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Abstract

Large-scale deployment of fully autonomous vehicles re-

quires a very high degree of robustness to unstructured traf-

fic, weather conditions, and should prevent unsafe mispre-

dictions. While there are several datasets and benchmarks

focusing on segmentation for drive scenes, they are not

specifically focused on safety and robustness issues. We

introduce the IDD-AW dataset, which provides 5000 pairs

of high-quality images with pixel-level annotations, cap-

tured under rain, fog, low light, and snow in unstructured

driving conditions. As compared to other adverse weather

datasets, we provide i.) more annotated images, ii.) paired

Near-Infrared (NIR) image for each frame, iii.) larger label

set with a 4-level label hierarchy to capture unstructured

traffic conditions. We benchmark state-of-the-art models

for semantic segmentation in IDD-AW. We also propose a

new metric called “Safe mean Intersection over Union (Safe

mIoU)” for hierarchical datasets which penalizes danger-

ous mispredictions that are not captured in the traditional

definition of mean Intersection over Union (mIoU). The re-

sults show that IDD-AW is one of the most challenging

datasets to date for these tasks. The dataset and code will

be available here: http://iddaw.github.io.

1. Introduction

Semantic Segmentation of driving scenes is one of the

major tasks in the development of autonomous driving ve-

hicles. Even though there has been much work in terms of

datasets [4, 5, 10, 17], there are still many challenges when

it comes to the representation of rare events and conditions.

One of the major challenges is the robustness of the model

to high amounts of traffic participants and adverse weather

conditions. While state-of-the-art models give high predic-

tion accuracies, it’s unclear how they will perform in such

cases. Vehicles with full autonomy cannot be deployed

Figure 1. Examples of RGB/NIR/Annotations triplets in four ad-

verse weather conditions from IDD-AW. The color legend for an-

notation is given in Figure 2.

safely unless these corner cases are analyzed.

Secondly, given the focus on safety in autonomous vehi-

cles, it is essential to check if the metrics used accurately

represent the safety concerns in road scenes. Tradition-

ally segmentation models have been evaluated based on the

mIoU which is a generic metric for the quality of the seg-

mentation. However, mIoU doesn’t capture safety concerns

specific to road scenes. For example, accurate prediction

of traffic participants (vehicles, living things) and roadside

objects are more essential compared to far objects. Also

for autonomous driving, certain types of mispredictions are

more tolerable than others. For example, a car being mis-

predicted as a bus is more tolerable than a car being mispre-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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dicted as a road. mIoU treats both these mispredictions in

the same way while they represent different severity of safe

mispredictions.

In this paper, we introduce the IDD-AW dataset which

captures highly unstructured traffic in adverse weather con-

ditions. Here, highly unstructured traffic refers to situations

where road conditions are intricate and challenging to pre-

dict, often characterized by a diverse mix of vehicles, pedes-

trians, and other dynamic elements. The dataset captures

driving scenarios under various adverse weather conditions,

encompassing rain, fog, low light, and snow. The distribu-

tion of pixels and instances of traffic participants is higher

when compared to existing datasets. Additionally, we pro-

vide paired Near Infrared (NIR) images for every frame,

thereby increasing the information available to models and

enhancing their ability to make precise predictions.

We also propose a new metric called ”Safe mIoU

(SmIoU)” which penalizes dangerous mispredictions that

are not captured in the traditional mIoU metric. We propose

this metric for all hierarchical datasets where the severity of

the penalty is based on the tree distance. We also calculate

this metric over various label sets varying from the complete

set and narrowing it down to several important classes such

as traffic participants and roadside objects which directly

impact autonomous driving.

We benchmark models on the IDD-AW dataset and

compare them with results on other similar datasets like

Cityscapes [4], IDD [25], ACDC [20]. We show that ap-

pending the NIR image to the input increases the accuracy

of our dataset. We also show high contrast in results when

comparing mIoU and SmIoU using the same trained mod-

els. We provide qualitative and logical explanations, that

the lowering of Safe mIoU as compared to mIoU exposes

safety concerns in existing models.

Main Contributions.

1. We propose an adverse weather conditions dataset for

robust segmentation in unstructured traffic scenes (see

Section 3).

