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Abstract

Shape analysis tasks, including mesh classification, seg-
mentation, and retrieval demonstrate symmetries in Eu-
clidean space and should be invariant to geometric trans-
formations such as rotation and translation. However, ex-
isting methods in mesh analysis often rely on extensive data
augmentation and more complex analysis models to han-
dle 3D rotations. Despite these efforts, rotation invariance
is not guaranteed, which can significantly reduce accuracy
when test samples undergo arbitrary rotations, because the
analysis method struggles to generalize to the unknown ori-
entations of the test samples. To address these challenges,
our work presents a novel approach that employs graph
neural networks (GNNs) to analyze mesh-structured data.
Our proposed GNN layer, aggregation function, and local
pooling layer are equivariant to the rotation, reflection and
translation of 3D shapes, making them suitable building
blocks for our proposed rotation-invariant network for the
classification of mesh models. Therefore, our proposed ap-
proach does not need rotation augmentation, and we can
maintain accuracy even when test samples undergo arbi-
trary rotations. Extensive experiments on various datasets
demonstrate that our methods achieve state-of-the-art per-
formance.

1. Introduction

With the advancements in 3D scanning technology and
modeling software, the amount of generated 3D geometric
data has increased exponentially. These data are used in var-
ious fields such as gaming, augmented and virtual reality,
medical imaging, robotics, self-driving cars, and many oth-
ers. The analysis of 3D mesh data is challenging, and tradi-
tional methods can be time-consuming and limited in their
capabilities. 3D shape classification and 3D shape matching
are among the main applications of shape analysis and have
been a long standing topic of active research. These tasks

aim to categorize 3D shapes into different classes based on
their geometric features and retrieve similar shapes based on
user queries. A descriptive and versatile representation of
3D object shapes is crucial for accomplishing these tasks. In
the field of 3D shape analysis, deep learning methods such
as PointNet [40], PointNet++ [42], ShapeContextNet [57],
PointGrid [26], DynamicGCN [54], and SampleNet [25]
have demonstrated potential. In the context of 3D shape
analysis, it is crucial for a neural network-based model to be
able to effectively learn relevant latent features, even when
the 3D shape has undergone geometric transformation.

In this study, we employ adaptively sampled mesh mod-
els to represent 3D shapes, instead of other popular meth-
ods, such as volumetric grids (voxels) [33, 41] and point
clouds [42,59]. Mesh models may provide higher resolution
by assigning more vertices and polygons to complex geo-
metric areas. Conversely, in extensive, nearly flat regions
only a minimal number of polygons are utilized. Mesh
models are a useful choice due to their conceptual simplic-
ity, versatility, and efficient processing methods.

Shape analysis tasks, such as mesh classification, seg-
mentation, and retrieval exhibit symmetries in Euclidean
space. These tasks involve predicting outcomes that should
be unaffected by rotation, translation, and reflection, collec-
tively referred to as E(3) transformations, that are applied
to the analyzed geometric models. However, the majority
of the mesh [3,21,24], point cloud [18,29,42,54,55], volu-
metric grids [33, 37] analysis methods are not robust to ro-
tation. Most 3D shape analysis methods have been trained
and evaluated on 3D shape datasets, such as ModelNet [56]
and ShapeNet [7], which contain shapes that have been pre-
aligned into a standard orientation. These methods fail to
generalize to models in unknown poses and experience a
significant performance drop when evaluated on objects in
arbitrary orientations. A different set of techniques deals
with the input mesh as a graph and uses graph deep learning
techniques to analyze the input mesh for various tasks such
as classification and segmentation [34,35,44,52]. However,
most spatial GNN layers, such as graph convolution, graph
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attention, and message passing layers, are not designed to
handle node features that include attributes that vary with
different coordinate systems. This means that the spatial
coordinates and normal vectors of nodes change when sub-
jected to translation, rotation, and reflection. Consequently,
training a mesh classification network using these GNN
layers is expensive and requires significant data augmen-
tation to expose the network to 3D meshes in different
orientations. Additionally, these GNN layers lack transla-
tion/rotation equivariance or invariance, requiring O(δ−3)
more filters to achieve an angular resolution of δ (which is
assumed to be less than 1) [50]. To tackle these challenges
and reduce the computational complexity of the classifica-
tion network, we propose an approach that is translation,
rotation and reflection invariant.

