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Figure 1: A layer is defined as an image-text pair. Given a sequence of layers and a full-image string, Collage Diffusion

generates an image that is globally harmonized, yet preserves the locations and key visual characteristics of each input layer.

Abstract

We seek to give users precise control over diffusion-

based image generation by modeling complex scenes as se-

quences of layers, which define the desired spatial arrange-

ment and visual attributes of objects in the scene. Collage

Diffusion harmonizes the input layers to make objects fit

together—the key challenge involves minimizing changes in

the positions and key visual attributes of the input layers

while allowing other attributes to change in the harmoniza-

tion process. We ensure that objects are generated in the

correct locations by modifying text-image cross-attention

with the layers’ alpha masks. We preserve key visual at-

tributes of input layers by learning specialized text repre-

sentations per layer and by extending prior diffusion-based

control mechanisms to operate on layers. Layer input al-

lows users to control the extent of image harmonization on a

per-object basis, and users can even iteratively edit individ-

ual objects in generated images while keeping other objects

fixed. By leveraging the rich information present in layer

input, Collage Diffusion generates globally harmonized im-

ages that maintain desired object characteristics better than

prior approaches.

1. Introduction

Diffusion-based image generation [9, 12, 23, 24, 27, 28]

has captured widespread interest with its seemingly magi-

cal ability to generate plausible images from a text prompt.

Unfortunately, text is a highly ambiguous specification of

an image, forcing users to spend significant time tweaking

prompt strings to obtain a desired output. A body of recent

work has therefore focused on providing more precise con-

trols for scene composition via additional inputs: control-

ling composition via sketching [3], filling in user-provided

segmentation masks [2, 29], providing an image seed for

generation [19], etc. Similarly, the desire to precisely dic-

tate object appearance, “the sushi in THIS reference photo”

rather than “the sushi”, has led to approaches that condition

generation based on example images [10, 15, 25].

We seek to give users precise control over image output

when creating scenes featuring a collection of objects with

a specific spatial arrangement. For example, in Figure 1, “A

bento box with rice, edamame, ginger, and sushi” neither

describes what items go in which Bento bin, nor suggests

how each of the items should look. Rather than relying on

ambiguous text prompts or forcing the user to sketch scene

forms, we return to a traditional and easy-to-create means

of expressing artistic intent: defining the composition of

a scene and the appearance of individual objects by mak-

ing a sequence of layers. To specify a scene, a user need

only acquire reference images of desired scene objects (e.g.,

via image search or via output from an existing generative

model), arrange them on a canvas using a traditional layer-

based image editing UI, and pair each object with a text

prompt.

Given these layers, we introduce Collage Diffusion, a

diffusion-based image harmonization algorithm that gener-

ates images that 1) have fidelity to the input layers’ spatial

composition and object appearance, but 2) exhibit global

harmonization and visual coherence that is representative of
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Figure 2. Collage Diffusion takes as input a sequence of layers of RGBA images paired with text (the image of sushi and the text “sushi”),

along with a full-image text string (“A bento box with rice, edamame, ginger, and sushi”). Layer information enables 1) manipulating

cross-attention to map individual layers to the corresponding image regions, creating improved diffusion model D∗, 2) learning layer-

specific representations using textual inversion (TI), 3) having the option to preserve per-layer image structures with ControlNet (CN), and

4) harmonizing layers according to per-layer noise levels ti. Collage Diffusion outputs globally-harmonized images that contain objects in

the specified locations, and share visual characteristics with the input layer images. In the rest of the paper, for brevity we only display the

layer composite image and prompt, and we use underlined substrings to indicate contents of individual layers.

“plausible” real-world images. There is an inherent trade-

off between harmonization and fidelity: harmonization in-

volves changing properties of the input layers so that objects

“fit together” in a consistent image, while fidelity involves

preserving properties of the layers. The key challenge is

harmonizing a sequence of layers while limiting variation

in certain layer properties (color, texture, edge maps, etc.),

but allowing variation in other properties. We tackle this

challenge by leveraging the rich information present in layer

input—building upon prior diffusion-based techniques for

image harmonization, spatial control, and appearance con-

trol, we extend them with a focus on mechanisms for per-

layer control.

Specificially we make the following contributions:

1. We introduce layer-conditioned diffusion, where genera-

tion is conditioned on alpha-composited RGBA layers as

well as text prompts describing the content of each layer.

Sequences of layers can be authored by users in minutes,

and Collage Diffusion generates high-quality images that

respect both the desired scene composition and object

appearance, even for complex scenes with many layers.

2. We extend prior diffusion-based control mechanisms

[3, 10, 37] to operate on sequences of layers, ensuring

that output images adhere to the composition depicted by

the layers (cross-attention [3]) and retain salient visual

features of objects in each layer (textual inversion [10],

ControlNet [37]).

3. We illustrate how layer input allows users to control the

harmonization-fidelity tradeoff on a per-layer basis and

also enables users to iteratively refine generated images.