2. We also propose a new metric called ”Safe mIoU” to

ensure the penalizing of misclassified pixels in hierar-

chical datasets (see Section 4).

3. We show both qualitative and quantitative results to

prove our dataset is more diverse and challenging than

other existing datasets (see Section 5).

2. Related Work

Road scene segmentation datasets. The Cityscapes

Dataset [4, 5] is one of the most popular datasets for driv-

ing scene segmentation. Along with it, there are other driv-

ing datasets such as KITTI [10], Pascal VOC [8], Mapil-
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Nighttime

Driving
50 0 0 0 50 19

Dark

Zurich
201 0 0 0 201 19

Raincouver 326 326 0 0 95 19

WildDash 226 13 10 26 13 19

BDD100K 1346 213 23 345 765 19

ACDC 4006 1000 1000 1000 1006 19

IDD-AW 5000 1500 1500 1000 1000 30 ✓

Table 1. Comparison of IDD-AW with other adverse weather con-

dition datasets. IDD-AW provides i.) more labeled images ii.)

with more (30) labels that capture unstructured driving conditions

and iii.) NIR images.

lary vistas [17] etc which contain a large collection of im-

ages. However, most of these datasets are captured in struc-

tured environments and have label sets that cannot com-

pletely satisfy the unstructured scenarios. IDD [25] intro-

duced a large-scale annotated dataset in unstructured driv-

ing conditions with more than 10K annotated images. It

contains drive scenes with a larger label set when com-

pared to Cityscapes and includes 2-wheelers, pedestrians,

and roadside objects. However, none of the above datasets

have images in adverse weather conditions. All the datasets

have been captured in clear daylight conditions with mini-

mum image distortion.

Adverse weather road scene datasets. Oxford Robot-

car [16] was the first real-world large-scale dataset in which

adverse visual conditions such as nighttime, rain, and snow

were significantly represented, but it did not feature seman-

tic annotations. Foggy Zurich [18], Foggy Cityscapes [19]

have synthesized fog images generated by applying a mask

over the original images. Rain1400 [9], RainyCityscapes

[22] Rain100H [27], and Rain12 [15] are prime examples

for synthetic rain datasets. Comprehensive Snow Dataset

[3] is another example of synthetic snow images. Datasets

such as Rainy Wcity [31] BDD100K [28], ACDC [20],

WildDash [29], WildDash2 [30] and Ithaca365 [6] have real

images which have been captured in various adverse condi-

tions like rain, fog, snow and low light/night time. However,

none of these datasets have both NIR and RGB components
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Figure 2. IDD & IDD-AW hierarchical labels (x-axis) and pixel count (y-axis) comparison. IDD provides data in unstructured driving

conditions and our pixel composition is similar to it. Both datasets have 30 labels and a 4-level label hierarchy. The colors used will serve

as legends for all plots of annotations and predictions in this paper. Normalization is done relative to image resolution and number of

images in the datasets.

which could help us give a better insight into the images in

these adverse conditions. We compare these datasets with

IDD-AW in Table 1.

Datasets with NIR/Multispectral Data. Nuscenes [2],

the first dataset to carry the fully autonomous vehicle sen-

sor suite: 6 cameras, 5 radars, and 1 lidar, all with a full

360-degree field of view. The Multi-Spectral Road Scenar-

ios (MSRS) dataset [23] focuses on road-related scenarios

by combining NIR and RGB modalities. The TNO Hyper-

spectral Dataset [24] provides NIR and RGB images ob-

tained from an airborne platform. Similarly, the KAIST

Multispectral Pedestrian Dataset [12] offers synchronized

NIR and RGB images captured in urban settings. IDD-

3D [7], which consists of multimodal data from multiple

cameras and LiDAR sensors across various traffic scenar-

ios. However, most of these datasets do not cover adverse

weather images. IDD-AW dataset provides synchronized

RGB and NIR images in adverse weather and unstructured

driving scenarios.

Safe & Robust Segmentation. The robustness of a

dataset can also be viewed in terms of the ambiguity of la-

bels in the dataset and the misclassification of corner cases.