The objective of our research is to develop a represen-
tation of 3D objects that can be used for 3D shape classi-
fication that remains unaffected by geometric transforma-
tions such as rotation and translation. To achieve this goal,
we construct a graph neural network framework with mesh-
specific features. We propose a unique Graph Neural Net-
work (GNN) as an instance of the message-passing GNN
that can jointly learn node, edge, and graph embeddings.
Our rotation-, reflection- and translation-equivariant layer
uses geometric features of the mesh that change under rota-
tion and translation, such as position and normals, as well
as rotation and translation invariant features. Furthermore,
we introduce a novel permutation and rotation invariant ag-
gregation function as a component of the proposed GNN.
This function leverages the coordinates of vertices by bin-
ning them into spherical regions, which are then represented
by a complete graph. Each node in the complete graph rep-
resents a bin and is assigned a feature vector that is cal-
culated by taking the average of the rotation-invariant fea-
tures of mesh vertices located in the corresponding spheri-
cal shell. We then utilize two layers of Graph Attention Net-
works (GATs), which employ self-attention over the node
features, giving varying importance to different neighbors.
We aggregate the node features of the mesh by taking the
average of the embedded features of the nodes of the com-
plete graph. Finally, we present a local pooling layer, which
implements mesh coarsening at different levels, enabling
multi-resolution mesh analysis. Combined together, these
components create RIMeshGNN, a (R)otation-(I)nvariant
graph neural network (GNN) for mesh classification.

The rest of this paper is structured as follows. In Sec-
tion 2 we provide a summary of related research. Section
3 introduces the fundamental components of our approach
and the framework implemented for 3D mesh classification.
Next, in Section 4 we discuss the experimental evaluation
of our proposed model for 3D mesh classification. We also
provide a comparison to relevant supervised models for 3D
classification. We conclude the paper in Section 5 and out-

line future work. In order to demonstrate the impact and the
individual contribution of each component within our clas-
sification network, we conducted a series of ablation stud-
ies. The outcomes of these studies can be found in the sup-
plementary materials.

2. Related Work
A triangular mesh, composed of vertices (V), edges (E),

and faces (F), is the most widely used and effective 3D
shape representation in computer graphics. However, the
irregularity and unstructured nature of this representation
poses a challenge when applying Convolutional Neural Net-
works (CNNs) to it, as each vertex has a varying number of
neighbors at differing distances. Traditional deep learning
techniques tackle the irregularity of meshes by either con-
verting them into volumetric grids [33, 37, 41] or creating
multiple 2D projections [23, 47] to make them compatible
with CNNs. An alternative method involves extracting 3D
point samples from the surface of a three-dimensional ob-
ject and then applying a point cloud technique to the sam-
ples [40, 42, 48, 49, 53, 60]. These techniques aim to learn
a representation for each point by analyzing its neighbors,
using either multi-layer perceptrons or convolutional layers.

Recently, there has been a growing research trend ad-
dressing 3D meshes directly. Early work on learning repre-
sentations for 3D meshes generalized standard 2D Convo-
lutional Neural Networks (CNNs) to 3D. These generaliza-
tions treat 3D meshes as manifolds and apply patch-based
techniques on the underlying surface [31, 32, 35]. How-
ever, it is worth mentioning that most patch-based methods
entail high computational complexity, hand-crafted tech-
niques, and precomputed local systems of coordinates [4].

Researchers have attempted to establish a specific order
for vertex neighborhoods to prevent expensive resamplings
[3, 4, 17, 24, 31]. Lim et al. [31] and Gong et al. [17] have
introduced sampling operators that serialize vertex neigh-
borhoods along spiral trajectories to capture local geomet-
ric structures. An alternative method for handling the irreg-
ular structure of 3D meshes utilizes several random walks
to traverse the surface of the mesh, thereby examining its
local and global geometry [3, 24]. These walks are then
fed into a Recurrent Neural Network (RNN) that can retain
the history of each walk. To overcome the limitations of
fixed discretization schemes, DiffusionNet [45] utilizes heat
propagation across the mesh surface, generating a diffusion
kernel that encodes vertex relationships in terms of connec-
tivity and proximity. Point cloud methods tackle challenges
arising from the irregular domain and the absence of order-
ing in various ways [18, 42, 54, 55]. PCT [18] leverages the
permutation invariant properties of transformers, combined
with farthest point sampling and nearest neighbor search,
to facilitate efficient point cloud learning. DeltaConv [55]
adopts the DGCNN network architecture [54] while substi-
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tuting each EdgeConv block with an anisotropic convolu-
tion layer.

