
Edge Inference with Fully Differentiable Quantized Mixed Precision Neural
Networks

Clemens JS Schaefer*†, Siddharth Joshi†, Shan Li‡ and Raul Blazquez‡
† University of Notre Dame, Notre Dame, IN, USA

‡ Google LLC, Mountain View, CA, USA
{cschaef6, sjoshi2}@nd.edu, {lishanok, rblazquez}@google.com

Abstract

The large computing and memory cost of deep neural
networks (DNNs) often precludes their use in resource-
constrained devices. Quantizing the parameters and op-
erations to lower bit-precision offers substantial memory
and energy savings for neural network inference, facilitating
the use of DNNs on edge computing platforms. Recent efforts
at quantizing DNNs have employed a range of techniques en-
compassing progressive quantization, step-size adaptation,
and gradient scaling. This paper proposes a new quanti-
zation approach for mixed precision convolutional neural
networks (CNNs) targeting edge-computing. Our method es-
tablishes a new Pareto frontier in model accuracy and mem-
ory footprint demonstrating a range of pre-trained quantized
models, delivering best-in-class accuracy below 4.3 MB of
weights and activations without modifying the model archi-
tecture. Our main contributions are: (i) a method for tensor-
sliced learned precision with a hardware-aware cost function
for heterogeneous differentiable quantization, (ii) targeted
gradient modification for weights and activations to mitigate
quantization errors, and (iii) a multi-phase learning schedule
to address instability in learning arising from updates to the
learned quantizer and model parameters. We demonstrate
the effectiveness of our techniques on the ImageNet dataset
across a range of models including EfficientNet-Lite0 (e.g.,
4.14 MB of weights and activations at 67.66% accuracy)
and MobileNetV2 (e.g., 3.51 MB weights and activations at
65.39% accuracy).

1. Introduction
Deep neural networks (DNNs) demonstrate remarkable

performance at computer vision tasks, notably being the
defacto standard methods employed for large scale image
recognition ([6, 46]). However, modern deep learning mod-
els require substantial compute and memory resources. This

*Work partly conducted while interning at Google LLC

presents a challenge in deploying DNNs on resource con-
strained edge hardware.

Techniques for developing edge-deployable DNNs in-
clude the design of hardware-friendly DNN models, the
development of low-power/latency hardware, model prun-
ing, and quantizing DNNs to operate at lower precision
[35, 38, 40]. Since low-precision operations can simultane-
ously lower the memory footprint, increase throughput, and
lower the latency for DNN inference, DNN quantization has
become increasingly important [24]. In particular, with re-
cent DNN accelerators [25,45] and graphics processing units
(GPUs) [36] offering support for mixed-precision comput-
ing, these benefits can be realized on existing hardware [43].
Furthermore, the compilers and hardware community are
actively researching how to extend the support for multiple
low-bit width mixed precision operations [14, 29, 30, 33, 34].
With additional compiler support for mixed precision quan-
tization, such quantization could be leveraged for DNNs
deployed on field programmable gate arrays (FPGAs). How-
ever, existing quantized DNN models do not fully leverage
such hardware capabilities. In particular, most model quan-
tization approaches focus on weight quantization, ignoring
the high energy and latency costs of moving and storing acti-
vations. Benchmarking indicates that in intermediate layers,
these costs dominate in accelerators [7].

Previous research [39, 41, 43] has shown promising re-
sults with heterogeneous quantization, allocating memory
resources per layer. This form of quantization can facili-
tate a wider range of trade offs between networks size and
accuracy. Building on this insight, we focus this paper on
developing compact DNN models extremely low memory
footprints. We report best-in-class results for models with a
total memory footprint below 4.3 MB.

In this paper we: (i) present a hardware-aware mixed
precision differentiable quantization formulation which in-
cludes per-tensor learned precision for activations and fine-
grained per-channel quantization for weights, (ii) propose a
novel gradient modification scheme which entails modifying
weights and activation gradients differently and introduce

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8460

arctanh based gradient scaling together with comprehensive
evaluations against other gradient scaling techniques, and
(iii) introduce a multi-phase learning-rate schedule to address
instability in learning arising from updates to the learned
quantizers and perform extensive comparisons of this sched-
ule with alternatives. We show the effectiveness of our meth-
ods on the ImageNet dataset using the EfficientNet-Lite0,
MobileNetV2, wide SqueezeNext, and ResNet18 model ar-
chitectures. We demonstrate state-of-the-art accuracy for
multi bit-width models ranging from 2.89–4.3 MB total
memory footprint. Across various model architectures, our
quantization scheme forms the Pareto optimal frontier for
model accuracy vs. model size.

2. Background
Uniform quantization is emulated in software using round-

ing and clipping of floating-point values, expressed as:

Qu(x, d, q+) = round
⇣
clip

⇣x
d
,�q+, q+

⌘⌘
· d. (1)

Where Qu is the quantization function, x the value to
be quantized, d the step size and q+ is the dynamic range.
Achieving high model-accuracy given b bits to represent val-
ues, entails a careful choice of the dynamic range (q+) and
(implicitly) the step size (d). The dynamic range relates to
the step size and the number of bits as b = log(q+/d)+1. In
this paper, we use calibration for the process of determining
these values during training. As part of calibration, q+ is
often smaller than max(abs(x)) to further improve quantiza-
tion efficiency. See supplementary materials A for a detailed
study on the different scaling between max(abs(x) and q+.