Disambiguity of labels can be achieved by introducing a hi-

erarchy in the dataset labels. Hierarchical semantic segmen-

tation explains visual scenes with multi-level abstraction by

considering a structured class label hierarchy.

Li et al. [14] addresses hierarchical segmentation at both

scene level and object level. Shaik et al. [21] aims to ac-

celerate semantic segmentation and other computer vision

tasks on GPUs using sparsity frameworks. In the work of Li

et al. [13], the authors aim to enhance hierarchical semantic

segmentation by modifying the cross-entropy loss and pe-

nalizing it over various class hierarchies. In the research by

Bar et al. [1], the ‘teacher-student framework’ is employed,

where a pre-trained model guides the training of another

model, a common practice to improve segmentation. In the

study by Kamann et al. [11], the authors examine the robust-

ness of semantic segmentation networks concerning a wide

range of image corruptions based on their architecture.

IDD-AW contains images in unstructured driving sce-

narios which are also captured in various adverse weather

conditions. This signifies the robustness of the dataset

along various conditions. Additionally, we introduce a met-

ric called Safe-mIoU which penalizes unsafe mispredic-

tions more than traditional mIoU. This helps in improving

the safety of the models especially for hierarchical driving

datasets.

3. The IDD-AW Dataset

Data Collection or Acquisition. The dataset primarily

focuses on capturing traffic scenarios in adverse weather

conditions such as rain, fog, snow, and low light, with an

emphasis on unstructured driving scenarios. Our dataset

comprises a total of 202 driving sequences, providing a

comprehensive collection of challenging driving scenarios.

The dataset is captured at different locations in India com-

prising urban, rural, and even hilly areas to ensure diversity

across various conditions.

For data capture, we used JAI’s FS-3200D-10GE cam-

era. This is a 2-CMOS multispectral prism camera that

captures images in different spectral bands simultaneously.

Specifically, it provides a visible color channel from 400-

670 nm and a near-infrared (NIR) channel from 740-1000

nm. To ensure a clear separation between different adverse

4616



Figure 3. Comparison of ACDC & IDD-AW: Pixel wise (left), traffic participants instances count (right). Pixel counts are normalized by

resolution and the number of images in the datasets. IDD-AW has more pixels (left) as well as more instances per image (right) of traffic

participants (TP) which includes all vehicles and living things that represent unstructured traffic. Note that there are over 300 images in

IDD-AW with more than 20 instances of TP while ACDC has only around 10.

conditions, each capture was made under only one adverse

scenario to make sure the images were diverse between var-

ious conditions.

Frame Selection. The frames captured by the camera are

filtered using a 3-second threshold to eliminate any repet-

itive frames. The goal of this threshold is to ensure that

unique frames are used for subsequent processing. After

the filtering step, the RGB-NIR pairs are matched based on

their time stamps. However, to ensure accuracy, the matches

are also manually verified by reviewing all frames. From

the matched pairs, visually appealing frames that feature a

diverse range of traffic participants and showcase adverse

driving conditions are shortlisted. This process allows for

the selection of high-quality frames for the dataset.

Label hierarchy and Annotation. The label set used is

the same as in IDD [25]. This label set has a hierarchi-

cal structure with four levels, consisting of 7 labels at level

1 and 30 labels at level 4 (see x-axis of Figure 2). This

adds a higher level of complexity to our dataset when com-

pared to existing datasets like Cityscapes, and even when

compared to adverse weather datasets like ACDC or Foggy

Cityscapes. For labelling the dataset, we had a team of

highly skilled annotators. The annotation process for each

image typically requires 1.5 to 2.5 hours to complete, en-

compassing the initial annotation and quality check. To en-

sure the correctness of the annotations, multiple steps are

taken, such as verifying annotations against predefined cri-

teria and conducting a final quality check by experienced

annotators.

Dataset Splits. IDD-AW is split into four sets corre-

sponding to the examined conditions. We manually selected

1500 rainy, 1500 foggy, and 1000 lowlight and 1000 snowy

images from the recordings for dense pixel-level semantic

annotation, for a total of 5000 adverse-condition images.

The selection process aimed at maximizing the complexity

and diversity of captured scenes.