Another way to tackle the irregular, non-uniform struc-
ture of a mesh is to exploit the inherent properties of mesh
elements that have regular forms. Particularly, in a 2-
manifold triangle mesh each edge is incident to exactly two
triangular faces and, therefore, adjacent to four other edges.
MeshCNN [20] designed a convolution operator for edges,
where its spatial support is defined using the four incident
edges. Similarly, face-based techniques take advantage of
the fact that each face in a 2-manifold triangle mesh is ad-
jacent to exactly three other faces. MeshNet [14] lever-
ages two mesh convolutional layers to aggregate the 1-ring
neighbors and learn the spatial and structural features of a
face. SubdivNet [21] has also introduced a convolutional
operation for mesh faces that supports kernel size, stride,
and dilation. However, this method requires a mesh with a
subdivision sequence.

As triangle meshes are structured graphs, learning algo-
rithms inspired by graph-based approaches can often be em-
ployed to learn from meshes. Our method is closely related
to a family of approaches that utilizes the graph represen-
tation of 3D meshes and relies on Graph Neural Networks
(GNNs). GNNs extract neighborhood features through a
weight-sharing strategy and are classified into two main cat-
egories: 1) spectral- and 2) spatial-based methods. The
spectral-based methods use the eigen decomposition of the
Laplacian associated with the graph [5, 9, 27]. Such mod-
els generally suffer from large computational complexity,
unstable decomposition, and poor generalization across dif-
ferent graphs [1, 35, 52]. In contrast, spatial-based methods
aggregate deep feature information of neighboring nodes
[19, 36, 51]. These methods have attained considerable at-
tention due to their low computational complexity, gener-
alization, and localized properties. Milano et al. [34] pro-
posed PD-MeshNet that performs dynamic, attention-based
feature aggregation using the primal-dual graph convolu-
tional framework of Monti et al. [36]. Shakibajahromi et
al. [44] introduced a 3D segmentation network, HyNet, that
converts a 3D mesh into a hybrid graph consisting of three
types of nodes representing vertices, edges, and faces.

Nevertheless, most end-to-end deep neural networks dis-
cussed earlier do not demonstrate invariance to 3D rota-
tions. As a result, the accuracy of these networks tends to
decline when the orientations of the input 3D objects differ
between training and inference. Several studies have re-
ported a substantial performance difference in shape anal-
ysis tasks between aligned and unaligned or rotationally
augmented settings, such as those by Poulenard et al. [39],
Tao et al. [49] and Sun et al. [48]. Recently several point
cloud techniques have been offered to address this issue
[10, 28, 39, 48, 49, 61]. For example, Deng et al. [10] ex-
tended neurons from 1D scalars to 3D vectors, introducing

SO(3)-equivariant neural networks for point-cloud process-
ing. Li et al. [28] convert the point clouds into their canoni-
cal poses by developing a pose selector module that disam-
biguates PCA-based canonical poses. To address the same
issue for meshes, MeshCNN [20] utilized rotation- and
translation-invariant geometric features of the mesh edges.
In contrast, our method leverages rotation- and translation-
invariant nodes and edge features, along with directional
and positional information that varies with geometric trans-
formation. We accomplish this through a novel graph neural
network framework integrating mesh-specific geometric in-
sights.

3. Method
This section describes RIMeshGNN and the message-

passing graph neural network (GNN) [2, 16, 43] used to en-
code a 3D shape that remains invariant to E(3) transforma-
tions. In our context, all shapes are considered to be repre-
sented by watertight, 2-manifold meshes.

3.1. E(3)-Equivariant GNN

A 3D shape is defined as a mesh comprised of vertices,
edges, and faces. This mesh can be represented as a graph,
denoted by G = (V, E), where V = {vi}Ni=1 is the set of
N vertices in the mesh, E = {eij} is the set of E edges,
where edge eij connects two vertices vi and vj . Each ver-
tex vi, edge eij , and the entire graph G are associated with
feature vectors fi, hij , and hG . Vertex features include
rotation equivariant properties, such as vertex coordinates
xi and normal ni, and rotation invariant feature hi, such
as mean and Gaussian curvature, area, and dihedral angle
(fi = (xi, ni, hi)). We define the vertex area as one-third
of the total face area of its 1-ring neighborhood. The vertex
dihedral angle represents the maximum dihedral angle of all
edges incident to the vertex. Edge features (hij) are rotation
invariant, including dihedral and internal angles and edge-
to-height ratios. The initial graph feature hG includes a his-
togram of the lengths and dihedral angles of all the edges
of the mesh. Figure 1 illustrates the input features for the
vertex, edge and mesh graph.

Figure 1. Input feature vector for the vertex, edge and mesh graph.