2. Problem Definition and Goals

Our goal is to generate globally harmonized images that

respect a user’s desired scene composition, both in terms

of spatial fidelity, i.e., preserving the positions and sizes of

the desired objects, as well as appearance fidelity, i.e., pre-

serving the visual characteristics of the objects. We propose

that the user describe their intent by means of a sequence of

layers alongside a global text prompt. For brevity, we call

this combination a collage. We first define a collage, then

introduce our goals for collage-conditional generation.

As illustrated in Fig. 2, we define collage C as:

1. A full-image text string c, describing the entire image to

be generated (“A bento box with rice, edamame, ginger,

and sushi”)

2. A sequence of n layers l1, l2, ...ln, ordered from back to

front, with each li having:

(a) An RGBA image xi (the alpha-masked input image

of sushi), with alpha layer xα
i

(b) A text string ci describing the layer, which is a sub-

string of c (“sushi”)

Given input collage C, we seek to generate output image

x∗
c with the following properties:

1. Global harmonization: x∗
c is a well-harmonized, high-

fidelity image. In Figure 1, the output features consis-

tent perspective, lighting, and occlusions among scene

objects.

2. Spatial fidelity: generated objects are in the correct loca-

tions. Specifically, for all layers li, the objects described

by layer text ci are generated in the correct regions of

x∗
c . In Figure 1, “edamame,” “ginger,” etc. are all in the

same regions of the output image as in the input collage.

3. Appearance fidelity: generated objects maintain desired

visual characteristics. Specifically, for all layers li, in ad-

dition to matching layer text ci, regions of x∗
c that depict

the contents of the layer share key visual characteristics

with xi. In Figure 1, the “ginger” in the output image

remains sliced sushi ginger (not whole ginger), etc.

In order to achieve the consistency of a real image, we

aim to constrain both the spatial layout of generated images

and certain aspects of the appearance of individual objects,

allowing other aspects to vary in the harmonization process.

3. Related Work

One natural starting point is to “flatten” the input lay-

ers into image xc by alpha-compositing the sequence of
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Input Image Harmonized

(a) Prompt: “a poppy plant and a
rose plant”

Input Image Harmonized

(b) Prompt: “a bento box with rice,
edamame, ginger, and sushi”

Figure 3. Without layer information, image harmonization can

lead to a loss of spatial and appearance fidelity. Added noise can

disrupt object-location mappings—on the left, “poppies” take the

place of the “roses.” Added noise also can obscure specifics of an

object’s appearance—on the right, the generated “ginger” is whole

instead of sliced.

layer images x1, x2, ... into a single image [21], then use

diffusion-based image harmonization to improve the visual

quality of the image [2,19,26]. Diffusion-based approaches

can harmonize geometry [19, 29], rather than restricting fo-

cus to color and lighting [7, 8, 13, 34]. The problem with

this flatten-then-harmonize algorithm is that generated re-

sults may diverge from the content of the initial image, un-

dermining user intent. For example, in Fig. 3, noise-based

harmonization [19] turns the pink roses into poppies despite

the prompt and turns sliced sushi ginger into whole ginger.

We seek to better maintain the spatial and appearance fi-

delity of the initial layers.

Improving Spatial Fidelity Prior work has suggested ap-

proaches to (1) define spatial layouts of scene objects, and

then (2) generate objects according to the desired layout.

Existing techniques define spatial layouts using segmenta-

tion maps and bounding boxes, whether defining a region

for inpainting [2,6,18,19,29,35,36], providing a full-image

segmentation map [1, 3], or using bounding boxes [38]. In-

painting approaches struggle to maintain global coherence

with many layers (see Supplemental). Instead of hand-

drawing a segmentation map, we see layers as an intuitive,

alternative way to specify spatial composition.

Improving Appearance Fidelity In addition to generat-

ing objects in the desired locations, we aim to preserve vi-

sual characteristics of input layers. Several recent works

specialize diffusion models to particular visual concepts

(objects, styles, etc.) [10, 15, 25], requiring several input

images and either fine-tuning the model [15, 25], learning

a specific textual representation for the object [10], pre-

training on reference images [33], or reverse-engineering

a prompt for a given image [32]. These methods struggle to

generate high-quality images of scenes with compositions

of many objects [10, 15, 25, 33]. In addition, appraches that

fine-tune model weights require either joint multi-concept

training or post-hoc combination of model weights, both of

which struggle in regimes with several objects [15, 25]. Al-

ternatively, ControlNet [37] enables us to preserve derived

features of input layers (edge maps, pose, etc.) without

learning a visual concept personalized to the specific object.

We address the goal of appearance fidelity by extending

both textual inversion [10] and ControlNet [37] for perfor-

mance with individual layers. We find that the learned rep-

resentations are effective for maintaining key visual char-

acteristics of input layers when paired with techniques for

spatial control. When preserving an image structure from

an input layer such as an edge map, our extension of Con-

trolNet is effective.