We used a thorough train-test split technique with set

limits to permit robust evaluations. All images from a drive

sequence are either completely in train or in test to ensure

that the test is truly unseen and distinct. For each weather

condition, the test set includes drive sequences in a ratio of

0.18 to 0.22 of total sequences, ensuring adequate represen-

tation of varied driving scenarios. The average number of

frames per drive sequence in the test set was kept within the

ratio of 0.9 to 1.2 of the average frames per drive sequence

of the entire dataset. Class-specific fairness is maintained

by ensuring that the average instances per image in the test

set vary between 0.8 and 1.2 of the overall dataset. For pre-

cise pixel-level accuracy evaluation, the test dataset must

meet strict criteria: an average pixel ratio of 0.8 to 1.2 for at

least 18 classes, and 0.7 to 1.3 for at least 22 classes.

Comparison with Other Datasets. In Table 1, we com-

pare IDD-AW to existing datasets that address semantic

segmentation under adverse conditions. Most of these

datasets are specialized in a single condition and are rel-

atively small in scale. IDD and ACDC are the two pri-

mary large-scale datasets, focusing on unstructured driv-

ing scenes and adverse weather, respectively. IDD-AW is

unique in its focus on drive scenes that are both unstruc-

tured and affected by adverse weather. Additionally, we

provide a Near-Infrared (NIR) component, recognizing its

potential to enhance segmentation accuracy and safety. NIR

images tend to exhibit higher contrast and sharpness, while

RGB images provide color and luminescence information

that enhances the visual appeal.

Figure 2 illustrates the pixel-wise comparison between
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Figure 4. Example of tree distances between labels. Tree distance

captures the severity of the misprediction using the label hierar-

chy. The td(sidewalk,motorcycle) = 3 since the length of the

path is 6 and td is length/2. Similarly td(person, rider) = 2 and

td(truck, bus) = 1.

IDD and IDD-AW datasets. Although our dataset features

images captured in adverse weather conditions, most of the

classes exhibit pixel counts similar to those of the IDD

dataset which represents unstructured traffic.

Additionally, Figure 3 provides a pixel-wise comparison,

as well as traffic participant, counts when compared with

ACDC. Our dataset notably contains more pixels for crucial

traffic participants such as roads, pedestrians, riders, and

cars. Similarly, when comparing instance counts for traffic

participants per image, nearly every image in our dataset has

more instances than those in ACDC. Moreover, over 300

images in our dataset contain more than 20 instances, while

ACDC only includes approximately 10-20 images with the

same number of instances. This observation highlights that

our dataset features numerous dense images in terms of both

pixels per class and traffic participants per image.

4. Safe-mIoU: A metric for safe segmentation

Traditionally, mIoU (mean of Intersection over Union)

is a widely used metric for semantic segmentation tasks.

It reflects the quality of segmentation by considering both

false positives (pixels mistakenly classified as a class) and

false negatives (pixels of the class not detected). It captures

the balance between precision and recall. However, while

mIoU is an excellent general-purpose metric, its limitations

become apparent when attempting to quantify the safety of

driving scenes. However, mIoU’s strength lies in its gener-

ality, and this generality becomes its limitation in contexts

where class importance as well as the severity of the mis-

predictions varies. In driving scenes, the safety of pedestri-

ans, vehicles, traffic signs, and other critical elements holds

paramount importance. Misclassifying these safety-critical

classes can lead to dire consequences. Also, certain mis-

classifications are dangerous, while others are tolerable. For

example, it is tolerable to misclassify one vehicle as another

type, while it is dangerous to misclassify a pedestrian or the

vehicle as the road (see Figure 5). Unfortunately, traditional

mIoU does not inherently capture these safety concerns. It

treats all classes as equal entities, disregarding their impact

on real-world driving scenarios.

To address this gap, a more refined metric is needed –

one that can not only assess the quality of segmentation

results but also consider the severity of unsafe mispredic-

tions. We propose a new Safe mIoU (SmIoU) metric. The

calculation of Safe mIoU involves selecting a subset of criti-

cal/important classes Cimp from the entire class set C. These

chosen classes typically encompass those that have a direct

impact on safety within driving scenes, such as pedestrians,

vehicles, and traffic signs. Furthermore, we use the distance

between the predicted and the actual label in the hierarchical

label tree of IDD-AW, to measure the severity of misclassifi-

cations in Cimp. It aims to provide a more holistic evaluation

that aligns with the priorities of driving scene applications

and the overall safety of the environment.