There are two main approaches to quantizing a floating
point model: Post training quantization (PTQ) and Quan-
tization Aware Training (QAT). PTQ does not typically re-
quire retraining or fine-tuning, with recent work by Dai et
al. [9] demonstrating a 6 bit quantized ResNet-50 deliver-
ing 75.80% accuracy on ImageNet. However, the authors
report limited success in but retaining accuracy in low-bit
regimes, dropping from 75.80% with 6 bits to 7.11% with 3
bits. QAT takes into account quantization of weights and ac-
tivations during training, and consequently has seen greater
use in the low-bit regimes. However, QAT must address
challenges arising from the non-differentiability of the quan-
tization function which results in vanishing when propagated
through multiple quantized layers.

2.1. Quantization Aware Training
The straight-through-estimator (STE) [2] is commonly

used to avoid this problem, replacing the derivative of a
discretizer (rounding) with that of an identity function. Es-
sentially, ignoring the rounding function in the backward
pass and preserving gradient flow.

To further enhance QAT performance, Choi et al. [8] in-
troduce PACT which makes the dynamic range (see eq. (1)
q+) a trainable parameter. They achieve 75.3% evaluation
accuracy on ImageNet with a ResNet50 quantized down
to 3 bits while simultaneously stabilizing training. Jung
et al. [26] examine the use of non-uniform quantization
and study the effect of learned quantization levels. The re-
sulting quantizer achieves 73.1% evaluation accuracy on
ImageNet while using a ResNet34 quantized to 3 bits. How-
ever, non-uniform quantizers cannot always be mapped on
to fixed-point arithmetic and can incur significant overhead
when deployed or implemented in hardware [11]. Learn-
ing the step-size d while learning a uniform quantization
scheme, Esser et al. [13] developed LSQ which achieves
an accuracy of 74.3% on ImageNet using a 3-bit ResNet34.
In LSQ+, Bhalgat et al. [3] build on this technique by pa-
rameterizing the symmetry of the quantizer to accommo-
date modern activation functions such as swish, h-swish and
mish, which have limited, but critical negative excursions.
They demonstrate the effectiveness of their method on mod-
ern architectures by achieving 69.9% accuracy with a 3-bit
Efficient-B0 and 66.7% accuraacy with a 3-bit MixNet on
ImageNet. However, these methods do not quantize the first
and last layers of the models, which typically incur signifi-
cant performance degradation. In contrast, recent work using
progressive-freezing and iterative training to quantize Mo-
bileNets [32] achieve 71.56% accuracy on ImageNet (note
that MobileNets are significantly smaller than ResNets).

2.2. Heterogeneous Quantization

Model accuracy is not equally sensitive to quantization
in different layers [32]. Prior work leverages this to allocate
numerical precision on a per-layer basis [12, 32, 41, 44]. In
HAQ [41], the authors use reinforcement learning with a
hardware simulator generating energy and latency estimates
to optimize the bit-width of every layer. They report a 1.9⇥
improvement to energy and latency while maintaining 8-bit
levels of accuracy for MobileNet models. More recently,
second order techniques like [11] use Hessian eigenvalues as
a quantization sensitivity metric and assign layer bit-widths.
This Hessian aware trace-weighted quantization (HAWQ)
offers 75.76% accuracy (ImageNet) for ResNet50 with an
average of 2 bit weights and 4 bit activations.

Uhlich et al. [39] (label Mixed in Figure 1) formulate
a fully differentiable quantization scheme, where both the
step-size and the dynamic range are trainable, using a sym-
metric uniform quantizer QU (x, d, q+). This formulation
implicitly learns the bit-width. Additionally, the authors
add an additional constraint to the loss function to target a
network weight size and maximum feature map size. Taken
together, their improvements result in a MobileNetV2 with a
weight memory footprint of 1.55 MB and a maximum activa-
tion feature size of 0.57MB, while delivering an accuracy of

8461

Figure 1. Our results quantizing different models compared to state-of-the-art. Network size (sum of parameters and activations) is compared
to the evaluation error on the ImageNet dataset. Models quantized with our method occupy the Pareto-frontier, delivering smaller multi-bit
networks at higher accuracy. We shows results from: PACT [8], DSQ [17], LSQ [13], LSQ+ [3], EWGS [28], PBGS [27], QIL [26],
PROFIT [32], HAWQ [11], HAQ [41], Mixed [39]

69.74% on ImageNet (an estimated 4.93 MB for the weights
and sum of activations).

2.3. Gradient Scaling for Quantization
Most models employ straight-through-estimators (STEs)

in QAT for quantized neural networks essentially ignoring
discretization in the backward pass. Alternatively some
recently proposed techniques avoid this discrepancy by em-
ploying a smooth function, e.g., stacked tanh, prior to
the non-differentiable quantizer to emulate quantization ef-
fects facilitating gradient flow across layers (DSQ [17] in
Figure 1). They demonstrate a 2-bit ResNet18 delivering
65.17% accuracy on ImageNet. Since the authors cascade
this soft quantizer with a hard quantizer, they still employ an
STE to propagate gradients in the backwards pass.