Image-to-Image Approaches Constrained image harmo-

nization can also be framed as image stylization: from low-

quality layer composite to high-quality harmonized output.

Stylization can be approached using existing methods for

controlled image-to-image diffusion [5, 11, 20, 30, 37]. De-

rived features (canny edges, pose, etc.) can provide con-

trol [37], but fails to constrain scene composition—the lo-

cations of objects are not preserved. Other methods di-

rectly [11, 20, 30] or indirectly [5] manipulate U-Net at-

tention layers (cross-attention [5, 11, 20] and self-attention

[30]) to maintain image structure while making either local

edits (adding/removing/modifying objects) or global edits

(style, lighting). Unfortunately, this approach is insufficient

for layer-conditional diffusion. Input layers often need to

be changed significantly to fit together in a harmonized im-

age, as objects may need to be rotated, partially occluded,

etc. (see the orientation of the sushi in Fig. 2). This is

difficult when preserving the “structure” of the input im-

age. We evaluate against one constrained image-to-image

approach [30], and discuss additional baselines in the Sup-

plemental. Less constrained harmonization techniques [19]

serve as a more useful starting point for Collage Diffusion

since they allow the desired flexibility in image structure.

Layered Image and Video Editing Layer-based image

and video editing is well-established in computer graph-

ics [21, 31] and is being increasingly adopted in machine

learning-driven methods [4,14,16,17]. Layered representa-

tions allow modification of individual components in im-

ages [4, 16] and in video [4, 14, 17]. This process often

requires generating a layered representation from a single

input video or image. In contrast, we assume that layered

information is provided as input, using machine learning to

synthesize image output from the layers.

4. Collage Diffusion

To frame discussion of layer-based image harmoniza-

tion, we first recap how text-conditioned diffusion mod-

els can perform image harmonization by leveraging added

noise. Then, we describe how Collage Diffusion leverages

additional information from individual layers to increase

both spatial and appearance fidelity for harmonized output.

4.1. Global image harmonization

Leveraging only layer composite image xc and full-

image string c, the SDEdit algorithm [19] improves im-
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age quality by adding Gaussian noise with standard devi-

ation σ(t) to xc, then denoising the noised image xt =
xc + N (0, σ(t)2) to generate output image x∗

c , using a

text-conditional diffusion U-Net Dθ(x, σ(t), c) as an im-

age prior [24] (x is a noisy input image, σ(t) is the noise

level at time t, and c is the text conditioning). Unfortu-

nately, added noise can make it difficult to map objects to

the correct image regions and can obscure key visual de-

tails, reducing spatial and appearance fidelity to the original

layers (Fig. 3). Layer input, with text ci and image xi cor-

responding to each region of the image, provides additional

information facilitating more precise control over individual

components of the generated image.

4.2. Spatial fidelity: crossattention manipulation

To generate an image with the desired objects in the de-

sired locations, Collage Diffusion modifies the text-image

cross-attention in text-conditional U-Net model Dθ. Not all

tokens in full-image input text c correspond to layer strings

ci—the start token, end token, several words in the input

string, and padding tokens lack specific regional influence.

We refer to these tokens as “global” tokens, while layer-

specific tokens are “layer” tokens. For instance, in Fig. 2,

“with” is a global token and “rice” is a layer token. Collage

Diffusion constrains image generation by restricting the in-

fluence of layer tokens to the regions of the image where

the corresponding layer is visible.The visible layer at pixel

coordinate (a, b) is defined as j = max
k∈1...n

({k|(xα
k )ab > 0}),

where j is the layer index of the highest of the n layers with

non-zero alpha at pixel coordinate (a, b).

Cross-attention in Dθ is computed as softmax(QKT

√
d
)V ,

where Q is a matrix of query embeddings from image to-

kens, K is a matrix of key embeddings from text tokens,

V is a matrix of value embeddings from text tokens, and d

is the embedding dimensionality. To increase or decrease

the influence of a particular token on a part of the image,

Collage Diffusion alters QKT , an approach similar to the

mechanism proposed by eDiffI [3]. Like eDiffI, Collage

Diffusion uses positive attention map Apos to increase the

influence of layer tokens on a region relative to global to-

kens, but unlike eDiffI, Collage Diffusion also constructs

negative map Aneg to prevent layer tokens from influencing

regions outside the desired location.

To alter QKT , Collage Diffusion constructs attention

maps Apos, Aneg ∈ R
Nv×Nt , where Nv is the number of

image tokens and Nt is the number of text tokens, and

each column A
pos
j , A

neg
j is a flattened alpha mask de-

pendent on visibility of text token j. Aij = 0 for all

global tokens j. A
pos
ij = 1 if image token i corresponds

to a region of the image that layer token j should influ-

ence, and A
neg
ij = 1 if image token i corresponds to a re-

gion of the image that layer token j should not influence.