The essence of SmIoU lies in the introduction of hierar-

chical penalty, a strategy that takes into account the seman-

tic relationships between classes. Misclassifications within

critical classes, and non-critical classes classified as critical,

are penalized based on their distance in the class hierarchy.

The tree distance (td) between a pair of labels is the length

of the shortest path in the class hierarchy tree divided by

2 (see Figure 4). So the td between person and rider is 1,

while sidewalk and motorcycle is 3 (see the class hierarchy

in 2), denoting that the latter is a more severe misprediction

than the former. The calculation of SmIoU involves com-

puting the Isafe
c for each class as shown in equation 1. The

safe IoUs are the IoUs with a penalty for misclassification

of that class weighted by the tree distance. The final SmIoU

score is obtained by taking the mean of these Isafe
c as shown

in equation 2, resulting in a metric that accurately measures

both the segmentation quality and the safety-related consid-

erations of driving scene applications.

Let C be the set of all classes at the bottom level of the

hierarchy, d(c, s) be the tree distance between class c, s,

and n be the number of levels in the hierarchy, gtc the set of

pixels in the ground truth with label c and preds the set of

pixels in the prediction with label s. We define the following

quantities:

Isafe
c,s =

|gtc ∩ preds|

|gtc ∪ predc|
Ic,c =

|gtc ∩ predc|

|gtc ∪ predc|
(a)

Now, we define SmIoU as follows:
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Figure 5. Examples from IDD-AW, showing a pedestrian in the

rain, a truck in the fog, a rider/bike in low light, and an animal in

the snow are mispredicted respectively. In the Severity Column,

Red, orange, and yellow colors denote the level of danger posed

by mispredictions. In the third row, a bike being mispredicted as

a truck is less dangerous (in orange) than a rider being predicted

as a vehicle (in red). mIoU considers these different colored mis-

predictions in the same way, while the proposed safe mIoU gives a

higher penalty for orange and red mispredictions. In these images,

the proposed safe mIoU is less than mIoU by more than 20%.

Isafe
c =























Ic,c −
∑

s∈C,s̸=c

d(c, s)

n
Isafe
c,s if c ∈ Cimp

Ic,c −
∑

s∈Cimp

d(c, s)

n
Isafe
c,s else.

(1)

SmIoU =

∑

c∈C Isafe
c

|C|
(2)

Note that the definition of SmIoU requires the definition

of important classes Cimp. When SmIoU is mentioned with-

out specifying Cimp, we take it to be the union of traffic par-

ticipants and roadside object classes (all classes except Far

Objects and Sky in Figure 2).

Properties of SmIoU. The following are the important

properties of the proposed SmIoU when compared with

traditional mIoU, which show their relationship and

motivate the definition of SmIoU for capturing unsafe

mispredictions.

Dataset

Test →

Train ↓ C
S

A
C

D
C

ID
D

R
ai

n

F
o

g

L
L

S
n

o
w

ID
D

-A
W

CS RGB 83 - - 46 45 42 43 46

ACDC RGB - 75 - 47 51 42 38 48

IDD RGB - - 73 52 55 50 33 54

IDD-AW RGB 49 51 51 62 64 62 53 64

IDD-AW NIR - - - 61 58 57 51 61

IDD-AW NIR+RGB - - - 66 65 63 53 67

Table 2. Comparison of mIoU scores (%) of InternImage-b model

trained on CityScapes (CS), ACDC, IDD, and IDD-AW datasets

(RGB, NIR, and Combined) for IDD-AW test set in individual

conditions and jointly for all conditions. The model trained on

IDD-AW NIR+RGB gives the highest accuracy which is 20%

more than CS, ACDC, and 14% more than IDD. The NIR+RGB

model gives 3% more accuracy compared to the RGB model,

which indicates that the NIR image adds useful information for

prediction. Also, note that the model trained on IDD-AW gives

3% better accuracy when tested on CS and ACDC as compared to

the models trained on the respective datasets tested on IDD-AW

(in grey). This trend is reversed in IDD since its training set is

double the size of IDD-AW (in darker grey).