Kim et al. [27] (PBGS in Fig. 1) propose gradient scaling
as a regularizer to learn ‘easy to quantize’ networks, train-
ing models with gradients scaled to induce values on the
quantization grids. The authors demonstrate results for a 4-b
quantized ResNet18 trained to 63.45% evaluation accuracy
on ImageNet. Nguyen et al. [31] achieve the same effect
through regularization, using the absolute cosine function
for a 6-bit automatic speech recognition recurrent neural net-
work with only a 2.68% accuracy degradation compared to
the baseline model. Lee et al. [28] (EWGS in Figure 1) com-
bine quantization in the forward pass and gradient scaling
in the backward pass to account for discretization errors be-
tween inputs and outputs of the quantizer. They incorporate
the sign and magnitude of the discretization error as well as
second-order information to determine the gradient scaling

factor. This method achieves 67% evaluation accuracy on
ImageNet with ResNet18 quantized to 2 bits.

3. Methods
Given a pretrained floating point model we quantize it

in three phases: (i) homogeneous pre-training phase, (ii) a
phase to learn precisions, and (iii) a final finetuning phase
where only model parameters are updated (see Fig. 3). Dur-
ing all those phases we employ gradient scaling to account
for discretization in the backward pass. We implement an
initial calibration phase for both weights and activations
using Gaussian calibration for the weights and the 99.99th

percentile for the activations, which improves our homoge-
neous quantization performance by up to 1.22% for 3-bit
EfficientNet compared to sample maximum calibration (see
suppl. mat. Table 2 for details). During phase (ii) we employ
penalty scheduling and reduce the frequency of quantizer
parameter updates to combat learning instabilities. We also
incorporate the weight and activation size penalty into the
loss function like Uhlich et al. [39], resulting in:

L =CE(x, y) + �max

LX

l=1

CX

c=1

bwlc · swlc

!
� tw, 0

!2

+ �max

LX

l=1

bal · sal

!
� ta, 0

!2

.

(2)
Here, x is the input, y the target, CE stands for the cross

8462

Figure 2. We illustrate different gradient scaling functions:
straight-through-estimators (STE [2]), elementwise gradient scal-
ing (EWGS [28]), position based gradient scaling (PBGS [27]),
absolute cosine regularization (Acos [31]) as well as hyperbolic
tangent function (Tanh) and its inverse (InvTanh). Note that QP
denotes quantization point, d is the step size and � is the magnitude
control hyper parameter for gradient scaling.

entropy loss, bl represents the bitwidth of layer l, sl is the
number of parameters of a given layer (the additional c in-
dicates the channel) and t is the target size for the model.
The superscripts w and a indicate weights and activations
respectively. We use rectified quadratic penalties to enable
an accuracy vs. model size trade-off during training, with
the rectification used to prevent penalization once the size
budget is met. A single modulating factor � controls the
penalty on model size.

We use the sum of weights and activation feature maps
as our cost metric for efficiency. Data movement caused
by memory accesses for weights and activations dominates
other factors in modern edge accelerators [42]. Consequently,
for such hardware, accounting for the total number of mem-
ory accesses for heterogenously quantized tensors, is crucial
to determining model efficiency. Existing metrics like num-
ber of operations or parameter footprint, do not fully consider
data movement or variable precision tensors. The Arithmetic
Computation Effort (ACE) [47] is an alternative compute-
focused metric that has been proposed for multi-precision
edge accelerators. Our metric is strongly correlated with
ACE (0.956) across multiple configurations, but offers more
direct interpretability of the cost.

3.1. Quantization Training Dynamics

Learning both model parameters and bit-width allocations
is necessarily a higher dimensional problem than just learn-
ing the parameters alone. This increases the search’s sensitiv-
ity to initial conditions. To mitigate this, we de-couple these

two elements by starting out training on a homogeneously
quantized network (from the pre-training) and then training
the per-layer quantizer with progressively increasing pres-
sure from the model size constraints. As shown in Figure 3
(left), the model suffers from dramatic accuracy degradation
when the model size penalty is imposed. Often, this results
in catastrophic training failure due to the model size penalty
dominating cross-entropy loss. We use a soft-transition on
the size penalty (�) by linearly increasing � to it’s final value.
This initial training can be viewed as enabling coarse nav-
igation to the optimal in the solution space, followed by a
more fine-grained descent towards the joint model-quantizer
optima. As seen in Figure 3 (left), parameter updates can
recover some lost accuracy after � saturates.

We observed model instability and training failure when
both bit-precision and model parameters were updated fre-
quently. Infrequent updates prevented thorough exploration
of the model search space, resulting in models that were
still similar to their homogeneously quantized initializations.
We avoid this by limiting the bit-precision update frequency,
restricting updates to every � steps. In our experiments, an
update frequency of � = 20 provided sufficient time for
model statistics (e.g. batch norm) to stabilize and model
parameters to adapt to the new precision level.

