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Abstract

Automated axon tracing via fully supervised learning re-
quires large amounts of 3D brain imagery, which is time
consuming and laborious to obtain. It also requires exper-
tise. Thus, there is a need for more efficient segmentation
and centerline detection techniques to use in conjunction
with automated annotation tools. Topology-preserving meth-
ods ensure that segmented components maintain geometric
connectivity, which is especially meaningful for applica-
tions where volumetric data is used, and these methods of-
ten make use of morphological thinning algorithms as the
thinned outputs can be useful for both segmentation and
centerline detection of curvilinear structures. Current mor-
phological thinning approaches used in conjunction with
topology-preserving methods are prone to over-thinning and
require manual configuration of hyperparameters.

We propose an automated approach for morphological
smoothing using geometric assessment of the radius of tubu-
lar structures in brain microscopy volumes, and apply av-
erage pooling to prevent over-thinning. We use this ap-
proach to formulate a loss function, which we call Geo-
metric Assessment-driven Topological Smoothing loss, or
GATS. Our approach increased segmentation and center-
line detection evaluation metrics by 2%-5% across multiple
datasets, and improved the Betti error rates by 9%. Our
ablation study showed that geometric assessment of tubular
structures achieved higher segmentation and centerline de-
tection scores, and using average pooling for morphological
smoothing in place of thinning algorithms reduced the Betti
errors. We observed increased topological preservation dur-
ing automated annotation of 3D axons volumes from models
trained with GATS.

*©2023 Massachusetts Institute of Technology

1. Introduction

Curvilinear structures are line-like objects with differ-
ences in pixel intensities relative to neighboring pixels [1];
a line is a 1-dimensional manifold, though a curvilinear
structure may not necessarily be 1-dimensional [11]. Curvi-
linear structure segmentation is segmenting binary masks of
curvilinear structures [1]. Methods that ensure maximizing
geometric connectivity of segmented curvilinear structures
are said to be topology-preserving [2,5,25], and are used for
performing topologically accurate segmentation. A variety
of domains and applications require topologically accurate
segmentation: 3D axon tracing and centerline detection [19],
retinal vessel segmentation [27], and airway tree reconstruc-
tion [4, 34], to name a few.

Skeletonization-based approaches for curvilinear struc-
ture segmentation are useful for both segmentation and cen-
terline detection [2, 25]. Morphological thinning algorithms
for volumetric data have previously utilized neighborhood
lookup tables [20] or directional sub-iteration [33], but such
algorithms can be computationally expensive [17, 29]. The
centerline Dice (clDice) loss function is an example of a
topology-preserving method that has shown to be perfor-
mant for curvilinear structure segmentation and centerline
detection, especially with respect to model training time,
through a process called soft-skeletonization [25]. How-
ever, parameterizing soft-skeletonization is currently done
via educated guesswork [19, 23, 25].

This paper presents a novel approach to determine the
number of iterations to perform thinning or smoothing oper-
ations using the mean pixel radius of axon segments from N
random slices of volumetric data. We use this method to auto-
matically parameterize morphological thinning or smoothing
algorithms. Moreover, we observed that certain affine ro-
tation transformations would degrade the performance of
models which utilized skeletonization, and so we modified
our approach to use morphological smoothing via average
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pooling operations instead of using morphological thinning
via min-, max- pooling. We show that our approach, Geo-
metric Assessment-driven Topological Smoothing (GATS),
increased segmentation and centerline detection metrics by
2% − 5% across multiple datasets with 3D axon imagery.
Moreover, topology-preserving methods can be used for
automated annotation of unannotated volumes of brain im-
agery [10, 19]. The present work shows an application of
GATS for automated annotation of 3D brain imagery. As
far as we know, our work is the first to present a topology-
preserving morphological smoothing approach for curvilin-
ear structure segmentation and centerline detection in 3D
brain imagery. Therefore, the contributions of this work are
as follow:

1. a morphological smoothing method for curvilinear
structures using the mean pixel radius of tubular struc-
tures across N random slices from a volumetric input
and average pooling operations.

2. automated annotation of axon segments in 3D brain im-
agery using our approach, which prevents over-thinning
of axons and thus promotes topological preservation in
automatically annotated volumes.

