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Abstract

We propose a metadata-aware self-supervised learn-
ing (SSL) framework useful for fine-grained classifica-
tion and ecological mapping of bird species around the
world. Our framework unifies two SSL strategies: Con-
trastive Learning (CL) and Masked Image Modeling (MIM),
while also enriching the embedding space with metadata
available with ground-level imagery of birds. We sepa-
rately train uni-modal and cross-modal ViT on a novel
cross-view global bird species dataset containing ground-
level imagery, metadata (location, time), and correspond-
ing satellite imagery. We demonstrate that our models
learn fine-grained and geographically conditioned features
of birds, by evaluating on two downstream tasks: fine-
grained visual classification (FGVC) and cross-modal re-
trieval. Pre-trained models learned using our framework
achieve SotA performance on FGVC of iNAT-2021 birds
and in transfer learning settings for CUB-200-2011 and
NABirds datasets. Moreover, the impressive cross-modal
retrieval performance of our model enables the creation
of species distribution maps across any geographic region.
The dataset and source code will be released at https:
//github.com/mvrl/BirdSAT.

1. Introduction

Species classification and distribution mapping are two
important tasks for ecologists who monitor and protect the
habitats of endangered species. Species classification in-
volves categorizing species with subtle differences into fine-
grained classes. It lies within the continuous manifold
of basic visual recognition tasks and more complex visual
identification tasks. Moreover, it coincides with the task
of Fine-Grained Visual Classification (FGVC) which has
already been used for distinguishing between models of
cars [1], species of birds [2, 3, 4], airplanes [5], etc. On the
other hand, the task of species distribution mapping aims at
mapping the habitation of species of interest over any ge-

ographic region in the world. In this work, we propose to
learn a unified representation space useful for solving both
of these tasks. Specifically, we evaluate our framework for
classifying and mapping bird species around the world.
However, our models are general enough to be easily ex-
tended to any species of interest.

As easy as it may sound, low inter-class variance and
high intra-class variance make the task of species classifi-
cation relatively difficult. Most often, species in the same
category vary in terms of their pose, size, and lighting. This
makes it challenging for deep learning models to extract
category-specific rich features useful for fine-grained clas-
sification and mapping. Previous works have approached
this challenge in one of the following ways: (1) Collecting
additional labeled data [6]; (2) Using sophisticated learning
techniques [7, 8]; (3) Using auxiliary and/or metadata as
additional cue [9, 10]. Out of these, (1) is usually the most
time-consuming and expensive approach and (2) requires
careful design of objectives and methods for effective re-
sults. However, the inclusion of metadata has proven to be
very effective.

The task of species classification requires fine-grained
visual representation learning capabilities. Recently, self-
supervised learning (SSL) strategies such as Masked Im-
age Modeling (MIM) [11, 12] have proven to be useful for
learning discriminative features. On the other hand, the task
of species mapping, which can be realized as a cross-modal
retrieval task, would benefit from contrastive learning (CL)
based SSL. To learn a common embedding space for both
of these tasks, we propose to use a general SSL framework
trained using objective functions for both MIM and CL.

We expect geolocation and time to provide useful cues
for species classification and mapping. Therefore, we incor-
porate metadata (location, time) into our SSL framework,
as additional information to learn from. However, metadata
alone is not sufficient for species mapping as noted by other
works on geo-aware mapping tasks [13, 14]. Therefore,
we additionally incorporate cross-view visual information
by collecting freely available corresponding satellite images
for each ground-level image. We expect that these images
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Figure 1: Cross-View iNAT-2021 Birds Dataset. Examples of paired satellite and ground-level images of birds along with
metadata associated with each pair.

shall provide the model with a context of the surroundings
and habitat a bird might be found. Further, information
coming from multiple modalities is usually combined using
early-fusion or late-fusion style architectures. Early-fusion
style architectures [15, 16] use a multi-modal model to en-
code all input information while the latter uses modality-
specific models to learn correlated information between the
modalities [17, 18]. In this work, we explore and evaluate
these kinds of architectures from heuristic and systematic
perspectives. In the end, using the models, we are able to
map species of birds across the globe at a fine-grained level.
The contributions of our work are threefold:

• We introduce a global Cross-View iNAT 2021 Birds
Dataset, which contains paired satellite images and
corresponding ground-level bird images.

• We propose a framework for cross-view pre-training of
vision transformers along with metadata enabling the
ecological mapping of bird species.