Subsequently, we enable finer-grained quantization by
adapting the precision of the convolution weight kernels at
a per-output-channel granularity (tensor slices). Most exist-
ing hardware with mixed-precision support can compute a
single channel at a given precision. However, finer grained
quantization can entail significant hardware overhead [23].
Banner et al. [1] have previously shown flexible per-channel
bit-widths by solving a layer-wise noise minimization prob-
lem, in contrast we learn the per-layer bit-widths based on
the overall model loss function. Indeed, the variation in dy-
namic range across channels from a heterogeneously quan-
tized EfficientNet-Lite0 and MobileNetV2 demonstrate the
efficiency gains available using this technique (See Figure 3
right). To prevent the gains from quantized operation getting
negated, we ensure that quantization granularity is not too
fine-grained. After these quantizer parameters converge, we
freeze them by setting � = 0 in eq. (2). This is followed
by an additional fine-tuning period with a decaying learning
rate to recover accuracy. In particular, our results suggest
that batch normalization statistics are stabilized through this
fine-tuning period, recovering accuracy.

3.2. Gradient Scaling

The STE operator is the de facto standard for enabling
backpropagation through non-differentiable functions. We
study how different gradient scaling techniques compare to
STE across models and levels of precision. As shown in
Figure 4, tanh-based gradient scaling for activations and lin-
ear scaling for weights [28] outperforms other combinations.

8463

We examine the effect of gradient scaling across multiple
scaling functions (f (x)) enumerated below (and shown in
Figure 2 (left)):

1. Position based gradient scaling (PBGS) [27]:
scale = 1 + � · |x� round(x)|.

2. Element-wise gradient scaling (EWGS) [28]:
scale = 1 + � · sign(gx) · (x� round(x)).

3. Modified absolute cosine (Acos) [31] gradient scaling:
scale = 1 + � · sin(⇡ · (x� round(x))).

4. Hyperbolic tangent (Tanh) gradient scaling:
scale = 1 + � · sign(gx) · tanh(↵ · (x� round(x))).

5. Inverse hyperbolic tangent (InvTanh) gradient scaling:
scale = 1+� ·sign(gx) ·arctanh(↵ · (x� round(x))).

Here, � is a general hyperparameter to modulate the mag-
nitude of gradient scaling and gx is the gradient. We also
introduce an additional hyperparameter, ↵, to control the
steepness of the hyperbolic tangent functions. Figure 4
(right) shows the performance of various gradient scaling
techniques for activations and weights when homogeneously
quantizing EfficientNet-Lite0 to 3 bits. We examined the
effect over 20 trials and show the resulting distribution in
Figure 4. The horizontal dotted lines represent the baseline
performance (when both acts. and wgts. use the same scaling
technique) of the STE and EWGS method respectively. We
observe that different gradient scaling schemes benefit the
training performance for weights and activations, owing in
part to different underlying distributions. Indeed, employing
STEs for both weights and activations provides the perfor-
mance baseline. We note that the improvements derived
from gradient scaling on activations only (configurations a,
b, c) lead to lower performance gains when compared to
applying gradient scaling on weights only (configurations
d, e, f). This suggests that the performance gains from gra-
dient scaling can be primarily attributed to gradient scaling
of weights. Although configuration e (weights use EWGS
and activations use STE) delivered the best single-run result,
as seen in Figure 4, these results were not consistent across
trials. Indeed, in some trials, this configuration performed
worse than the baseline. Indeed, the majority of the perfor-
mance gains from applying EWGS area also observed in
configuration e, where EWGS is only applied to weights
while the activations use STEs. We observed that linear
gradient scaling (EWGS) for weights and the inverse of the
hyperbolic tangent scaling of activation gradients provides
consistent improvement over the baseline, proving to be
the more robust gradient-scaling technique. More compre-
hensive sensitivity analysis and analysis of computational
overhead are provided in A.2 in the supplementary material.

4. Experiments
We demonstrate the effectiveness of our proposed

recipe on the ImageNet [10] dataset across multiple mod-
els including EfficientNet-Lite0 [38], MobileNetv2 [35],
wide SqueezeNext [15], and ResNet18 [18]. We
use the Flax [19] and Jax [5] frameworks to imple-
ment the networks, quantization scheme, and train-
ing routine. All codes are available under https:

//github.com/Intelligent-Microsystems-

Lab/HeterogeneousQuantization

4.1. Setting
We ran our experiments on TPUv3 accelerators using the

Google Cloud. Each experiment ran on a single instance
which comprises 8 cores and 32GB memory. We provide
some hardware synthesis-based estimates of the latency im-
pact of quantized models in Supplementary Materials A.5.

We implement standard input pre-processing for training,
randomly cropping images to 224 ⇥ 224 with 3 channels
(RGB), followed by input augmentation. Our augmentations
include a random flip (left or right) and channel normal-
ization (mean 127 and standard deviation 128). During
evaluation the image is cropped around the center and no
random flip is applied. Training uses RMSProp [20] with
0.9 Nesterov momentum and a learning rate of 10�4. We
increase the learning rate linearly from zero during the first
two epochs and subsequently reduce it to zero in a cosine
decay. Our training batch size is 1024, which is evenly split
across the 8 cores of the TPU for single-program, multiple-
data (SPMD) parallelism. We apply weight decay of 10�5

and label smoothing of 10�1 for improved accuracy. Each
QAT training phase (pretraining, heterogenous training, and
finetuning) lasts 50 epochs.