2. Related Literature
2.1. Topology-Preserving Losses for Curvilinear

Structure Segmentation

Presently the literature for curvilinear structure segmen-
tation and centerline detection focuses on thinning algo-
rithms, so we compare our approach to thinning and non-
thinning methods. However, morphological smoothing has
been utilized for 3D images [17], and biomedical images
previously [14, 28, 32]. Our research aims to maximize
topology-preservation of segmented axons from 3D volumes
as axons can present with various lengths and a single axon
can span across an entire input volume. Moreover, as we
are interested in automated annotation of unannotated brain
imagery, we seek a method that can precisely and accurately
detect an axon’s centerline.

2.1.1 Centerline Dice (clDice)

clDice was developed to measure the topology-preservation
of tubular or curvilinear structure segmentation because other
measures of segmentation quality, e.g. Dice, would report
the same segmentation quality for models with compara-
bly different performance for segmenting an input volume
with both small/fine and large/coarse tubular structures [25],
i.e., the degree of a model’s segmentation quality was not
reflected in the scoring metric. The clDice metric reflects
the degree of topology preserved following segmentation
by comparing the intersection of masks and skeletons using

Algorithm 1 Soft Skeletonization

1: procedure SKEL(I, k) ▷ k is set manually
2: I ′ ← maxpool(minpool(I))
3: S ← ReLU(I − I ′)
4: for i to k do
5: I ← minpool(I)
6: I ′ ← maxpool(minpool(I))
7: Delta← ReLU(I − I ′)
8: S ← S +ReLU(Delta− S ◦Delta)
9: end for

10: return S
11: end procedure

measures of topological precision (Eq. 1) and topological
sensitivity (Eq. 2), where the harmonic mean of Eq. 1 and
Eq. 2 results in a clDice score (Eq. 3); a higher score indi-
cates a higher degree of structural connectivity. SP is the
predicted skeleton, and VL is the ground truth volume; simi-
larly, SL is the ground truth skeleton, and VP is the predicted
segmentation mask. The process of computing clDice is an
algorithm called soft-clDice.

Tprec(SP , VL) =
|SP ∩ VL|
|SP |

(1)

Tsens(SL, VP ) =
|SL ∩ VP |
|SL|

(2)

Skeletonization is the process of iteratively removing
foreground pixels in a binary image till a construct remains
that maintains the extent and connectivity of the original
object [3]. The soft skeletonization algorithm (Algorithm 1),
which produces the skeletons used to compute topological
precision and topological sensitivity, performs morphologi-
cal thinning of a curvilinear structure by applying iterative
min- and max- pooling using a data-dependent hyperparam-
eter k. The clDice paper (2021) notes that the k hyperpa-
rameter must be greater than the pixel radius of the largest
observed tubular structure in a given dataset.

clDice(VP , VL) = 2× Tprec(SP , VL)× Tsens(SL, VP )

Tprec(SP , VL) + Tsens(SL, VP )
(3)

Soft-skeletonization, via soft-clDice, produces a differ-
entiable result that can be used for neural network training,
which is important because usually morphological thinning
is a discrete operation and produces a non-differentiable
result [25, 34]. clDice provides a balance for preserving
topology while learning segmentation of curvilinear struc-
tures by setting α ∈ [0, 0.5]; an α greater than 0.5 may favor
learning skeleta [25]. The clDice method relies on extract-
ing accurate skeletons, and as such the performance of the
method depends on hyperparameter tuning for an optimal
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k value for a given dataset, which if done manually can be
onerous and likely to find a suboptimal solution [24]. Addi-
tionally, the iterative process of min- and max- pooling used
during soft skeletonization may result in loss of features that
are critical to the topology of the structure.