Along with scalar weights wpos and wneg , attention maps

Apos and Aneg are incorporated into the softmax opera-

tion: softmax(QKT+wposApos−wnegAneg

√
d

)V . With larger

weights wpos and wneg , the influence of attention maps

Apos and Aneg on image layout is greater. Weights wpos

and wneg vary dependent on noise level σ(t) throughout the

diffusion process: wpos = vpos·y(t) and wneg = vneg ·y(t),
where y(t) = log(1+log(1+σ(t)))·max(QKT ), and vpos

and vneg are scalars specified by the user. Denote this mod-

ified diffusion model as D∗
θ .

4.3. Appearance fidelity: inversion and ControlNet

Layer text ci for a given layer often fails to adequately

capture the intended appearance of layer image xi. For in-

stance, in Fig. 2, layer text “ginger” does not capture that

the ginger is pickled and sliced. Starting image xc provides

some guidance on the desired look of each layer, but the

influence of xc is reduced when noise is added to the im-

age. Therefore, we would like additional control over the

appearance of generated content corresponding to individ-

ual layers. We offer per-layer control over two aspects of

the input layer: the unique attributes of the real-world ob-

ject, such as colors, textures, and shape, as well as the image

structure, including edges and poses.

To preserve attributes of the real-world object in the

layer, Collage Diffusion builds upon Textual Inversion [10]:

layer text ci is specialized to image xi by learning a modi-

fier token ai per layer, prepended to the layer text: (ai, ci).
ai serves as an adjective describing the object in layer li,

subject to the constraints of the existing layer description

ci. For instance, string “ginger” is modified into new string

“〈ai〉 ginger”. The embedding for ai is learned by optimiz-

ing the following loss:

(1)
a∗i = argmin

ai

Eǫ∼N(0,σ)

[xα
i · (xtargeti −Dθ(xtargeti + ǫ, σ, (ai, ci)))]

target image xtargeti is constructed by alpha-compositing

the first i layers l1 . . . li, and layer alpha mask xα
i restricts

the loss to the relevant region of xtargeti . Textual Inver-

sion [10] learns token ai as a standalone prompt, and per-

forms optimization using several images of the same object

that communicate invariances in pose, lighting, etc. Collage

Diffusion operates in a single-image setting, where xtargeti

is the only reference for learning ai. Therefore, it leverages

the layer textual description ci to help regularize optimiza-

tion.

To preserve image structure, we extend ControlNet [37]

to enable per-layer controls. The ControlNet auxiliary net-

work outputs 2-d feature maps mk ∈ Rh,w,c from its zero

convolutions, where h is height, w is width, and c is number

of channels. In standard ControlNet, we multiply feature

maps mk by scalar ControlNet weight wall ∈ [0, 1] that

controls the “strength” with which ControlNet influences

the generated image. We replace wall with weight map
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wlayer: the user sets ControlNet weights wi for each layer

li, and the wi are converted into single-channel weight map

wlayer: wlayerab = tj , where j = max
k∈1...n

({k|(xα
k )ab > 0})

is the layer index of the highest of the n layers with nonzero

alpha for pixel coordinate (a, b), and wlayerab is the value of

wlayer at pixel (a, b). We resize wlayer to [0, 1]h,w using bi-

linear interpolation, then elementwise-multiply wlayer ∗mk

to produce re-weighted ControlNet outputs. Now, the user

can control the influence of ControlNet on regions corre-

sponding to each layer with per-layer weights wi.

4.4. Tuning the HarmonizationFidelity Tradeoff

The content in the input layers must be modified to glob-

ally harmonize the image, and users may be willing to ac-

cept more variation for some objects than others. Layer in-

put allows users to control the harmonization-fidelity trade-

off on a per-object basis by having users specify the de-

sired level of harmonization per layer. The user sets noise

levels ti for each layer li, and the ti are converted into

single-channel noise image h: hab = tj , where j =
max

k∈1...n
({k|(xα

k )ab > 0}) is the layer index of the highest of

the n layers with nonzero alpha for pixel coordinate (a, b),
and hab is the value of h at pixel (a, b). A Gaussian blur

is applied to h to smooth boundaries where the noise level

changes sharply. Building upon Blended Diffusion [2], Col-

lage Diffusion modifies the diffusion process so that differ-

ent levels of noise are added to different regions of the im-

age according to h, controlling the harmonization-fidelity

tradeoff per layer:

(2)
x′(t− 1) = x(t− 1) ·m(t) +

(xc +N (0, σ(t− 1)2)) · (1−m(t))

(3)mab(t) =

{

1 if hab < t

0 if hab ≥ t

where x(t) is the original solver output at time t, x′(t) is

the modified solver output at time t, and m(t) is a binary

mask computed at time t based on the noise image h. For

instance, in Fig. 2, ti = 0.5 for both the “bento box” and

“rice” layers, ti = 0.6 for the “edamame” layer, and ti =
0.8 the “sushi” and “ginger” layers, indicating that the user

would like a greater level of harmonization for the ginger

and sushi than for the bento box and the rice.