4.2. Gradient Scaling
We determine the gradient scale factor � (5·10�3) through

a grid search. Results of the gradient scaling can be seen
in Figure 4 (right) and for non-mixed configurations in sup-
plementary materials A.2. Both show data from 20 trials
on a 3-bit homogeneously quantized EfficientNet-Lite0, il-
lustrating the variance in accuracy from employing gradient
scaling methods. Figure 8 (supplementary materials) shows
a smaller grid search for ideal gradient scaling on the same
network quantized to 2 and 4 bits. Notably, variance in final
accuracy increases when quantizing to fewer bits whereas
the difference in accuracy gets exacerbated.

4.3. Model Quantization
Figure 1 provides context for our results, comparing

our techniques with state of the art quantization meth-
ods [3, 8, 11, 13, 17, 26–28, 32, 39, 41]. If unavailable, we
computed the weight and activation sizes based on our repli-

8464

Figure 3. On the left illustrating the three phases of our mixed precision training method. The top left shows scheduled learning rate and
size penalty (�) term meanwhile the bottom left shows the evolution of model accuracy and model size. On the right we show an example
per-channel bit allocation in a weight kernel of an EfficientNet-Lite0 and MobileNetV2. Extreme quantization is correlated to low dynamic
range (q+). However, the contra does not necessarily hold.

Figure 4. The performance of different mixed gradient scaling
functions (different gradient scaling for weights and activations) on
a homogeneous 3 bit EfficientNet-Lite0 on ImageNet.

cation of their work (all assumptions are shown in the supple-
mentary materials Table 4). The total network size (x-axis in
Fig. 1 includes batch norm parameters for which we assume
a bfloat16 data type. Although no small-scale model (includ-
ing our own) reports quantized batch normalization, some
related work do report results from quantizing the batch
norm layers for a 4-bit ResNet18 with a higher memory
footprint than our reported results Yao et al. [43].

Our method improves the Pareto frontier for model er-
ror and model size, with the greatest improvement seen in
the sub 6 MB region. Here, we define size to be the sum

of weights and sum of activation feature maps. We specif-
ically optimize the total size of the activations, because of
the high energy cost arising from data movement for acti-
vations [7, 45]. To the best of our knowledge, we report
best-in-class accuracy for multi-bit models in extreme con-
straint settings with less than 4.3 MB available for both
weights and activations. Our efficient frontier (Figure 1)
shows the degradation in performance across various target
budgets and encapsulates the difference in robustness of var-
ious quantized model architectures. The EfficientNet-Lite0
architecture performs well for homogeneous quantization
and heterogeneous quantizaton in a range between 4-6 MB
total model size, meanwhile MobileNetV2 delivers better ac-
curacy below 4 MB. We note the different scaling trends seen
for quantized EfficientNet-Lite0 and MobileNetV2, suggest-
ing that MobileNetV2 may be more suitable for ultra-low
budget applications. We included a wide SqueezeNext model
due to its small weight footprint, however due to its depth
the activation size dominate the overall model budget and
making it a strictly worse model across the target budgets.
ResNet18 and SqueezeNext results are provided in A.3.

Figure 5 shows the detailed layer-wise bit-allocation of
heterogeneously quantized EfficientNet-Lite0 with a total
size of 3.43 MB and MobileNetV2 with 3.41 MB. The
EfficientNet-Lite0 architecture imposes greater precision
in weights at the early layers of the network compared
to the later layers. However the activations follow a con-
stant pattern throughout the network. Notably, the activa-
tion of the last pointwise convolutional layer of a mobile
inverted bottleneck (MBConv block) are higher in compar-

8465

Figure 5. Internal bit allocation across layers of weights (up) and activations (down) for EfficientNet-Lite0 and MobileNetV2. Weights in the
first layers have higher bit-widths for both models. Activations bitwidths for EfficientNet-Lite0 form a high precision path, e.g. activations
which are residuals have higher precision. For both models the last affine layer has high precision.

ison to the other layers of MBConv blocks. Our results
suggest that pointwise convolutional layers that have both
residual and direct inputs require much higher precision to
prevent quantization-induced information loss. This high
precision bit-allocation indicates a critical information flow
pathway. The MobileNetV2 bit allocation is similar to that
of EfficientNet-Lite0, with higher precision weights in the
initial layers which reduce with network depth. The critical
path for the activation is not as pronounced as it is for the
EfficientNet architecture and additionally high activation bit-
width are allocated to layers closer to the final affine layer
whose activation bit-width is the highest.