2.1.2 Homotopy Warping

The homotopic warping algorithm functions on the principle
that given two binary masks with the same topology, one
mask can be warped into the other mask by sequential flip-
ping of simple points [5]. The connectivity of a pixel p on
a 2D binary image, or a voxel v on a 3D binary volume,
is defined by its neighboring pixels/voxels. The homotopy
warping algorithm identifies topological critical points on a
given binary mask (e.g., segmentation prediction) by warp-
ing it into another given binary mask (e.g., segmentation
ground truth), and a resultant mask with the topological
critical pixels, i.e., non-simple points, is used to compute a
homotopy warping error-based loss where the critical pix-
els denote topological errors in warping one mask to the
other. A distance transform is proposed by Hu [5] for opti-
mal pixel flipping, and thus identification of critical pixels.
Compared to clDice, the homotopic warping algorithm does
not appear to increase Dice or adjusted Rand Index (ARI)
scores as much as would be desired given the increase in
training time [5]. However, the distance-ordered homotopy
warping method can be used outside of the context of the
homotopic warping loss function, and as such is useful as
a generalizable method for identification of topologically
critical points.

3. Proposed Method
3.1. Morphological Smoothing using Mean Pixel

Radius and Average Pooling

As mentioned our research aim is to minimize a topology-
preserving loss to precisely and accurately segment axons
from 3D brain imagery, and find the centerlines of their
curvilinear structures for automated annotation. As such
we decided to formulate a loss function for this study. Our
proposed method automatically determines the number of it-
erations required for a smoothing algorithm using geometric
assessment of input data. The goal is to prevent over-thinning
and loss of fine/small curvilinear structure features.

3.1.1 Mean Pixel Radius for N Random Slices

A tubular structure can be represented by its boundaries
and the cross-sectional radius of each point in its skele-
ton [4, 9, 31], and so the maximum radius is the greatest
distance from the medial axis of a skeleton point. For soft-
skeletonization, using a k parameter smaller than the largest
pixel radius of a tubular structure in a dataset may result in

incomplete thinning [25]. We propose that for morphologi-
cal approaches that rely on knowing the pixel radii of tubular
structures in a given volumetric input, we may necessarily
only need to know the maximum radius in a volumetric input
with multiple tubular structures of varying cross-sectional
radii. The maximum pixel radii of tubular structures from N
random slices of a given volumetric input can be averaged,
and the result from that computation can be used as the num-
ber of iterations required to perform erosion and dilation
operations for a thinning or smoothing algorithm.

Algorithm 2 Mean Pixel Radius

1: procedure MPR(I) ▷ I is a 3D, 4D, or 5D input
2: d← 0
3: s← Slice(I)
4: for slice in s do
5: c← Canny(slice)
6: Dist←MedialAxis(c)
7: MaxDist← max(Dist)
8: d← d+ (2×MaxDist)
9: end for

10: return int(2× ( d
len(s) )) ▷ of N random slices

11: end procedure

Algorithm 3 Topological Smoothing

1: procedure TS(I, k) ▷ k is predetermined using MPR
2: I ′ ← avepool(avepool(I))
3: S ← ReLU(I − I ′)
4: for i to k do
5: I ← avepool(I)
6: I ′ ← avepool(avepool(I))
7: Delta← ReLU(I − I ′)
8: S ← S +ReLU(Delta− S ◦Delta)
9: end for

10: return S
11: end procedure

Given a binary image I, let d be the mean pixel radius, ini-
tialized as zero. The Slice function reshapes the 3D input and
chooses without replacement, N random slices, forming the
resultant list of 2D inputs, s. The boundary of tubular struc-
tures is determined using a Canny edge detector to enable
computing the medial axis of the structure, and the distance
to the edge boundary from the medial axis is returned by the
MedialAxis function from scikit-image. We experimentally
found that returning twice the maximum distance and twice
the mean pixel radius was more robust with our random
sampling approach. Thus, the MPR method, Algorithm 2,
returns a geometrically determined integer for estimating the
iterations of thinning or smoothing for a given volumetric in-
put with varying cross-sectional widths of tubular structures.
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3.1.2 Topological Smoothing

Some skeletonization algorithms produce constructs that
are sensitive to rotations due to directional bias [26, 31, 33],
so we decided not to use a skeletonization approach for
topology-preservation. Some of our initial experiments show
that soft-skeletonization appears sensitive to data-dependant
rotation transformations, likely due to increased morpholog-
ical thinning at some rotations relative to others. We include
these initial experiments in the Supplementary Material, but
they form the basis for why we chose to use morphological
smoothing. Following the logic of soft-skeletonization, we
instead apply average pooling operations to the intermediate
constructs of the algorithm, where we aim to induce topo-
logical smoothing by iteratively subtracting a more open
construct from a less open construct; see line 7 in seen in
Algorithm 3. Using this method, we aim to produce an out-
put that is less prone to over-thinning. For Algorithm 3, k
is the number of iterations to perform the smoothing algo-
rithm. We evaluate our approach on its ability to maintain
geometrical connectivity as measured by metrics indicating
topological preservation.