1. SmIoU = mIoU, when Cimp = ∅. When there are no

important classes, SmIoU matches traditional mIoU.

This is because the penalty becomes zero from the

above formula, resulting in SmIoU becoming equal to

the original mIoU.

2. SmIoU ∈ [−1, 1]. As we are penalizing the mIoU with

the tree distance divided by the number of levels in the

hierarchy, it always ranges between -1 to 1 inclusive of

both extremes.

3. SmIoU = 1 if and only if all pixels in an image are

accurately classified into their respective classes.

4. SmIoU = −1 if and only if all pixels in an image are

misclassified with the farthest classes in the tree hier-

archy.

5. Results

Training on CS, IDD, and ACDC. We have performed

several experiments on Cityscapes, ACDC, IDD, and IDD-

AW datasets using the InternImage [26] model. Intern-

Image was chosen due to its state-of-the-art performance

currently in semantic segmentation benchmarks. We have

taken InternImage-b backbones of the InternImage [26].

Regarding the results from Table 2, we can see the mIoU

when trained on Cityscapes does not even cross 45% mIoU

when tested on IDD-AW. As the underlying dataset does not

have any images with different weather conditions in it, the

performance of a CS-trained model on IDD-AW is very low.
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eval → cross same

Test →

Train ↓ R
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n
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S
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Io
U

(t
p

)

S
m

Io
U

IDD 52 55 50 33 - - -

IDD-AW - - - - 64 60 51

Rain - 55 40 29 64 58 48

Fog 51 - 53 29 64 58 47

LL 52 57 - 30 62 58 48

Snow 35 38 33 - 53 43 28

Table 3. Cross-evaluation of InternImage-b condition experts

on the various conditions of IDD-AW are shown in the first 4

columns. Comparison of mIoU (%) with SmIoU (%) metric at

different levels and label sets for various adverse weather condi-

tions shown in the last 3 columns. Here, SmIoU refers to Safe

mIoU and tp refers to setting the important classes to be just the

traffic participants (ie Living Things ∪ Vehicles in Figure 2).

Similarly, a model trained on ACDC does not cross 50%,

which shows the dataset is that much harder and has a larger

label set. Even though ACDC is also a driving dataset that

is captured in multiple weather conditions, there’s still not

much improvement from Cityscapes. This already shows

that our dataset is much harder than both Cityscapes and

ACDC datasets.

When using pre-trained models of the IDD dataset, it

performs much better than Cityscapes and ACDC despite

testing with a larger label set. This is due to the unstruc-

tured images being present in the IDD dataset. The IDD

pre-trained models performed efficiently in well-lit condi-

tions like rain and fog, nonetheless the performance did not

cross the 50% mIoU mark in low-light conditions. Also,

the major concern is the performance in snow conditions,

where the best IDD pre-trained model, gives only 32%

mIoU which is a significant drop and is not usable for this

condition at all. So even though the final mIoU reaches

around 53%, it cannot be generalized over each condition

and overly fails to perform in certain conditions.

Training and Evaluation on IDD-AW. We perform the

training in three different ways on IDD-AW. First, we train

the network only on the RGB images of our dataset. We

can observe that training on IDD-AW gives more than 10%

mIoU score when compared to IDD and almost 20% when

taking the best performing Cityscapes or the ACDC pre-

trained model. This is because of the variety of images

in our dataset in various weather conditions which are not

present in regular driving datasets like IDD or Cityscapes,

as well as the unstructured nature of images and varying

traffic when compared to other adverse datasets like ACDC.

From Figure 6, we can see qualitative results from each pre-

Figure 6. Qualitative examples from each condition with predic-

tions using models trained on ACDC, IDD, and IDD-AW Datasets

and the ground truth at the end. The mIoUs (%) for each pre-

trained model on the IDD-AW test set are 46.57, 53.4, and 64.5

using ACDC, IDD, and IDD-AW pre-trained models respectively.

trained model on our dataset.