Our proposed E(3) equivariant layer utilizes the nodes,
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edges, and graph features as input and generates corre-
sponding output features by gathering information from the
neighboring nodes in the mesh graph through nonlinear
transformation and permutation-invariant aggregation func-
tions. To achieve sufficient expressive power, a learnable
transformation must be employed to convert the input fea-
tures into higher-level features. Specifically, we apply a
shared transformation Φe : RF ′ → RF , i.e. a feed-forward
neural networks, to each edge, utilizing the edge’s and its
vertices’ features, and the graph embedding as inputs:

hl+1
ij = Φe(h

l
ij , h

l
i, h

l
j , ∥xl

i − xl
j∥2, nl

i · nl
j

T
, hl

G), (1)

where hl
ij is the edge embedding and hl

i and hl
j represent

the embeddings of the rotation invariant portion of the two
incident vertices. ∥xl

i − xl
j∥2 is the distance between the

incident vertices’ coordinates. nl
i · nl

j
T is the cosine of an-

gles between the incident vertices’ normal and hl
G denotes

the graph embedding.
Furthermore, we split the node features update into rota-

tion equivariant and invariant portions. Particularly, we up-
date the vertex coordinates and normal using the weighted
sum of the relative differences between the vertex and
its neighboring nodes. The weights are separately com-
puted using the functions Φx and Φn, and are approxi-
mated by Multilayer Perceptrons (MLPs), which take the
edge embedding hij corresponding to the relative differ-
ences (xi − xj) and (ni − nj) and generate scalar values
Φx(hij) and Φn(hij), as follows:

xl+1
i = xl

i +
1

|Ni|
∑
j∈Ni

(xl
i − xl

j)Φx(h
l+1
ij ) (2)

nl+1
i = nl

i +
1

|Ni|
∑
j∈Ni

(nl
i − nl

j)Φn(h
l+1
ij ). (3)

The embedded normal vector is then normalized:

nl+1
i =

nl+1
i

∥nl+1
i ∥2

. (4)

To update the rotation invariant component of the node fea-
ture hi, we utilize a learnable transformation Φh approx-
imated by an MLP that operates on each vertex vi. This
transformation takes as input the aggregation of edge up-
dates for edges that are incident to vertex vi, the initial fea-
ture hl

i, and the entire graph feature hl
G , as follows:

hl+1
i = Φh(h

l
i,
∑
j∈Ni

hl+1
ij , hl

G). (5)

We have opted to use the summation function for aggrega-
tion, and our various experiments and ablation studies have
provided supporting evidence for this choice.

The global graph attribute hG is updated using a learn-
able transformation ΦG . This transformation takes the ag-
gregation of node updates sl+1

G , edge updates hl+1
ij , and the

graph attributes of the previous layer hl
G as input. The result

is an updated feature vector for hl+1
G , defined as:

hl+1
G = Φg(s

l+1
G ,

1

E

∑
i∈V,j∈Ni

hl+1
ij , hl

G). (6)

In order to calculate the aggregation of node features sl+1
G ,

we have designed a novel aggregation function for combin-
ing node features, which will be discussed in the next sec-
tion. Additionally, we have chosen the MEAN function for
edge feature aggregation, which is supported by the results
of our numerous experiments and ablation studies.
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Figure 2. Permutation and Rotation Invariant Aggregation Func-
tion: (a) illustrates the spherical bins and bucketizing process. (b)
demonstrates the rotation-invariance property of the process, and
the mesh vertices associated with the first bin and its correspond-
ing feature vector ml+1

1 , (c) presents the complete graph with nbin

nodes, where each node represents a spherical region.

3.2. Permutation, Rotation and Reflection Invariant
Aggregation Function

After the input 3D shapes have been scaled to fit inside a
unit sphere centered at the origin, we proceed to bucketize
the nodes V into nbin groups based on their distance from
the origin. This process will assign an index ki to each node
vi. To achieve this, we divide the range of distances from 0
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to 1 into equal intervals, creating spherical bins illustrated
in Figure 2a and expressed by the following equation:

ki = Bucketize(∥xi∥, nbin). (7)

The node embeddings hl+1
i that belong to each bin are av-

eraged to form ml+1
k , which represents the bin:

ml+1
k =

1

|{vi|ki = k}|
∑
ki=k

hl+1
i k ∈ {1, 2, . . . , nbin}.