4.4. Additional Consideration
4.4.1 Bias Quantization

While our reported models quantize biases, we also exam-
ined the effect of keeping biases at higher bfloat16 precision.
Typically, accelerators can pre-load biases into the hardware
accumulator, minimizing the energy impact. We summarize
the impact of bias quantization in Table 1. Crucially, we
note that MobileNetV2 at larger memory budgets do not
see accuracy benefits (0.01% higher accuracy). However,
EfficientNet-Lite0 models with tight memory budgets do see
an increase their accuracy by approx. 1.56%.

4.4.2 Knowledge Distillation

Recently proposed quantization techniques have shown that
applying knowledge distillation (KD) to their existing quanti-
zation techniques can improve results. We examine how KD
impacts the EfficientNet-Lite0 and MobileNetV2 models on
our Pareto frontier 1. We use the KD process in [21], using
soft labels created by a B16 vision transformer [6] with an
accuracy of 85.49% (soft-label KD). We also examined the

Figure 6. Comparison between QAT employing our schedule and
the scheduled derived through a distributed black-box optimization
(BBO) method evaluated for quantizing an Efficient-Lite0. The
BBO-derived schedule performs strictly worse than ours and fails
to train a network on the strictest budget (2 bits on average).

knowledge distillation technique employed by PROFIT [32],
here the knowledge of the teacher model is induced into the
student model through a penalty term in the loss function
(penalty KD). The results summarized in Table 1 show that
knowledge distillation can have a positive effect on the ac-
curacy of up to 0.36% but can also have negative effects.
Neither of the KD techniques examined dramatically altered
the model accuracy across the Pareto frontier.

4.4.3 Exploring Training Schedule and Quantization
Approaches

We evaluate our proposed QAT schedule against both auto-
matically searched schedules and those derived using convex
optimization approaches.

Automated Schedule Search We compare our hand-
crafted QAT schedule (see Fig. 3) to a schedule derived

8466

Table 1. Effect of knowledge distillation (KD) on heterogeneously quantized networks and unquantized biases for the last affine layer. The
first column shows the effect of KD on floating point networks the following columns are networks from the efficient frontier. Soft-label KD
refers to a KD technique where the targets of the student network are the predictions of the teacher network [21]. Meanwhile penalty KD
uses one-hot encoding as the target and adds a penalty term to force the student model prediction to align to the teacher [32].

EfficientNet-Lite0

Size (MB) 22.66 3.01 3.23 3.98 4.14 5.45 5.50 5.87
Base Accuracy (%) 75.53 48.37 52.87 66.46 67.66 72.56 72.75 73.21
Soft-Label KD -0.31 0.21 0.24 0.11 0.10 0.17 0.10 -0.11
Penalty KD -0.22 0.16 0.27 0.08 0.16 0.17 0.04 -0.11

No Bias Quant - 1.56 1.16 0.20 0.26 0.14 0.15 0.00

MobileNetV2

Size (MB) 20.25 2.89 3.21 3.48 3.51 4.82 5.05 5.62 5.76
Base Accuracy (%) 71.46 60.72 63.18 65.20 65.39 68.50 68.93 69.54 69.68
Soft-Label KD 0.15 0.36 0.12 0.13 0.23 0.12 -0.26 -0.24 0.02
Penalty KD 0.03 0.16 0.17 0.17 0.28 0.11 -0.19 -0.23 -0.03

No Bias Quant - 0.38 -0.01 0.24 0.08 0.21 0.05 0.16 0.13

through distributed black-box optimization (BBO) [16, 37],
to determine the performance of our approach. We set up
the BBO search space to include: (i) frequency of bit-width
update, (ii) weight & activation penalty (� in eq (1)), (iii)
homogeneous bit-width for pre-training, (iv) ramp-up length
of the quantization training, and (v) ramp-up mode (linear,
cosine, or exponential). The BBO was directed to maximize
accuracy for the EfficientNet model on a randomly sampled
subset of the training data while minimizing the discrepancy
between model budget and achieved size. We chose an aver-
age of 3 bits for the model budget (1731 kB for weights and
2505 kB for the sum of activations). The BBO conducted
766 evaluations within our compute budget (approx. 14,000
accelerator hours) to converge to a recipe.

Figure 6 compares our schedule against the schedule de-
termined by the BBO, showing that our schedule consistently
outperforms the automated search. For the strict budget (av-
erage of 2 bits for each tensor), the BBO-derived schedule
exceeds the allocated budget by 135.15 kB. We hypothe-
size that our hand-crafted schedule outperforms the BBO
schedule due to the large search space, with varying levels
of sensitivity to the scheduling parameters.

Optimization-Based Quantization Our problem requires
simultaneously optimizing for accuracy and model size, con-
strained by a memory budget (see eq. (2)). Alternating di-
rection method of multipliers (ADMM) [4], combines the
decomposability of dual ascent with the convergence guar-
antees of the method of multipliers making it an attractive
solution with theoretical grounding. We reformulate our
quantization to be compatible with ADMM by separating the

problem objectives into optimizing for accuracy and model
size, constrained by equality between model parameters be-
tween the two optimization steps. ADMM, then operates
on two sets of model weights, updating weights optimizing
each objective and until the two sets of parameters converge.