3.2. Loss Function Formulations

Similarly to clDice, we use the harmonic mean of the
overlap of the masks and smoothed outputs,

GATS(VP , VL) = 2× Tprec(TP , VL)× Tsens(TL, VP )

Tprec(TP , VL) + Tsens(TL, VP )
(4)

where TP is the predicted smoothed output, and VL is
the ground truth volume; similarly, TL is the ground truth
smoothed output, and VP is the predicted segmentation mask.
We believe that the overlap of smoothed output and ground
truth still gives a relative measure of topological precision
and topological sensitivity. We used the objective function in
Eq. 5 for training models with GATS, where α was fixed at
0.5. We formulated variants of the GATS loss function to sys-
tematically determine the effect of each component: 1) the
MPR algorithm, 2) the smoothing algorithm, and 3) GATS.
We reasoned that if we use the MPR algorithm with min-,
max- pooling we can still achieve soft skeletonization of the
inputs, and so we compared using the MPR method with
both min-, max- pooling which enables soft skeletonization
(GASK), and average pooling (GATS). We did an ablation
study using our different loss functions.

LG = (1− α)(1−Dice) + α(1−GATS) (5)

Figure 1. Morphological thinning progress on DS2. The best
performing models on DS2 are compared. Iterations of soft-
skeletonization (GASK) or topological smoothing (GATS), which
are automatically determined by MPR while manually set for
clDice, are both three. Therefore, three steps of skeletoniza-
tion/smoothing are shown. The difference histogram between the
input and Step 2 shows difference in pixel intensities, where the
smoothed output difference results in intensities centered around
lower ranges, indicating that the input and Step 2 output are closer
in pixel intensities. This is expected for a smoothing operation.
SCA: spatial and channel attention. GT: ground truth.

4. Experimental Methodology
4.1. Datasets

As we are interested in automated annotation of unanno-
tated volumes of axons, we conducted our experiments using
3D brain imagery data.

4.1.1 Dataset 1

Dataset 1 (DS1) is a light sheet microscopy dataset of
3X expanded mouse brain tissue, where a stain was used
to target Parvalbumin positive neurons from the globus
pallidus externus (PVGPe). The CLARITY method was
used to stabilize the tissue with clear hydrogels, preserving
biomolecules and enabling removal of lipids, which makes
the unstained portions of sample optically transparent [12].
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Table 1. Mean and standard deviation evaluated on the test set of Dataset 1 (DS1) and Dataset 2 (DS2) across 10 trials. For clDice:
α = 0.65, k = 3, GASK and GATS both use MPR, for which N=10, GASK uses soft-skeletonization, GATS uses topological
smoothing (TS). For TS: k=5 for DS1, k=3 for DS2.

Dataset Attention Model Dice ↑ clDice ↑ ρ-Dice ↑ Adj. Rand ↑ β0 Error ↓ β1 Error ↓

clDice 0.793 ± 0.007 0.744 ± 0.022 0.737 ± 0.017 0.584 ± 0.014 0.348 ± 0.018 0.066 ± 0.008
DS1 None GASK 0.790 ± 0.008 0.710 ± 0.029 0.725 ± 0.038 0.580 ± 0.017 0.291 ± 0.033 0.035 ± 0.011

GATS 0.800 ± 0.007 0.757 ± 0.016 0.761 ± 0.013 0.598 ± 0.014 0.316 ± 0.019 0.061 ± 0.008
clDice 0.801 ± 0.011 0.761 ± 0.026 0.759 ± 0.025 0.600 ± 0.022 0.334 ± 0.016 0.074 ± 0.014