(8)

Figure 2b illustrates the mesh vertices associated with the
first bin and its corresponding feature vector ml+1

1 . We con-
struct a complete graph with nbin nodes, where each node
is represented by ml+1

k , and apply a two-layer graph atten-
tion network (GAT) on the complete graph, as illustrated
in Figure 2c. The GAT [51] assigns varying importance
to the neighborhood of each node (spherical bin) in each
layer, which enhances performance for some downstream
tasks. We calculate a global feature vector sl+1

G for the en-
tire complete graph by aggregating the node (bin) embed-
ding vectors using the MEAN function:

sl+1
G =

1

nbin

nbin∑
k=1

ΦGAT (m
l+1
k ). (9)

This entire process serves as a permutation, rotation, and
reflection invariant aggregation function that consolidates
the rotation invariant node features of the input mesh. The
aggregated node features will then be used as one of the
inputs for computing global mesh attributes utilized for the
shape classification task.

3.3. Analysis of E(3) Equivariance and Invariance
Property

In this section, we explore the equivariance properties
of our proposed GNN layer and aggregation function with
respect to rotation and translation. We observe that cer-
tain geometric features, such as node features hi (mean and
Gaussian curvature, area, and dihedral angles), edge fea-
tures hij (dihedral and internal angles, and edge-to-height
ratios), and shape feature hG (a histogram of the length and
dihedral angles of all edges of the mesh) remain invariant to
rotation and translation. Furthermore, the relative distance
between two coordinates ∥x0

i − x0
j∥2 and cosine similarity

between two normal vectors are also invariant to rotation
and translation. This is because the distance between nodes
and the relative angles between adjacent normal vectors do
not change when objects are rotated or translated. As a re-
sult, we can ensure that edge features generated by Equation
1 remain invariant to E(3) transformation.

Equation 2, similar to the one presented in [43], is com-
puted as a weighted sum of differences between coordinates

xi and xj , which is then added to xi. Any rotation applied
to input coordinates will result in an equivalent rotation in
xi − xj and xi. Therefore, the output xl+1

i undergoes an
equivalent rotation as the input when the coordinates are ro-
tated. Likewise, translating the coordinates will alter xi, but
not alter the coordinate difference and thus cause an equiv-
alent translation in the output. The same principle applies
to Equation 3.

Moreover, indices ki are assigned to the initial coordi-
nates of shapes, which have already been translated and
scaled to fit in a unit sphere centered at the origin, as illus-
trated in Equation 7. The process of bucketizing is rotation
invariant as it depends on the nodes’ distance to the cen-
ter and remains unchanged when shapes are rotated. Equa-
tion 8 averages the invariant feature vectors of nodes within
the same spherical shell. Since bucketization is rotation
invariant, the averaging of invariant features remains un-
changed under E(3) transformations. Equation 9 computes
graph features based on the bin features ml+1

k . Since ml+1
k

is invariant to E(3) transformations, Equation 9 is also in-
variant to E(3) transformations. Figure 2b illustrates this
characteristic. Finally, Equation 6 maintains invariance due
to its inputs’ translation and rotation invariance properties.
To summarize, the composition of our proposed GNN layer
and aggregation functions exhibits E(3) equivariance induc-
tively. For classification we utilize the graph attribute ob-
tained through Equation 6, which is E(3) invariant.

3.4. Local Pooling Layer

We introduce a local pooling layer for RIMeshGNN that
performs mesh coarsening at various scales; thus allowing
for mesh analysis at multiple resolutions. Our method is in-
fluenced by Garland and Heckbert’s surface simplification
algorithm [15] and MeshCNN [20] and employs edge con-
traction as the basis for our pooling technique. We modify
and extend Diehl’s edge pooling method [11] for a geomet-
ric mesh context to develop a learnable pooling strategy.

The pooling layer performs a series of edge collapse op-
erations, where each collapse operation results in an edge
collapsing to a vertex, and subsequently, two pairs of edges
from its adjacent faces merge into two edges, as demon-
strated in Figure 3. To identify the most appropriate edges
for edge collapses within each pooling layer, we use the up-
dated edge embeddings generated by the prior GNN layer in
Equation 1 (hl+1

ij ). A score is computed for each edge using
a single fully connected layer with softmax as a non-linear
activation function:

Sij = Φscore(h
l+1
ij ). (10)

We first rank all edges according to their scores. The
highest-scoring edge is chosen for the initial edge contrac-
tion. We proceed by choosing the next highest-scoring edge
if its vertices have not been involved in prior contractions
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Edge Collapse 

Figure 3. Local pooling layer based on edge collapse.

within the current pooling layer; otherwise, we skip that
edge. This precaution is taken to prevent redundancy and
optimize the efficiency of the process. Specifically, by de-
ferring the update of the mesh graph’s edges until after all
contractions are completed, the overall computational time
is reduced, minimizing the need for repeated updates after
each individual contraction.