• We demonstrate the rich representational capability of
our pre-trained models by demonstrating SotA on fine-
grained bird classification across three datasets.

2. Related Work
Self-Supervised Learning (SSL) has proven to be an

effective pre-training strategy for various downstream tasks
in computer vision. The two most successful SSL strategies
are: Contrastive Learning (CL) and Masked Image Mod-
eling (MIM). Contrastive learning-based pre-training pulls

positive pair of samples closer while pushing the negative
pairs farther in the embedding space. CL creates a repre-
sentation space with high instance discriminability useful
for various visual recognition tasks. On the other hand, in-
spired by Masked Language Modeling (MLM) [19] in Nat-
ural Language Processing (NLP), MIM has proven to be an
effective pre-training strategy in computer vision. MIM is
effective, especially for tasks where learning fine-grained
concepts is important. MIM was first introduced for vi-
sion tasks by Masked Autoencoder (MAE) [11]. MAE has
since been used as a representation learning framework for
video [20], as well as for other visual modalities such as
satellite imagery [12, 21]. Moreover, owing to its flexibil-
ity and scalability, MAE has also been adapted for differ-
ent multi-modal representation learning frameworks such
as MultiMAE [15] and M3AE [22]. MAE frameworks of-
fer rich representational capability useful for fine-grained
tasks, however, the limited discriminability of its embed-
ding space hampers the performance on visual recognition
tasks. To mitigate this, some of the recent works [23, 24, 25]
have proposed to introduce CL-style learning into the MIM-
based MAE framework. One of the main downstream tasks
of our work is fine-grained visual recognition. Therefore,
we also pre-train our proposed cross-view framework using
both contrastive and MIM losses.

Fine-Grained Visual Classification (FGVC) requires
distinguishing subtle yet discriminative details within a cat-
egory (e.g., animal, bird, car, etc.). Accordingly, most of
the prior works have proposed different attention mech-
anisms [26, 27, 28, 29] which detect the discriminative
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(a) Cross-View Embed MAE (b) Cross-View Metric MAE

Figure 2: Our proposed framework. We evaluate (a) uni-modal (late-fusion) and (b) cross-modal (early-fusion) pre-training
of ViT incorporating metadata and contrastive and masked reconstruction objectives.

parts in an image and amplify their corresponding fea-
tures for recognition. Moreover, in order to enhance fine-
grained representations, different modules that are easy to
be plugged into common backbone architectures have been
proposed [8, 30]. In a separate line of work, different SSL
techniques have been introduced either as an additional self-
supervision [31] or as a pre-training strategy for FGVC. For
example, Yu et.al. [31] propose randomly masking parts of
an image and forcing the network to predict the position
of the masked parts. Different pre-text tasks for SSL such
as jigsaw solving, adversarial learning, and SimCLR [32]
based CL are explored in [33]. In [34], a multi-stage
SSL strategy is proposed, where a SimCLR-style frame-
work is trained with images progressively degraded with
masks having different granularity at each stage. In a re-
cent work [35] an additional GradCAM-guided loss is in-
troduced into a MoCo-style SSL framework. In our work,
inspired by the success of SSL in various computer vision
tasks including FGVC, we propose a cross-view SSL frame-
work trained on our novel dataset containing ground-level
images paired with their corresponding satellite imagery.

Geography-Aware Learning leverages the high-level
context available in the geolocation of any ground-level
scene. Such information proves to be a valuable signal
for various visual recognition tasks [36, 37, 38, 39] and
has been successfully used for mapping the distribution
of different attributes across a geographic region of inter-
est [40, 41, 13, 14]. For example, Tang et.al. [36] proposed
to encode location information into their network yielding
improved visual recognition performance. Ayush et.al. [42]
proposed adding a geolocation classification loss into the
original MoCo-v2 SSL framework achieving performance

gain in a diverse range of remote sensing tasks. Similarly,
from some of the recent works [38, 37], it has become ev-
ident that including geographic information improves the
performance on the task of FGVC. Inspired by these find-
ings, in both of the cross-view SSL frameworks proposed
in our work, we encode location and date as extra metadata
that the model can learn from.

3. Cross-View iNAT-2021 Birds Dataset

We construct a cross-view birds dataset that consists
of paired ground-level bird images and satellite images as
shown in Figure 1. We expect that this kind of dataset will
not only help improve the performance of existing methods
but also enable innovative new methods for bird distribution
modeling. To do this, we select the iNAT-2021 dataset [2]
which spans all over the globe. This dataset is both large
scale and contains rich metadata such as geolocation and
timestamp of an image.