4.5. Editing Individual Layers in Generated Images

Per-layer noise controls also enable layer-by-layer image

editing. Especially for scenes with many objects, it can be

difficult to look through large output galleries to find an ex-

ample where all objects in the scene look exactly as desired.

Rather, the user can simply select a generated image where

nearly all objects look as desired, then refine the image by

generating alternate possibilities for the remaining objects.

Per-layer noise controls enable users to keep a part of

an input collage “fixed” by setting the noise level to t = 0

for the layers that should remain constant. Having gener-

ated an image using Collage Diffusion, an individual object

may be edited by creating a new two-layer collage, where

the generated image is the background layer, and the object

to be re-generated is the foreground layer. Setting per-layer

noise t = 0 to the background layer, a variety of possibili-

ties are generated for the foreground layer, harmonized and

combined with the fixed background layer. Especially for

complex scenes, a small part of a generated image might not

quite look right. Here, iterative, layer-driven editing can be

the difference between obtaining a final image that is nearly

satisfactory and one that precisely satisfies the user’s im-

age generation goals. Collage Diffusion’s generation speeds

support interactive editing workflows; see the Supplemental

for additional discussion.

4.6. Autoadjust parameters

The additional parameters provided for tuning spatial

and appearance fidelity substantially improve user control

over the image harmonization process, but can pose diffi-

cultly for novice users to tune. Therefore, we introduce a

heuristic-based algorithm that automatically generates pa-

rameters that qualitatively produce aesthetically pleasing

images. We discuss our parameter-setting algorithm in de-

tail in the Supplemental.

5. Evaluation

We evaluate the value of layer information in terms of

supporting iterative editing workflows as well as how that

information can meet our fidelity and image harmonization

goals. We choose to focus on qualitative evaluation because

our goals are primarily visual and because generative met-

rics for distributional comparison (FID, etc.) are not appli-

cable in the layer-conditional setting where no ground-truth

test dataset for “the perfect output” exists. Nevertheless, we

also present a short quantitative study that mirrors our qual-

itative observations.

5.1. Experimental Setup

We evaluate the capacity of Collage Diffusion to gener-

ate images without a user in the loop against two prior work

baselines that do not use layer information. We also ablate

Collage Diffusion to create (1) a baseline that omits textual

inversion but does modify cross-attention using layer in-

formation, and (2) a baseline that modifies cross-attention,

leverages textual inversion, but does not enable per-layer

control over harmonization. We evaluate the performance

of the following methods for a range of scenes:

1. SA: Image generation with Self-Attention control via

Plug-and-Play Diffusion [30] applied to composite im-

age xc, with negative prompt “A collage”. This is a base-

line that does not leverage layer information, but main-

tains the image structure of xc via self-attention control.

2. GH: Global Harmonization by applying SDEdit [19]

(Sec. 4.1) to composite image xc. This is another base-
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      Cake
Outputs

“a wood table with
two white chairs be-
hind, two pink dec-
orated cakes on top,
maroon bookshelves
behind, and winter
window”

“two pink decorated
cakes on a wood ta -
ble with two white
chairs behind, ma-
roon bookshelves be-
hind, and winter win-
dow”

“ two pink decorated
cakes on a wood ta -
ble with two white
chairs behind, ma-
roon bookshelf be-
hind, and winter win-
dow”

Bento Box

“a bento box with
rice, edamame, gin-
ger, and sushi”

“a bento box with
rice, edamame, gin-
ger, and sushi”

“a bento box with
rice, edamame, sushi,
and ginger”

 

Prompt (5-layer) Input Layers Noise Image

Prompt (2-layer)

Prompt (2-layer)

Prompt (5-layer)

Prompt (2-layer)

Prompt (2-layer)

OutputsInput Layers Noise Image

OutputsInput Layers Noise Image

OutputsInput Layers Noise Image

OutputsInput Layers Noise Image

OutputsInput Layers Noise Image

Figure 4. An iterative editing workflow where the user modifies

individual layers of generated images for the Cake and Bento Box

scenes. In each example, the user generates an initial image using

Collage Diffusion, then improves the images using two refinement

iterations, re-generating one of the original input layers in each

refinement iteration.

line that does not leverage layer information.

3. GH+CA: GH with modified Cross-Attention (Sec. 4.2).

This builds upon GH by using layer information to im-

prove spatial fidelity, but lacks specific mechanisms to

improve appearance fidelity.

4. GH+CA+TI: GH applied to composite image xc with

both CA learned per-layer representations via Textual

Inversion [10] (Sec. 4.3). This leverages layer informa-

tion to improve both spatial and appearance fidelity.