We continue until this process reaches the end of the
ranked list. This approach allows the network to collapse
the least important parts of the mesh while preserving the
more relevant regions in relation to the network’s purpose
enforced by the loss function. It is important to recognize
that not all edges can be collapsed. Our approach prohibits
edge collapses that result in non-manifold faces, e.g. those
that produce faces with zero area. Also, an edge is not suit-
able for collapse if the intersection of the 1-ring vertices of
the edge’s end nodes contains three or more vertices.

More specifically, in each edge collapse operation, an
edge eij = (vi, vj) is contracted to a new vertex vk. This
action also removes two pairs of edges namely (emi =
(vm, vi), emj = (vm, vj) and (eni = (vn, vi), enj =
(vn, vj)) and introduces emk = (vm, vk) and enk =
(vn, vk). We illustrate this process in Figure 3. To deter-
mine the feature of emk = (vm, vk), we take the average of
the features of edges emi and emj (hl+1

mk = 0.5 · (hl+1
mi +

hl+1
mj )). Similarly, the feature of enk is computed by aver-

aging the features of edges eni and enj . Additionally, we
combine the features of the two collapsed nodes vi and vj
to generate new vertex features for vk:

hl+1
k = Sij · (hl+1

i + hl+1
j ) (11)

xl+1
k = 0.5 · (xl+1

i + xl+1
j ) (12)

nl+1
k =

nl+1
i + nl+1

j

∥(nl+1
i + nl+1

j ∥2
(13)

xk = 0.5 · (xi + xj). (14)

Following the approach in [11], to ensure that the gradient
can flow into the scores, we multiply the combined node
features by the edge score Sij in Equation 11. Our pro-
posed local pooling layer guarantees that the pooling pro-
cess maintains a watertight and manifold shape throughout
the process. Furthermore, it is rotation-equivariant and does
not affect the rotation-invariance characteristic of our clas-
sification network.
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Figure 4. RIMeshGNN architecture.

3.5. Network Architecture

Our classification network employs multiple GNN and
pooling layers to capture node and edge dependencies over
long distances and to facilitate information propagation
across multiple hops. Nevertheless, stacking several GNN
layers can cause over-smoothing and performance issues in
deep networks or graphs with small diameters [6, 58]. To
address the problem of over-smoothing and enhance model
capacity, we concatenate the graph features from all lay-
ers, thereby directly fusing all the information from inter-
mediate layers. The embedding vector produced for nodes,
edges, and graphs can serve various mesh analysis purposes,
including mesh classification, shape retrieval, and segmen-
tation. In order to accomplish graph classification, we in-
corporate an MLP sub-network as the final layer. The pro-
posed neural network is then trained end-to-end to achieve
mesh classification by minimizing cross-entropy loss over
all predicted categories and labeled graphs. Figure 4 pro-
vides an overview of the proposed classification network.

4. Experiments and Results

Our proposed E(3)-equivariant Graph Neural Network
and rotation-invariant aggregation layer have a broad range
of applications in 3D shape analysis, due to their flexibil-
ity and adaptability. These components form the founda-
tional elements of our E(3) invariant classification network.
We quantitatively evaluated the network’s performance for
a shape classification task and compared the results with
the current state-of-the-art outcomes. The RIMeshGNN
model uses PyTorch [38] as the deep learning framework
on a computer with a 3.8 GHz CPU (24 cores), a 64 GB
RAM, and a TITAN RTX 24GB GPU. The graph neural
network operations are performed with the Deep Graph Li-
brary (DGL) [53]. We have conducted extensive experi-
ments to demonstrate the effectiveness of the key compo-
nents of our proposed GNN layer and model.
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Dataset SHREC11
Split Split 16 Split 10

Evaluation Process NR/NR NR/NR
GWCNN [13] 96.6% 90.3%

MeshCNN [20] 98.6% 91.0%
MeshWalker [24] 98.6% 97.1%
HodgeNet [46] 99.1% 94.6%
SubdivNet [21] 99.9% 99.5%

RIMeshGNN (Ours) 100% 100%

Table 1. Experimental Results for SHREC11 classification.