We carefully filter images of bird species from the
dataset which have geolocation associated with them. This
resulted in dropping only 888 out of 414,847 (0.2%) obser-
vations in training. In testing, we dropped 29 out of 14,860
(0.1%). This did not significantly impact the distribution of
the classes (more details in Appendix Section A). Using the
geolocation information, we collect Sentinel-2 level 2A im-
ages corresponding to each of the ground-level bird images.
Each Sentinel-2 image we extract is of resolution 256x256
which spans an area of 6.55 km2 on the Earth’s surface.
In total, the dataset contains 413,959 pairs for training and
14,831 pairs for testing.
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4. Method
We employ and evaluate two different approaches

for contrastively training MAE with satellite images and
ground-level bird images. We describe the two approaches
in the following sections.

4.1. Cross-View Embed MAE

The overall framework of Cross-View Embed MAE
(CVE-MAE) is illustrated in Figure 2 (a). Our method
consists of two separate modality-specific transformer en-
coders and a single transformer decoder for reconstructing
the ground-level image modality. Both the encoders have
the same architecture based on ViTAE [43], while the de-
coder has the same architecture as employed by the au-
thors in MAE. The satellite image encoder is directly taken
from [44] and is kept frozen throughout.

Similar to other contrastive learning frameworks [32,
17], the ground-level image encoder serves as the online en-
coder and the satellite image encoder serves as the target en-
coder. Both the encoders have an extra [cls] token which we
use for computing a contrastive objective. The contrastive
objective we use in this study is the symmetric InfoNCE
loss as used in CLIP [18]. If Ig denotes ground-level image
and Is denotes satellite image, CLIP loss is defined by:

Lg = −log
exp(Ig · Is)+

exp(Ig · Is)+ +
∑N−1

j=1 exp(Ig · Isj )−
(1)

Ls = −log
exp(Is · Ig)+

exp(Is · Ig)+ +
∑N−1

j=1 exp(Is · Igj )−
(2)

Lc =
Lg + Ls

2
(3)

Here, Ig ·Is is the normalized cosine similarity between the
[cls] token obtained from ground-level and satellite image
encoders respectively. The sum is over a batch of samples
and + and − denote positive and negative pairs within the
batch respectively. Similar to MAE, the decoder is used to
reconstruct ground-level images using masked versions of
tokens obtained from the online encoder. A second forward
pass is required to train for this objective as the ground-level
encoder requires only the unmasked tokens as input. For the
reconstruction objective, we use the L2 loss defined by:

Lr =

N∑
j=1

|Îgj − Igj |
2
2 (4)

The overall loss is then defined as -

L = Lc + Lr (5)

Different from the existing method (i.e. CMAE [23]),
our method gets rid of the feature decoder layer. We found
that training without the feature decoder layer results in sta-
ble loss curves.

4.2. Cross-View Metric MAE

The overall framework of Cross-View Metric MAE
(CVM-MAE) is illustrated in Figure 2 (b). This kind
of training strategy requires a single multi-modal trans-
former encoder and separate modality-specific transformer
decoders. This is a similar setup as used by previous works
on multi-modal MAE [22, 16]. The encoder and decoders
have the same architecture as employed by the authors in
MAE.

The proposed framework starts by concatenating the to-
kens computed from the ground level and satellite images
using separate linear patchifier layers. A [cls] token is ap-
pended to the tokens which is later used for computing
the matching loss. Ground-satellite Matching predicts
whether a pair of satellite and ground-level bird images
is positive or negative. A single feed-forward layer is ap-
pended so as to train for the objective. The matching loss
is simply defined as the binary cross entropy loss between
ground-truth labels and the output of the feed-forward layer
as follows:

Lm =
−1

2N

2N∑
j=1

(yj log(ŷj) + (1− yj)log(1− ŷj)) (6)

Positive and negative pairs of ground-level and satellite
images are defined using the batch currently in training. The
satellite image batch is simply rolled to create the set of neg-
ative pairs. The output [cls] token from the multi-modal en-
coder is used for computing this matching loss. Intuitively,
this token should capture the joint representation of the im-
age pair.