We conducted a similar experiment using only the NIR

components of the images, yielding a mIoU of over 60%

across various models and highlighting the quality of both

the RGB and NIR components. Furthermore, we include

training with stacked RGB+NIR images as input. Notably,

the combination of RGB and NIR images through stacking

led to a significant increase in mIoU by more than 3% when

compared to using just RGB or NIR components alone (re-

fer to Table 2), underscoring the critical role of NIR com-

ponents within our dataset.

Condition Expert Training. In condition expert training,

we train specifically on each condition separately and then

test on each condition to assess the quality of images across

each set. In Table 3, we can see the differences between

training on one condition and testing on each of them. We

can see that training on any other condition except Snow,

does not yield any significant mIoU increase in the snow

images.

Safe mIoU on IDD-AW test set. In Table 3, we can see

the drop in SmIoU when we consider the important classes.

For the InternImage-b framework, the SmIoU again drops

more than 15% at least for each individual condition. This

clearly shows the discrepancy and the dangers of traditional
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LL 95 60 54 73 73 68 38 75 80 69 86 29 65 50 72 58 35 53

Snow 85 42 - 80 62 40 0 - 82 58 70 48 23 56 64 60 37 -

S
m

Io
U

%

All 92 32 16 64 58 52 - 22 77 81 68 70 21 69 32 61 42 40 27

Rain 94 28 25 15 59 54 -7 81 84 74 46 23 74 22 20 46 32 26

Fog 95 51 -48 41 62 58 -63 43 87 78 77 28 71 52 69 45 53 12

LL 92 46 22 60 59 52 14 70 76 61 82 2 48 26 52 35 15 32

Snow 79 20 - 70 44 -2 -99 - 76 48 56 23 -46 23 42 38 5 -

Table 4. Comparison of class-wise labels for important classes between mIoU vs SmIoU for InternImage-b model on segmentation.
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Figure 7. Distribution of Safe mIoU (%) vs mIoU (%) for IDD-

AW test set. y-axis represents the number of images with a partic-

ular value of SmIoU/mIoU. The SmIoU distribution is shifted to

the lower side, indicating that it is finding a significant amount of

dangerous mispredictions that are not accounted for in mIoU.

mIoU in hierarchical autonomous driving datasets. In Fig-

ure 7, we can see the distribution of SmIoU vs mIoU over

the test set has shifted toward the lower side which some

images exhibiting even negative SmIoU.

Notice that SmIoU = mIoU if Cimp = ∅. When we add

more classes to Cimp the metric value decreases. This can

be observed in the last 3 columns of Table 3. They corre-

spond to Cimp = ∅, traffic participants and traffic partici-

pants ∪ roadside objects respectively. The SmIoU (tp) has

values between mIoU and SmIoU. This shows our new met-

ric is flexible and very effective at identifying the images in

which the important classes are misclassified.

When comparing class-wise mIoUs and SmIoUs for the

InternImage-b framework as in Table 4, we can see sev-

eral classes showing great disparities between mIoU and

SmIoU. There is a significant difference between things

like bicycles, traffic signals, and sidewalks. It can be dan-

gerous to misclassify these classes, especially when driv-

ing. When compared to conventional mIoU, our suggested

SmIoU metric more accurately measures this risk. SmIoU

also shows several classes with negative values showing

dangerous misclassification, especially bicycle, sidewalk,

and curb. The danger level associated with misclassification

that could be brought on by these objects in the drive scenes

is represented by classes like person in rain, sidewalk, and

rickshaw in fog, vehicle fallback in lowlight, bike, and curb

in snow that is well captured by SmIoU but missed by the

traditional mIoU.

6. Conclusion

We have presented IDD-AW, a large-scale dataset and a

benchmark suite for semantic driving scene understanding

in adverse weather and unstructured driving conditions. We

also present a new metric called Safe mIoU which incorpo-

rates safety concerns in the definition of mIoU. We bench-

mark state-of-the-art models for semantic segmentation in

IDD-AW and also show the differences between traditional

mIoU and safe mIoU while considering important classes.

Finding appropriate loss functions, which can better opti-

mize safe mIoU more efficiently is an interesting direction

for future work.
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