SCA GASK 0.790 ± 0.012 0.701 ± 0.027 0.718 ± 0.031 0.579 ± 0.024 0.270 ± 0.039 0.074 ± 0.013
GATS 0.819 ± 0.006 0.799 ± 0.012 0.798 ± 0.009 0.636 ± 0.011 0.314 ± 0.022 0.060 ± 0.007
clDice 0.788 ± 0.014 0.689 ± 0.027 0.775 ± 0.029 0.576 ± 0.027 0.127 ± 0.031 0.151 ± 0.017

DS2 None GASK 0.698 ± 0.018 0.741 ± 0.013 0.804 ± 0.011 0.395 ± 0.036 0.024 ± 0.009 0.370 ± 0.017
GATS 0.803 ± 0.007 0.715 ± 0.016 0.806 ± 0.016 0.605 ± 0.014 0.047 ± 0.010 0.096 ± 0.014
clDice 0.725 ± 0.008 0.746 ± 0.008 0.799 ± 0.007 0.450 ± 0.016 0.091 ± 0.023 0.367 ± 0.016

SCA GASK 0.691 ± 0.019 0.738 ± 0.025 0.796 ± 0.023 0.381 ± 0.038 0.021 ± 0.004 0.374 ± 0.008
GATS 0.787 ± 0.011 0.682 ± 0.021 0.772 ± 0.024 0.573 ± 0.021 0.050 ± 0.012 0.104 ± 0.021

Table 2. Slicing experiments for MPR (Algorithm 2). Mean and Standard Deviation of Evaluation Metrics for Differently Sliced
Variants of GATS on the Test Set of Dataset 1 and Dataset 2 across 10 trials, For clDice: α = 0.65, k = 3. For TS: k=5 for DS1, k=3
for DS2. Time indicates average minutes for a single trial (n=10).

Dataset Model Dice ↑ clDice ↑ ρ-Dice ↑ Adj. Rand ↑ β0 Error ↓ β1 Error ↓ Time ↓

DS1 clDice 0.793 ± 0.007 0.744 ± 0.022 0.737 ± 0.017 0.584 ± 0.014 0.348 ± 0.018 0.066 ± 0.008 26.627 ± 7.676
GATS N=2 0.803 ± 0.006 0.756 ± 0.014 0.762 ± 0.015 0.605 ± 0.012 0.339 ± 0.010 0.066 ± 0.003 38.507 ± 11.088
GATS N=3 0.803 ± 0.007 0.761 ± 0.014 0.767 ± 0.015 0.605 ± 0.013 0.321 ± 0.021 0.058 ± 0.007 46.307 ± 13.314
GATS N=4 0.808 ± 0.004 0.773 ± 0.009 0.778 ± 0.010 0.615 ± 0.008 0.334 ± 0.024 0.061 ± 0.006 38.398 ± 11.050
GATS N=5 0.803 ± 0.006 0.765 ± 0.014 0.768 ± 0.017 0.604 ± 0.012 0.331 ± 0.017 0.066 ± 0.009 42.945 ± 12.348

DS2 clDice 0.788 ± 0.014 0.689 ± 0.027 0.775 ± 0.030 0.576 ± 0.027 0.127 ± 0.031 0.151 ± 0.017 30.723 ± 8.845
GATS N=2 0.795 ± 0.007 0.700 ± 0.016 0.789 ± 0.015 0.589 ± 0.016 0.045 ± 0.010 0.094 ± 0.012 34.483 ± 9.939
GATS N=3 0.796 ± 0.006 0.701 ± 0.015 0.793 ± 0.013 0.591 ± 0.011 0.052 ± 0.009 0.102 ± 0.012 35.299 ± 10.168
GATS N=4 0.800 ± 0.008 0.710 ± 0.021 0.801 ± 0.020 0.599 ± 0.016 0.049 ± 0.009 0.101 ± 0.015 36.480 ± 10.512
GATS N=5 0.800 ± 0.006 0.709 ± 0.014 0.800 ± 0.013 0.599 ± 0.013 0.051 ± 0.005 0.106 ± 0.009 34.787 ± 10.018