Additionally, a second forward pass is required for com-
puting the reconstruction objectives. This is necessary as
the pixel decoders require a masked version of the encoder
outputs. Unmasked tokens are first generated at the input
stage using the patchifier layers. They are concatenated and
sent to the multi-modal encoder. The tokens computed by
the multi-modal encoder are separated back to their respec-
tive modality. Finally, the tokens (after concatenating with
[mask] tokens) are sent to their modality-specific decoders
for reconstruction. Again, we use the L2 loss to train for the
reconstruction objective. The overall loss is defined as -

L = Lm + Lr (7)

4.3. Incorporating Acquisition Metadata

While often ignored, acquisition metadata, such as when
and where an image was captured, provides additional con-
text which can improve our ability to interpret the content
of an image. It can not only help reduce the number of pos-
sible classes but also help improve the interpretability of a
model. Our Cross-View iNAT-2021 Birds Dataset provides
geolocation and timestamp for each image. In our imple-
mentation, we use latitude, longitude, and month attributes
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Table 1: Comparison of accuracy (%) achieved by our proposed models and SotA approaches on the standard test set of the
iNAT-2021 Birds dataset. We report linear probing (lin) and fine-tuning (ft) accuracy.

Method Location Date Pre-training #param. (trainable) #FLOPS lin ft

MoCo-V2-Geo [42] ! % InfoNCE+Geo-Clf. 115M 13.46G 52.44 85.07
MAE [11] % % Recons. Loss 115M 13.46G 41.10 83.14
MetaFormer-2 [9] ! ! ImageNet Clf. 81M 16.90G - 85.34

CVE-MAE % % InfoNCE+Recons. Loss 117M 13.46G 38.86 83.78
CVE-MAE-Meta ! ! InfoNCE+Recons. Loss 117M 13.46G 59.26 86.23
CVM-MAE % % Matching+Recons. Loss 115M 31.59G 44.25 85.89
CVM-MAE-Meta ! ! Matching+Recons. Loss 115M 31.59G 63.33 87.46

of the metadata. As each of the attributes is a real number,
we encode them using the sin-cos encoding method. They
are then passed to a feed-forward layer which outputs an
embedding of the same dimension as our single-stream and
dual-stream encoders. Finally, they are added to the [cls] to-
ken embedding that results from the encoders. We call these
models CVE-MAE-Meta and CVM-MAE-Meta. Note that
for our dual stream approach, we only add metadata to the
[cls] token resulting from the satellite image encoder.

4.4. Meta-Dropout

During initial training runs for pre-training and fine-
tuning, we noticed a heavy dependence of our models on
metadata for minimizing target objectives (Appendix Sec-
tion C). For several ground-level images of birds, our mod-
els seemed to ignore visual information completely. To ad-
dress this issue, we randomly dropped metadata (25% of the
time) during training. Given the flexibility of our models, it
is easy to forward the raw features without having the need
to add metadata. Another benefit of this strategy is that it
improves inference on unseen examples where metadata is
not available.

5. Experiments
We evaluate the performance of our proposed models

by first pre-training on the Cross-View iNAT-2021 Birds
Dataset and then applying them to various tasks. In the
following sections, we describe our implementation de-
tails, FGVC performance on iNAT-2021 birds, satellite
image to ground level image retrieval performance, and
transfer learning performance on CUB-200-2011 [4] and
NABirds [3].

5.1. Implementation Details

We randomly crop the ground-level images to a reso-
lution of 384x384 and satellite images to a resolution of
224x224. We use the ViT-B/32 and ViT-B/16 architecture

for the ground-level images and satellite images respec-
tively. For pre-training, we use the AdamW [45] optimizer
with a weight decay of 0.01. We use a learning rate of 1e−4

along with cosine annealing warm restarts [46]. We also
apply TrivialAugment [47].

For linear probing and fine-tuning, we use the AdamW
optimizer with a weight decay of 1e-4 for linear probing
and 0.2 for fine-tuning. The learning rates are set to 0.1
and 5e−5 for linear probing and fine-tuning respectively.
For fine-tuning, we additionally apply RandAugment [48],
mixup [49], CutMix [50] and LabelSmoothing [51].

We use a batch size of 308 across 4 NVIDIA A100 GPUs
for all the experiments. Additional details about all our im-
plementations are present in the Appendix.

5.2. Cross-View iNAT-2021 Birds Experiments

After pre-training, we do supervised training on the
Cross-View iNAT-2021 Birds Dataset to evaluate the rep-
resentations learned by our proposed models. This is done
by reporting linear probing as well as fine-tuning accuracy
scores on the standard test set of the Cross-View iNAT-2021
Birds Dataset. For CVE-MAE-Meta and CVM-MAE-Meta
models, we add metadata-dependent features to the [cls] to-
ken before classification with the linear head. Again, we use
a dropout of 0.25 for the metadata. We compare the perfor-
mance of our models with the following baselines: MoCo-
V2-Geo1 [42], MAE [11] and Metaformer-2 [9].

