increase of 14.9% in APu from [6]. Sim-
ilarly, in comparison on the ConvNet backbone, the pro-
posed method outperforms other methods on all dataset set-
tings, except on the WI measure in the VOC-COCO-n set-
ting, where the proposed method achieves a comparable
measure with OpenDet [6]. With ConvNet backbone, our
method achieves a 4-12% increase in APu, and consistently

improves upon AOSE by a large margin of 600-3200 com-
pared to [6]. In HMP , we improve upon [6] by 3-12%
across all settings on both backbones.

Visual Comparison: In addition to quantitative analysis,
a qualitative comparison is provided in Figure 4 to demon-
strate the improvement of our method over baseline meth-
ods, i.e., Faster R-CNN [17]) and previous best-performing
OpenDet [6]. It can be visualized that the proposed method
accurately classifies unknown objects that are semantically
closer to known classes which other methods fails to do. For
example, OpenDet [6] misclassifies ‘bed’ as ‘dining table’
due to their semantic similarity. However, our model, hav-
ing learned semantic-based clusters, correctly labels ‘bed’
as the ‘unknown’ class. A similar analysis is conducted on
‘elephant’ and ‘toilet’, which OpenDet [6] misclassifies as
‘cow’ and ‘chair’, respectively. Our method, however, ac-
curately identifies these as ‘unknown’ classes.
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Table 3. Ablation analysis to validate the proposed components:
semantic clustering (SC), class decorrelation (CD) and Object Fo-
cus loss (OF) on VOC-COCO-40 setting.

SC CD OF WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑
Case 1 ✓ 11.47 15561 60.22 12.29 20.41
Case 2 ✓ 12.26 16041 59.58 11.84 19.75
Case 3 ✓ 11.91 15268 60.34 12.22 20.32
Case 4 ✓ ✓ 11.28 16301 61.12 12.31 20.49
Case 5 ✓ ✓ 11.30 15225 61.52 13.59 22.26
Case 6 ✓ ✓ 12.09 15642 60.42 13.95 22.67

Proposed ✓ ✓ ✓ 11.20 13695 61.56 14.00 22.81

4.3. Ablation Studies & Analysis

To ensure a fair comparison, all ablation experiments
were trained using ConvNet backbone and evaluated on the
VOC-COCO-40 setting.
Effects of proposed method’s components: In this inves-
tigation, we examine the impact of each component of the
proposed framework, i.e., semantic clustering (SC), class
decorrelation (CD) and object focus (OF)1. The proposed
framework is trained utilizing either individual or combined
introduced components to assess their efficacy on the com-
prehensive performance. The corresponding outcomes are
presented in Table 3, which reveals that all three intro-
duced components significantly improve the performance
of the proposed framework in known and unknown evalua-
tion metrics. Furthermore, one can notice that adding each
proposed component improves the performance of detec-
tor. For instance, adding OF module to SC and CD module
(i.e., Case 5 and Case 6) improves the known as well as
unknown detection performance, proving the importance of
OF module, similarly, adding CD module to SC i.e., Case
4, enhance the detection performance as compared to Case
1 and Case 2. This substantiates the consequence of our
introduced modules in the proposed framework.
Effects of geometric mean operation in Object Focus
loss: In proposed object focus loss, we have employed the
geometric mean between LC and LObj (see Equation 7).
To validate of this operation, we have conducted a series of
experiments utilizing various settings, including only RPN-
based object loss (i.e., LObj), only centerness loss (i.e.,
LC), as well as the addition and multiplication of LObj and
LC . The results of these experiments are presented in Table
4, which demonstrate that the combination of LC and LObj

through the geometric mean operation performs better than
the other settings.
Effect of loss weights: The proposed framework is trained
using a weighted combination of multi-task losses, wherein
the weight coefficients for LSC , LCD and LObj−Focus are
represented by α1, α2 and α3, respectively. To deter-
mine these weight coefficients, a few experiments were con-
ducted and the corresponding results in terms of HMP mea-

1without object focus (OF) refers to only standard RPN based object-
ness loss LObj

Table 4. Ablation analysis to validate the geometric mean opera-
tion in object focus loss on VOC-COCO-40 setting.

WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑
Only LObj 11.28 16301 61.12 12.31 20.49
Only LC 14.53 6758 15.86 2.78 4.73
LObj + LC 11.97 15260 60.36 11.87 19.84
LObj × LC 11.14 19645 43.70 10.67 17.15√

LObj · LC (proposed) 11.20 13695 61.56 14.00 22.81

Figure 5. Effect of weight coefficients α1, α2 and α3 in terms of
HMP measure on VOC-COCO-40 setting.

sure are illustrated in Figure 5. The graph portrays the anal-
ysis accomplished by varying one weight coefficient while
keeping the value of the remaining coefficients fixed. Af-
ter conducting empirical analysis, it was discovered that the
α1 = 0.05, α2 = 0.05 and α3 = 1.0 combinations give us
better HMP measure than other settings.

5. Conclusion & Future Work

This paper proposes a new framework that effectively
aligns known class representations to detect unknown ob-
jects accurately. The proposed model offers a solution
to the issue of high-confidence unknown misclassification
in OSOD. We demonstrate that clustering in the seman-
tic space facilitates the formation of well-defined bound-
aries between clusters, particularly for semantically simi-
lar classes that are highly susceptible to misclassification.
Additionally, we introduce a class decorrelation module
that promotes inter-cluster separation and an object focus
loss, wherein the objectness learning exhibits robustness
in detecting novel and unseen objects. We also employ
an entropy-thresholding-based evaluation technique that pe-
nalizes low-confidence outputs, thereby reducing the risk of
misclassifying unknown objects. Finally, we carried out ex-
tensive experiments & ablation studies and found that the
proposed method outperforms existing SOTA methods with
significant margin. As the proposed approach have great po-
tential to improve class alignment, it can be further extended
to other open-set tasks like incremental object detection and
open-set domain adaptation.
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