Our experimental findings demonstrate the superiority of
our gradient-based approach over ADMM. When quantizing
an EfficientNet-Lite0 to an average bit-width of 4 bits, our
method achieved 72.46% accuracy, surpassing the 69.21%
achieved by ADMM. Details on the ADMM formulation and
parameters (including hyperparameter search) are in A.6.

5. Conclusions

We introduce a recipe for quantization-aware training for
heterogeneously quantized neural networks where bit-widths
are trained alongside model parameters. We employ a novel
gradient scaling function to account for discretization due
to quantization in the backward pass. Combined with care-
ful scheduling in penalizing the accuracy loss and model
size allows us to achieve exceed state-of-the-art model quan-
tization. Models quantized by our technique occupy the
Pareto optimal frontier of model size (including weights and
activations) against performance (evaluation error) on the
ImageNet dataset. To the best of our knowldege, our meth-
ods delivers best in class multi-bit neural networks with total
memory footprint below 4.3 MB. Extensive evaluation and
sensitivty analysis verifies our quantization performance.

8467

References
[1] Ron Banner, Yury Nahshan, and Daniel Soudry. Post train-

ing 4-bit quantization of convolutional networks for rapid-
deployment. Advances in Neural Information Processing
Systems, 32, 2019. 4

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Es-
timating or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint arXiv:1308.3432,
2013. 2, 4, 13

[3] Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen
Blankevoort, and Nojun Kwak. Lsq+: Improving low-bit
quantization through learnable offsets and better initialization.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 696–697,
2020. 2, 3, 5, 11

[4] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan
Eckstein, et al. Distributed optimization and statistical learn-
ing via the alternating direction method of multipliers. Foun-
dations and Trends® in Machine learning, 3(1):1–122, 2011.
8

[5] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, Chris Leary, Dougal Maclaurin, George Necula,
Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne,
and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. 5

[6] Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When
vision transformers outperform resnets without pre-training or
strong data augmentations. arXiv preprint arXiv:2106.01548,
2021. 1, 7

[7] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze.
Eyeriss v2: A flexible accelerator for emerging deep neural
networks on mobile devices. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 9(2):292–308, 2019.
1, 6

[8] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. Pact: Parameterized clipping activation for
quantized neural networks. arXiv preprint arXiv:1805.06085,
2018. 2, 3, 5, 11

[9] Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zimmer,
William Dally, and Brucek Khailany. Vs-quant: Per-vector
scaled quantization for accurate low-precision neural network
inference. Proceedings of Machine Learning and Systems,
3:873–884, 2021. 2, 11

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 5

[11] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. Hawq-v2: Hessian
aware trace-weighted quantization of neural networks. Ad-
vances in neural information processing systems, 33:18518–
18529, 2020. 2, 3, 5, 11

[12] Ahmed T Elthakeb, Prannoy Pilligundla, FatemehSadat
Mireshghallah, Amir Yazdanbakhsh, and Hadi Esmaeilzadeh.
Releq: A reinforcement learning approach for deep quanti-

zation of neural networks. arXiv preprint arXiv:1811.01704,
2018. 2

[13] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathi-
nakumar Appuswamy, and Dharmendra S Modha. Learned
step size quantization. arXiv preprint arXiv:1902.08153,
2019. 2, 3, 5, 11

[14] Angelo Garofalo, Yvan Tortorella, Matteo Perotti, Luca Va-
lente, Alessandro Nadalini, Luca Benini, Davide Rossi, and
Francesco Conti. Darkside: A heterogeneous risc-v compute
cluster for extreme-edge on-chip dnn inference and training.
IEEE Open Journal of the Solid-State Circuits Society, 2:231–
243, 2022. 1

[15] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai,
Xiangyu Yue, Peter Jin, Sicheng Zhao, and Kurt Keutzer.
Squeezenext: Hardware-aware neural network design. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 1638–1647, 2018. 5

[16] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg
Kochanski, John Karro, and D. Sculley. Google vizier: A
service for black-box optimization. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Halifax, NS, Canada, August 13
- 17, 2017, pages 1487–1495. ACM, 2017. 8, 12

[17] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,
Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-
tiable soft quantization: Bridging full-precision and low-bit
neural networks. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 4852–4861,
2019. 3, 5

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[19] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Rit-
ter, Bertrand Rondepierre, Andreas Steiner, and Marc van
Zee. Flax: A neural network library and ecosystem for JAX,
2020. 5

[20] Matteo Hessel, David Budden, Fabio Viola, Mihaela Rosca,
Eren Sezener, and Tom Hennigan. Optax: composable gradi-
ent transformation and optimisation, in jax!, 2020. 5

[21] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015. 7, 8

[22] Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin,
and Andrea Frome. What do compressed deep neural net-
works forget? arXiv preprint arXiv:1911.05248, 2019. 14

[23] Ehab M Ibrahim, Linyan Mei, and Marian Verhelst. Survey
and benchmarking of precision-scalable mac arrays for em-
bedded dnn processing. arXiv preprint arXiv:2108.04773,
2021. 4

[24] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2704–2713, 2018. 1, 13

[25] Norman P Jouppi, Cliff Young, Nishant Patil, David Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh

8468

Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-
mance analysis of a tensor processing unit. In Proceedings
of the 44th annual international symposium on computer
architecture, pages 1–12, 2017. 1

[26] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-
Joon Han, Youngjun Kwak, Sung Ju Hwang, and Changkyu
Choi. Learning to quantize deep networks by optimizing
quantization intervals with task loss. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4350–4359, 2019. 2, 3, 5, 11

[27] Jangho Kim, KiYoon Yoo, and Nojun Kwak. Position-based
scaled gradient for model quantization and pruning. Advances
in Neural Information Processing Systems, 33:20415–20426,
2020. 3, 4, 5, 13

[28] Junghyup Lee, Dohyung Kim, and Bumsub Ham. Network
quantization with element-wise gradient scaling. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6448–6457, 2021. 3, 4, 5, 11, 13

[29] Zewei Mo, Zejia Lin, Xianwei Zhang, and Yutong Lu. mo-
tuner: a compiler-based auto-tuning approach for mixed-
precision operators. In Proceedings of the 19th ACM Inter-
national Conference on Computing Frontiers, pages 94–102,
2022. 1

[30] Maarten Molendijk, Floran de Putter, Manil Gomony, Pekka
Jääskeläinen, and Henk Corporaal. Braintta: A 35 fj/op
compiler programmable mixed-precision transport-triggered
nn soc. arXiv preprint arXiv:2211.11331, 2022. 1

[31] Hieu Duy Nguyen, Anastasios Alexandridis, and Athanasios
Mouchtaris. Quantization aware training with absolute-cosine
regularization for automatic speech recognition. In Inter-
speech, pages 3366–3370, 2020. 3, 4, 5, 13

[32] Eunhyeok Park and Sungjoo Yoo. Profit: A novel training
method for sub-4-bit mobilenet models. In European Confer-
ence on Computer Vision, pages 430–446. Springer, 2020. 2,
3, 5, 7, 8

[33] Matteo Risso, Alessio Burrello, Giuseppe Maria Sarda, Luca
Benini, Enrico Macii, Massimo Poncino, Marian Verhelst,
and Daniele Jahier Pagliari. Precision-aware latency and
energy balancing on multi-accelerator platforms for dnn in-
ference. arXiv preprint arXiv:2306.05060, 2023. 1

[34] Georg Rutishauser, Francesco Conti, and Luca Benini. Free
bits: Latency optimization of mixed-precision quantized neu-
ral networks on the edge. In 2023 IEEE 5th International
Conference on Artificial Intelligence Circuits and Systems
(AICAS), pages 1–5. IEEE, 2023. 1

[35] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
4510–4520, 2018. 1, 5

[36] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick
LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-
LM: Training multi-billion parameter language models using
model parallelism. arXiv preprint arXiv:1909.08053, 2019. 1

[37] Xingyou Song, Sagi Perel, Chansoo Lee, Greg Kochanski,
and Daniel Golovin. Open source vizier: Distributed infras-
tructure and api for reliable and flexible black-box optimiza-

tion. In Automated Machine Learning Conference, Systems
Track (AutoML-Conf Systems), 2022. 8, 12

[38] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 1, 5

[39] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki
Yoshiyama, Javier Alonso Garcia, Stephen Tiedemann,
Thomas Kemp, and Akira Nakamura. Mixed precision dnns:
All you need is a good parametrization. arXiv preprint
arXiv:1905.11452, 2019. 1, 2, 3, 5

[40] Weier Wan, Rajkumar Kubendran, Clemens Schaefer, S Burc
Eryilmaz, Wenqiang Zhang, Dabin Wu, Stephen Deiss,
Priyanka Raina, He Qian, Bin Gao, et al. Edge ai with-
out compromise: Efficient, versatile and accurate neurocom-
puting in resistive random-access memory. arXiv preprint
arXiv:2108.07879, 2021. 1

[41] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
Haq: Hardware-aware automated quantization with mixed
precision. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8612–8620,
2019. 1, 2, 3, 5

[42] Yannan Nellie Wu, Joel S Emer, and Vivienne Sze. Accel-
ergy: An architecture-level energy estimation methodology
for accelerator designs. In 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–8.
IEEE, 2019. 4

[43] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami,
Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida Wang,
Michael Mahoney, et al. Hawq-v3: Dyadic neural network
quantization. In International Conference on Machine Learn-
ing, pages 11875–11886. PMLR, 2021. 1, 6

[44] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W
Mahoney. Pyhessian: Neural networks through the lens of
the hessian. In 2020 IEEE international conference on big
data (Big data), pages 581–590. IEEE, 2020. 2

[45] Amir Yazdanbakhsh, Kiran Seshadri, Berkin Akin, James
Laudon, and Ravi Narayanaswami. An evaluation of edge tpu
accelerators for convolutional neural networks. arXiv preprint
arXiv:2102.10423, 2021. 1, 6

[46] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and
Lucas Beyer. Scaling vision transformers. arXiv preprint
arXiv:2106.04560, 2021. 1

[47] Yichi Zhang, Zhiru Zhang, and Lukasz Lew. Pokebnn: A
binary pursuit of lightweight accuracy. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12475–12485, 2022. 4

8469