4.1. Data Preprocessing and Augmentation

Within our framework, it is assumed that all shapes
are represented as water-tight manifold meshes. However,
many 3D shapes found in various datasets are not water-
tight manifolds. As a result, the ManifoldPlus [22] method
is used in a preprocessing stage to convert the triangular
meshes into water-tight manifolds. While our method does
not mandate meshes to have the same number of vertices
or faces, we simplify all meshes to precisely 750 faces to
reduce the computational cost of training. In addition, to
reduce network sensitivity to size, we translate and scale
all 3D meshes to ensure they fit within a unit sphere that is
centered at the origin.

Augmentation. Two distinct methods for data augmen-
tations are utilized: 1) adding varying Gaussian noise to
each vertex of the shape, and 2) randomly displacing ver-
tices to various locations on the surface of the mesh within
a close-to-planar surface region [20]. As our classification
network is rotation invariant, including rotated 3D shapes in
the dataset does not help in network training.

4.2. Classification

We evaluated our proposed graph neural network (GNN)
and aggregation function for mesh classification on two
datasets, namely SHREC11 [30] and ModelNet40 [56], and
conducted three separate experiments to demonstrate the
effectiveness and superiority of our approach. Initially,
the classification network was trained using the original
datasets that contained aligned shapes (No random rota-
tion, NR). The test process was divided into two groups.
In the first experiment, the classification network predicted
category labels for the original datasets with aligned test
samples (NR). In the second experiment, category labels
were predicted by the classification network after applying
an arbitrary rotation transformation to the test data (AR).
This experiment simulated real-world scenarios where the
3D mesh can be represented in any coordinate system, and
the shape orientation is unknown to the network. In the
third experiment, we examined the effect of augmentation
on rotation-sensitive baseline methods. We expanded our

investigation to include training the baseline methods using
augmented data generated through random rotations. The
subsequent evaluation aimed to assign labels to arbitrarily
rotated test samples (AR/AR).

SHREC11. The dataset introduced by Lian et al. [30]
contains 30 different classes, each with 20 samples. Fol-
lowing the setup in [13, 20, 34], we perform training and
evaluation on two types of dataset splits: 1) Split 16: where
the samples of each class are randomly split into 16 train-
ing examples and 4 testing examples, 2) Split 10: where
the samples of each class are randomly split into 10 training
examples and 10 testing examples.

Our method is compared to multiple state-of-the-art deep
learning methods that utilize a mesh representation of 3D
shapes as input. The evaluation results are shown in Ta-
ble 1. Our classification network is rotation invariant and
achieves an outstanding 100% accuracy in the NR/NR eval-
uation setting for both split 16 and split 10. It maintains this
accuracy even when an arbitrary rotation is applied to the
test samples in the NR/AR evaluation setting for both data
splits. Our method outperforms all compared methods on
aligned and unaligned data. The unavailability of the meth-
ods’ code or pre-trained models for the SHREC dataset lim-
ited our ability to perform evaluations of the models within
the NR/AR and AR/AR evaluation settings. The models
GWCNN [13], MeshWalker [24], HodgeNet [46], and Sub-
divNet [21], which utilize xyz and normal feature vectors,
are vulnerable to the impact of rotation. Consequently,
their performance suffers when evaluated on datasets that
include unknown rotation transformations in the NR/AR
assessment framework. In contrast, MeshCNN [20] is ca-
pable of handling random rotation due to its use of solely
rotation- and translation-invariant edge features. Our pro-
posed approach takes advantage of both rotation-sensitive
and rotation-invariant features of nodes and edges.

ModelNet40. The ModelNet40 dataset contains 12,311
shapes categorized into 40 different classes. The dataset
was introduced by Wu et al. [56], with 9,843 models used
for training and 2,488 models for testing. ModelNet40
has become a widely used benchmark for 3D geometric
learning, particularly in tasks related to classification and
retrieval. However, it should be noted that the majority
of the shapes within the dataset are not watertight mani-
folds. To address this issue, we reconstructed the shapes
in ModelNet40, producing manilfold meshes using Mani-
foldPlus [22] and then simplifying them to 750 faces using
Garland’s method [15]. We refer to this modified dataset as
Manifold40. Due to reconstruction errors and simplification
distortions, Manilfold40 meshes present a more challeng-
ing classification task, resulting in slightly lower accuracies
compared to the results from ModelNet40 meshes.