5. GH+CA+TI+LN (Collage Diffusion): GH applied to

composite image xc with both CA and TI, with per-

Layer Noise control (Sec. 4.4). This leverages layer

information to improve both spatial and appearance fi-

delity, and allows user control over the harmonization-

fidelity tradeoff on a per-layer basis.

Controlled image-to-image techniques [5, 11, 20, 30] ad-

here too closely to starting image structure, as discussed in

Sec. 3, resulting in performance worse than the GH base-

line. To illustrate this, we evaluate against one of these

methods in SA [30]; see the Supplemental for additional

discussion.

Toys

“a teddy bear, a wood train, and an american football, in

front of a tan background”

Input Layers (4) SA GH GH+CA GH+CA+TI GH+CA+TI+LN

Issues with har-

monization on

the football and

merged teddy

bears, no wood

train in the bottom

left

Harmonized im-

age, no wood train

in the bottom left

Wood train in the

bottom left

Wood train with

styling of wood

closer to the

starting image,

white face and

tie of teddy bear

preserved

Wood train very

similar to the orig-

inal train, red color

of tie preserved

Bento Box

“a bento box with rice, edamame, ginger, and sushi”

Input Layers (5) SA GH GH+CA GH+CA+TI GH+CA+TI+LN

Sushi orienta-

tion and shading

not harmonized,

edamame in place

of ginger on the

top left

Harmonized im-

age, sushi in place

of ginger in the

top left, wasabi

in place of rice

in bottom left, no

sushi in bottom

right

Sushi and rice in

currect locations,

ginger paste in-

stead of sliced

sushi ginger in the

top left

Sliced sushi gin-

ger in the top left,

darker rice in the

bottom left, sushi

on right more sim-

ilar to layer

Sliced sushi ginger

in the top left, dark

rice in bottom left,

sushi on right very

similar to layer

Cake

“a wood table with two white chairs behind, two pink

decorated cakes on top, maroon bookshelves behind, and

winter window”

Input Layers (5) SA GH GH+CA GH+CA+TI GH+CA+TI+LN

Cake orientation

not harmonized,

bookshelf angle

not harmonized,

artifacts in the

cakes, artifacts on

the edges of the

chairs

Harmonized im-

age, white cakes in

place of the chairs,

no bookshelf

Brown table legs

instead of black

in the bottom

right, chairs in the

correct locations

in top left, not

many books on

bookshelf in the

top left, wooden

floor around table

Black table leg

in the bottom

right, bookshelf

with a few more

books in the top

left, wooden floor

around table

Bookshelf with

many books in

the top left, carpet

floor around the

table

Figure 5. (Part 1) By leveraging layer information, Collage Diffu-

sion generates images with greater spatial and appearance fidelity

than the baseline GH approach. For each scene above, there are

several aspects in which CA, TI, and LN improve fidelity; we

comment on some of these aspects in each row. Compared to GH,

SA fails to effectively harmonize input layers; we comment on is-

sues with harmonization in each row.

Scene construction. We evaluate Collage Diffusion on

seven diverse scenes created using an interactive layer ed-

itor UI that provides controls similar to those in popular

layer-based image editing software. Creating a scene using

the UI is simple and straightforward–see the Supplemental

for a video example.

Model and optimization. We use the Stable Diffusion

[24] 2.1 base model as Dθ for GH, GH+CA, GH+CA+TI,

and GH+CA+TI+LN, and generate images using the Eu-

ler ancestral solver with 50 steps. For each scene, we tune

the noise added to the image to qualitatively optimize the

harmonization-fidelity tradeoff; values are between t = 0.7
and t = 0.8 for all scenes tested. We use the official Py-

Torch implementation of SA [30].
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Veggie Face

“a face made of vegetables, including a yellow bell pepper

and a green bell pepper, a white cauliflower, red potatoes,

baby corn, small cucumber, bean sprouts, and floret

broccoli, on a grey background”

Input Layers (9) SA GH GH+CA GH+CA+TI GH+CA+TI+LN

Image missing

shadows, some

potatoes replaced

with bell peppers,

beans in chin, corn

mustache missing

Harmonized

image, missing

cucumber mouth,

corn mustache,

sprout beard, red

potatoes

Cucumber in

correct location,

but corn and most

bean sprouts miss-

ing, red potatoes

in correct location

Small cucumber

slices for mouth,

and some sur-

rounding sprouts

that look very

different from the

ones in the starting

image

Bean sprouts more

similar to starting

image, sliced

cucumber mouth

more similar to

layer, corn mus-

tache in correct

location and in

natural orientation

for a mustache

Striped Sweater

“a man wearing green pants, a blue and green striped

sweater, a plaid scarf, and a maroon beanie”