Results illustrated in Table 1 show that our single stream
CVM-MAE-Meta model beats all other models. The incor-
poration of satellite images during supervised training has
helped the metric-based models beat the embedding-based
models. For both training strategies, metadata has improved
the testing accuracies by at least 1.57%. Notice that there is
a large gap in accuracies between linear probing and fine-
tuning. This suggests that complete fine-grained knowledge

1Please note that we implement our version of cross-view training of
MoCo-V2-Geo.
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Figure 3: Top-4 Retrieved Candidates. We select six different bird species and retrieve the top-4 most similar satellite
images (right) to the corresponding bird images (left) in the test set. Notice that the retrieved images are similar to each other
while also being relevant for the corresponding bird species.

about the bird species has not yet been embedded into the
models during the pre-training stage.

5.3. Zero-Shot Retrieval

The zero-shot retrieval experiment contains two sub-
tasks: satellite image to ground-level bird image retrieval
and ground-level bird image to satellite image retrieval. We
use the former task for computing retrieval metrics while
the latter task is for generating species distribution maps.
Both retrieval tasks are evaluated using pre-trained models
before fine-tuning.

For this first task, we evaluate two different retrieval ap-
proaches: 1) Single-stage uni-modal retrieval and 2) Hierar-
chical cross-modal retrieval. For the single-stage uni-modal
retrieval approach, we first compute the [cls] embeddings
for all the ground-level bird images and the query satellite

image in the test set. Then, we compute the pairwise simi-
larity between the query satellite image embedding and the
ground-level image embeddings. Finally, we select the top-
k ground-level images with the highest similarity. Addition-
ally, metadata is added for retrieval using our CVE-MAE-
Meta model. For calculating the retrieval metrics, we only
consider retrieving the correct species rather than the exact
image.

The hierarchical cross-modal retrieval approach consists
of two stages: 1) selecting candidate ground-level images
from similarity computed using the uni-modal model and 2)
selecting final ground-level images from the candidates us-
ing the matching score computed by the cross-modal model.
We propose this approach since embeddings cannot be pre-
computed for the cross-modal models and are computation-
ally infeasible for retrieval.
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Figure 4: Generated Bird Distribution Maps. Using ground-level bird image to satellite image similarity scores, we
generate expected bird distribution maps over The Netherlands. We show distribution maps of two different species of birds
(left) found in The Netherlands taken from the test set of Cross-View iNAT-2021 Birds Dataset (middle). We also show a
heatmap of the presence of those species (right) in the iNAT-2021 Birds Dataset.

We show the recall scores (R@5 and R@10) of satellite
image to ground-level bird image retrieval in Table 2. The
results indicate that satellite images are able to provide a
strong cue indicating that habitat and surroundings are im-
portant for the retrieval of bird species. On the other hand,
both our dual stream models are able to beat MoCo-V2-
Geo model indicating that our models have learned more
robust embedding spaces. The hierarchical retrieval ap-
proach using CVM-MAE-Meta model also performs rea-
sonably well showcasing the effectiveness of first reducing
the search space using uni-modal models and then selecting
the final candidates using cross-modal models. However,
this approach requires pre-training two separate models and
searching steps increasing the computational complexity of
the overall setup.

Figure 3 depicts examples of satellite images retrieved
corresponding to query bird images. Clearly, the retrieved
images correspond well with the bird’s expected habitat.
Further, we generate a species distribution map for two dis-
tinct species over The Netherlands (Figure 4). We first col-
lected satellite images over a dense grid draped over The

Netherlands. We then interpolated and plotted the ground-
level image to satellite image similarity scores. We removed
all the observations with similarity scores below zero (more
details in Appendix Section D).

To study the true performance of our model, we used
bird images from the test set of the Cross-View iNAT-2021
Birds Dataset. We conducted a qualitative evaluation of the
maps using the observations present in the ground truth. Vi-

Table 2: Zero-shot satellite image to ground level bird im-
age retrieval results on the standard test set of Cross-View
iNAT-2021 Birds Dataset.