We compare our model to several state-of-the-art deep
learning techniques that employ triangular mesh representa-
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Dataset Manifold40** (ModelNet40) # Parameters
Evaluation Setting NR/NR † NR/AR AR/AR Input

MeshNet [14] 88.4% (91.9%) 10.8% (11.0%) 81.1% Mesh 4.2 M
MeshWalker [24] 90.5% (92.3%) 11.2% (11.4%) - - Mesh 12.6 M
SubdivNet [21] 91.2% 10.2% 87.0% Mesh 0.8 M

Laplacian2Mesh [12] 90.9% - - Mesh -
RIMeshGNN (Ours) 90.7% 90.7% 90.7% Mesh 0.9 M
MeshWalker* [24] (94.4%) (13.4%) - - Mesh 12.6 M

Laplacian2Mesh* [12] 92.8% - - Mesh -
RIMeshGNN* (Ours*) 93.4% 93.4% 93.4% Mesh 0.9 M

DynamicGCN [54] 93.5% 16.6% 81.1% point cloud -
DeltaConv [55] 93.8% 15.6% - - point cloud -
ClusterNet [8] 87.1% 87.1% 87.1% point cloud -

Pose-Selector [28] 90.2% 90.2% 90.2% point cloud -
VN-DGCN [10] 90.0% 90.0% 90.0% point cloud -

Table 2. Experimental Results on Manifold40 (ModelNet40) Classification. The dash (-) indicates that the corresponding method’s code
is unavailable, preventing the evaluation of the model under the NR/AR and AR/AR settings and further examination of the network
architecture. - - denotes our inability to train the data with rotation augmentation due to the substantial computational demands of training
or data preprocessing. The accuracy of models that can handle non-watertight and non-manifold 3D shapes from the ModelNet40 dataset
is denoted by values in parentheses. * The reported accuracy excludes five cross-labeled classes (desk/table and plant/flower-pot/vase).
†The accuracy values for models utilizing mesh input on the Manifold40 dataset are reported from [12, 21] .

tions of 3D objects. Table 2 shows that our method achieves
comparable results to prior work in the NR/NR evaluation
scenario, where both the training and testing are performed
on aligned dataset samples. Our approach, in particular,
reaches a classification accuracy of 90.7%. In our analysis,
we identified some categories with cross-labeling issues,
such as desk/table and plant/flowerpot/vase, which contain a
notable number of cross-labeled samples. Following the ap-
proach of MeshWalker [24] and Laplacian2Mesh [12], we
excluded the models of these five categories. As a result,
our classification accuracy reached 93.4%, a result that falls
between the accuracy of Laplacian2Mesh and MeshWalker.
In NR/AR setup, we maintain the classification accuracy
of 90.7% on the randomly rotated full test set and signifi-
cantly outperform all compared methods. The accuracy of
RIMeshGNN also remains at 93.4% for the reduced dataset
in the NR/AR setup. In contrast, the majority of other deep
learning approaches that incorporate Euclidean coordinates
and normal vectors struggle to generalize to unfamiliar ori-
entations, resulting in a significant decline in performance
when assessed in the NR/AR evaluation setting. It could be
argued that rotation augmentation might enhance the perfor-
mance of rotation-sensitive models [14,18,21,24,42,54,55];
however, this requires training with extensive data augmen-
tation, substantially more complex analysis models, and in-
creased computation resources, while our proposed method
does not require any rotation augmentation. Furthermore,
our method achieves comparable accuracy in the NR/NR
evaluation setup, and also maintains consistent accuracy in
the NR/AR and AR/AR configuration, where other models

struggle, all while using significantly fewer learnable pa-
rameters.

Furthermore, we compare our approach with state-of-
the-art deep learning methods that utilize point cloud rep-
resentation for 3D objects. While rotation-sensitive meth-
ods [42, 54, 55] experience a substantial accuracy drop in
NR/AR setting, Clusternet [8], VN-DGCN [10] and Pos-
eSelector [28] achieve rotation-invariant classification. No-
tably, the accuracy of PoseSelector [28] decreases in classi-
fication tasks involving datasets with non-symmetrical ob-
jects, where intra-class shapes do not share similar struc-
tures. However, our proposed method consistently achieves
state-of-the-art performance in accuracy.

5. Conclusions
In this paper, we present a novel representation learn-

ing model, RIMeshGNN, to address the challenge of rota-
tion invariance in shape analysis tasks. Our approach con-
sists of a E(3) equivariant GNN layer, aggregation func-
tion, and local pooling layer, which together form the basis
of our proposed rotation-invariant network for mesh model
classification. The method enables the analysis of mesh-
structured data while maintaining accuracy even when test
samples experience arbitrary rotations, without requiring
extensive training on rotation-augmented dataset. Compre-
hensive tests on various datasets demonstrate that our ap-
proach achieves state-of-the-art performance. Additionally,
the proposed representation learning framework, can and
will be adapted for other mesh analysis tasks, such as mesh
segmentation and retrieval.
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