Input Layers (4) SA GH GH+CA GH+CA+TI GH+CA+TI+LN

Lack of harmo-

nization in both

the beanie on the

head and the scarf

mixing with the

sweater, some ar-

tifacts from input

layers preserved

Harmonized

image, a green

sweater missing

dark stripes, scarf

not plaid, blue

beanie instead of

maroon

A sweater striped

with green and

blue, plaid scarf,

blue beanie instead

of maroon

A sweater striped

with green and

blue that are closer

to the original

colors, plaid scarf

with correct size

of squares, pants

closer to the style

of the input

A sweater with

very similar color

and pattern to

original

Ceramic Bowl

“a blue ceramic bowl with red potatoes, red apples, and

red bananas”

Input Layers (4) SA GH GH+CA GH+CA+TI GH+CA+TI+LN

Apple orientations

not harmonized

Harmonized

image, hybrid

mixtures of apples,

bananas, and pota-

toes throughout

bowl

Brown potatoes in-

stead of red in the

bottom left, some

yellow in the red

bananas

All objects in the

desired locations

Banana structure

matching layer

Red Skirt

“a person wearing a patterned red skirt, buttoned blue

blouse, and pink summer coat, in front of a

gray background”

Input Layers (4) SA GH GH+CA GH+CA+TI GH+CA+TI+LN

Image artifact

on the sleeve, all

objects correctly

mapped to the

desired locations,

layer image struc-

ture preserved

Harmonized im-

age, all objects

correctly mapped

to the desired

locations

No additional ben-

efit from CA

TI introduces folds

in the skirt

No further changes

with LN

Figure 6. (Part 2) By leveraging layer information, Collage Diffu-

sion generates images with greater spatial and appearance fidelity

than the baseline GH approach. See Fig. 5 caption for more detail.

Metrics We use the following metrics for quantitative

evaluation. Our spatial fidelity goals aim for layer text ci
to match the visual content in x∗

c in regions where layer i

is visible—we measure this by computing CLIP [22] text-

image similarity between ci and the corresponding region

GH GH+CA GH+CA GH+CA

+TI +TI+LN

↑Txt-Img. Sim. 0.215 0.236 0.233 0.238

↑Img-Img. Sim. 0.846 0.867 0.877 0.893

Table 1. CA, TI, and LN help Collage Diffusion improve both

spatial fidelity, as measured by per-layer text-image similarity with

the input layers, and appearance fidelity, as measured by per-layer

image-image similarity with the input layers. Metrics are averaged

across 10 image seeds and all layers for seven scenes.

of x∗
c . Appearance fidelity aims for layer image xi to match

the visual content in x∗
c where layer i is visible—we mea-

sure this by computing CLIP image-image similarity be-

tween xi and the corresponding region of x∗
c . We include

additional details on metrics in the Supplemental.

5.2. Interactive Editing

We illustrate interactive editing with Collage Diffusion

by repeatedly (1) generating 10 images using different ran-

dom seeds, (2) allowing the user to select the image they

like the most, and (3) selecting an object in this image that

they would like to re-generate. This process continues until

the user is satisfied with all aspects of the generated image.

Fig. 4 illustrates the value of Collage Diffusion for inter-

actively authoring complex scenes. For the “Cake” scene,

the user generates a final image in three steps: (1) gener-

ating an initial collection of images from the input layers,

(2) exploring different options for the cake, and (3) explor-

ing different options for the winter window. Similarly, for

“Bento Box,” the user generates a final image in three steps:

(1) generating an initial collection of images from the input

layers, (2) exploring different options for the sushi, and (3)

exploring different options for the ginger. We successfully

preserve all previously-generated objects while providing a

diverse set of options for each modified object that match

the layer specifications. This interactive refinement proce-

dure is valuable for ensuring that the user is satisfied with

all parts of the generated image.

5.3. NonInteractive Generation

Collage Diffusion is a combination of several compo-

nents: GH, CA, TI, and LN, as outlined in Sec. 5.1. Fig. 5

and 6 illustrate how all of these components contribute to

our harmonization and fidelity goals. We did not cherry-

pick the individual image seeds for each scene—additional

examples from each test scene are included in the Supple-

mental, and reflect the same overall trends.

GH generates globally-harmonized images, while SA

struggles with harmonization. Comparison of the SA

and GH columns in Fig. 5 and 6 illustrates the capacity of

GH to generate a harmonized image from input xc while

highlighting the downsides of manipulating self-attention to

preserve image structure in SA. When image harmonization

requires altering the orientations of objects in the scene—

the sushi in “Bento Box,” the cakes in “Cake,” the apples in
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“Ceramic Bowl,” etc.—SA fails to harmonize the image due

to the constraints placed on the self-attention maps. In con-

trast, GH reliably generates globally-harmonized images:

the images have consistent perspective and lighting, with

fewer artifacts. Note that GH still inherits the limitations of

Stable Diffusion 2.1–the harmonization capacity is limited

by the quality of the underlying diffusion prior.

CA consistently improves spatial fidelity across scenes.