Method R (@5) R (@10) #FLOPS

MoCo-V2-Geo [42] 5.77 14.28 29.05G
CVE-MAE 14.45 25.62 29.05G
CVE-MAE-Meta 13.72 26.97 29.05G
CVM-MAE-Meta 14.52 28.88 60.64G
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sually, the maps nicely delineate the presence of birds in the
region. Since crowd-sourced datasets are biased towards ar-
eas observing high human traffic, the ground truth is not an
exhaustive representation of the species distribution. On the
other hand, our model is able to provide fine-grained pres-
ence of bird species across large geographic regions.

5.4. Transfer Learning Experiments

We evaluate the performance of transfer learning of our
model on downstream FGVC Bird datasets. Since satel-
lite images are not available for the majority of the open-
sourced datasets, we only study fine-tuning our CVE-MAE-
Meta model. We take the best performing CVE-MAE-
Meta model on fine-grained classification of iNAT-2021
Birds and then fine-tune it on downstream datasets. We ad-
ditionally drop metadata during training and inference as
the datasets do not include metadata. We consider two of
the most popular fine-grained bird classification datasets:
CUB-200-2011 and NABirds. The relative scale of these
datasets as compared to the iNAT-2021 Birds dataset is pre-
sented in Table 3.

Table 3: Various datasets considered in this study.

Dataset #Training #Testing Categories

iNAT-2021 Birds 414,847 14,860 1486
CUB-200-2011 5,994 5,794 200
NABirds 23,929 24,633 555

Table 4: Comparison of accuracy (%) achieved by CVE-
MAE-Meta and SotA approaches on the standard test set
of CUB-200-211 and NABirds datasets. We report linear
probing (lin) and fine-tuning (ft) accuracy.

Method CUB NABirds
lin ft lin ft

MoCo-V2-Geo [52] 81.19 86.91 83.22 89.26
MAE [11] 80.33 88.46 82.11 89.23
MetaFormer-2 [9] - 92.40 - 92.70
HERBS [30] - 93.10 - 93.00
CVE-MAE-Meta 82.98 93.23 84.21 93.47

Except for HERBS, all the models were first fine-tuned
on iNat-2021 birds dataset. The results in Table 4 show that
our model outperforms all other transformer-based models
including MoCo-V2-Geo, MAE, Metaformer, and HERBS.
The results are consistent for both linear probing and fine-
tuning. Our model achieves noticeably high accuracy when

linear probing. This indicates that features learned from
fine-tuning our pre-trained model on iNAT-2021 Birds are
highly robust and transferable.

6. Discussion and Conclusion

In this study, we focused on unifying the problem of
fine-grained visual classification (FGVC) and mapping of
bird species around the world. We constructed a cross-
view dataset consisting of paired ground-level bird images
and satellite images. For applications involving ecological
mapping and identification of species, satellite images pro-
vide spatially correlated topographical information. There-
fore, leveraging freely available satellite imagery in SSL en-
ables us to create species maps for any geographic region.
Such maps, when augmented with expert knowledge, may
be used to refine existing species distribution maps, which
otherwise are usually sparse and inaccurate.

We evaluated two architectural frameworks: uni-modal
and cross-modal, trained with masked reconstruction and
contrastive learning objectives. They differ in the way
multi-modal information is fused, which is an essential
component for real-time global-scale applications. Uni-
modal setup is useful because the modality-specific en-
coders can be used to pre-compute embeddings. These
embeddings can then be used in real-time for a variety of
downstream tasks. This becomes essential in large-scale
applications. Still, the uni-modal setup is only able to pre-
serve correlated information between the modalities, limit-
ing its performance on recognition tasks. In contrast, the
cross-modal setup allows models to learn complementary
information coming from a variety of modalities creating
rich features useful for complex visual identification tasks.
However, the computational complexity of this setup pre-
vents its adoption for large-scale applications. Yet, we con-
clude that both our training setups are effective at learning
general-purpose features that can used for species classifi-
cation and mapping. Finally, we also presented a two-stage
retrieval approach that takes advantage of both the training
setups to reduce computation bottleneck.

Owing to the flexibility of our framework, we can eas-
ily incorporate other modalities such as text and sound as
part of future work. However, one needs to be careful when
including several modalities since data collected from un-
curated may fail to provide fine-grained information useful
for the task of FGVC. Requiring no domain expertise, addi-
tional visual modality is easy to collect and proves to be a
strong signal for FGVC. Moreover, freely accessible global
scale information such as temperature and digital elevation
model (DEM) can easily be incorporated into our frame-
work. We hope that this study paves the way for innovative
future methods of species distribution modeling using deep
learning.
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