Comparison of the GH and GH+CA columns in Fig. 5 and

6 illustrates the benefits of layer-based cross-attention con-

trol. In “Bento Box,” using CA results in ginger and rice

in the appropriate locations in the generated output. CA

also helps preserve the table legs in “Cake,” maps the cor-

rect fruits to the correct parts of “Ceramic Bowl,” etc. This

trend is also reflected quantitatively: in Tab. 1, GH+CA has

a higher average per-layer text-image similarity than GH,

indicating better spatial fidelity.

TI consistently improves appearance fidelity across

scenes. Having mapped the desired concepts to the

desired locations, comparison of the GH+CA and

GH+CA+TI columns in Fig. 5 and 6 illustrates the benefits

of layer-based textual representations. TI helps generate a

wood train with similar style to the starting image in “Toys,”

the right type of sushi ginger in “Bento Box,” the proper

legs for the table in “Cake,” the correct color and shape

for the potatoes in “Ceramic Bowl,” the proper saturation

of colors and presence of wrinkles in “Clothing,” etc. This

trend is also reflected quantitatively: in Tab. 1, GH+CA+TI

has a higher average per-layer image-image similarity than

GH+CA, indicating better appearance fidelity.

LN consistently helps optimize the harmonization-

fidelity tradeoff across scenes Having mapped the de-

sired concepts to the desired locations, with textual in-

version to increase appearance fidelity, comparison of the

GH+C+TI and GH+CA+TI+LN columns in Fig. 5 and

6 illustrates the benefits of control over per-layer noise.

LN increases the preservation of the structure of the wood

train in “Toys”, the salmon on the sushi in “Bento Box”,

the books on the bookshelves in “Cake”, the shape of the

bananas in “Ceramic Bowl”, the stripes of the sweater in

“Striped Sweater”, the corn and cucumber in “Veggie Face,”

etc. For all these scenes, the quality of image harmoniza-

tion is maintained across GH+C+TI and GH+CA+TI+LN.

This trend is also reflected quantitatively: in Tab. 1,

GH+CA+TI+LN has higher average per-layer text-image

and image-image similarity than GH+CA+TI, indicating

better spatial and appearance fidelity.

Where is layer-driven harmonization most helpful? To

understand the situations where layer information is most

valuable, we highlight the “Red Skirt” (Fig. 6) and “Cake”

(Fig. 5) scenes as examples at either end of the range of

difficulty where layers are valuable. When harmonization

Prompt Input Layers Preserved Outputs

features

A pirate ship moving across a stormy

ocean with waves colliding into a

rocky shore containing a lighthouse

on top, dark storm clouds with light-

ning in the background

Preserve edges:

ship, rocks, light-

house

A house with a pink cherry blossom

next to a swimming pool with a stone

pool deck in the backyard, sky with

birds flying in the background

Preserve edges:

house, backyard

Figure 7. ControlNet lets users preserve image structures, rather

than unique object identity, on a per-layer basis. First row: high

ControlNet weights preserve edge maps for the ships, rocks, and

lighthouse. Second row: high ControlNet weights preserve edge

maps for the house and the backyard.

requires limited changes to image structure, SA can be

suitable—while SA still produces artifacts on “Red Skirt”,

the approach is more effective than on other scenes because

fewer changes in image structure are required to harmonize

the image. When objects are easy to discriminate even after

noise is added (large objects with distinct colors), GH per-

forms well, and GH+CA provides negligible added value.

If the visual attributes that the user cares to preserve in

the layer are well-described by the layer prompt, TI may

be unnecessary—in Fig. 6, the only added benefit in “Red

Skirt” comes from the preservation of the folds on the skirt

and the dark band around the waist.

On the other end of the spectrum, when the user is partic-

ular on the exact appearance of many complex layers, even

Collage Diffusion may struggle to satisfy user intent across

all objects in the scene. For instance, in “Cake,” the user

may want a specific color and icing pattern on the cake, a

snowy pine outside the window, a full bookshelf, etc. For

these situations, our iterative editing workflow is valuable,

as highlighted in Sec. 5.2 and Fig. 4.

5.4. Flexible perlayer controls with ControlNet

One of the key benefits of per-layer control is that we can

vary the definition of appearance fidelity on a per-layer ba-

sis. In Fig. 7, our ControlNet extension enables users to pre-

serve image structures, rather than unique object identity, on

a per-layer basis. In the first row, high ControlNet weights

preserve the edge maps of the ships, rocks, and lighthouse

(note that the colors/textures of the rocks and lighthouse

vary). The generated images have more structural variation

in the ocean and sky. In the second row, high ControlNet

weights strictly preserve the structure of the house, while

loosely preserving the layout of the backyard, and allowing

variation in the pool shape and pattern of birds in the sky.

6. Conclusion
In this paper, we show the value of maintaining an ex-

plicit notion of scene layers for AI-based image generation.

Per-layer editing provides users the ability to precisely con-

trol image output, and the additional information afforded

by layer-based representations can be leveraged by the im-

age generation process to more closely match user intent.
Acknowledgement: This work was supported by a gift from Meta.
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