Table 3. Ablation study mean and standard deviation evaluated on the test set of Dataset 1 (DS1) and Dataset 2 (DS2) across 10 trials.
MPR is Mean Pixel Radius, Smooth is Topological Smoothing, Soft Skel is soft-skeletonization

Ablated Dataset Model Dice ↑ clDice ↑ ρ-Dice ↑ Adj. Rand ↑ β0 Error ↓ β1 Error ↓

MPR
DS1

Soft Skel (k=5) 0.794 ± 0.010 0.707 ± 0.023 0.718 ± 0.031 0.586 ± 0.020 0.253 ± 0.058 0.070 ± 0.015
Smooth (k=5) 0.810 ± 0.009 0.782 ± 0.017 0.781 ± 0.015 0.618 ± 0.018 0.326 ± 0.036 0.065 ± 0.010

DS2
Soft Skel (k=5) 0.749 ± 0.008 0.715 ± 0.019 0.801 ± 0.006 0.497 ± 0.017 0.095 ± 0.038 0.303 ± 0.020
Smooth (k=5) 0.801 ± 0.010 0.710 ± 0.019 0.794 ± 0.018 0.601 ± 0.019 0.053 ± 0.010 0.102 ± 0.019

Smooth
DS1

No Attn 0.804 ± 0.007 0.756 ± 0.012 0.768 ± 0.015 0.607 ± 0.014 0.262 ± 0.066 0.057 ± 0.016
SCA 0.798 ± 0.032 0.734 ± 0.089 0.740 ± 0.090 0.594 ± 0.064 0.187 ± 0.074 0.046 ± 0.016

DS2
No Attn 0.812 ± 0.001 0.735 ± 0.001 0.826 ± 0.001 0.623 ± 0.001 0.083 ± 0.005 0.151 ± 0.004

SCA 0.792 ± 0.060 0.695 ± 0.012 0.785 ± 0.014 0.584 ± 0.012 0.095 ± 0.009 0.147 ± 0.008

GATS DS1 Dice 0.805 ± 0.011 0.763 ± 0.038 0.769 ± 0.038 0.609 ± 0.023 0.196 ± 0.066 0.048 ± 0.020
DS2 Dice 0.776 ± 0.002 0.663 ± 0.003 0.751 ± 0.004 0.551 ± 0.003 0.076 ± 0.011 0.119 ± 0.008

The PVGPe volume in its entirety is 2048×2048×1271 vox-
els, and has a voxel resolution of 0.6×0.6×2 µm, where
only a 256×256×206 voxel (148×148×412 µm) subvolume
was manually annotated [19]. Model training was done on

128×128×64 sized voxel samples using a contiguous sub-
divided volumes of DS1 in a 50:25:25 training, test and
validation split.
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Table 4. Betti error mean and standard deviation evaluated
on the test set of Janelia across 10 trials. All models use SCA
attention. For clDice: α = 0.65, k = 3. For Smooth Dice and
GATS: N=4.

Architecture Model β0 Error ↓ β1 Error ↓

3DResSE UNet

clDice 0.614 ± 0.159 0.047 ± 0.005
Warping 0.716 ± 0.003 0.049 ± 0.001

Dice 0.685 ± 0.005 0.052 ± 0.002
Smooth Dice 0.709 ± 0.178 0.048 ± 0.013

GATS 0.200 ± 0.002 0.036 ± 0.003

Cascading 3D UNet

clDice 0.641 ± 0.004 0.050 ± 0.001
Warping 0.600 ± 0.001 0.049 ± 0.001

Dice 0.700 ± 0.012 0.050 ± 0.006
Smooth Dice 0.394 ± 0.177 0.052 ± 0.001

GATS 0.631 ± 0.001 0.051 ± 0.001

4.1.2 Dataset 2

Dataset 2 (DS2) consists of 20X magnified samples from
the mouse thalamus which were labeled via cortical injec-
tion with recombinant adeno-associated virus expressing
tdTomato (red) and synaptophysin (green). Imagery was
then acquired using a Leica confocal microscope. The td-
Tomato channel was converted to grayscale for use in this
paper. The cross-section of this data volume is 581.250
µm2, thickness is 35 µm, lateral pixel resolution is 0.142
µm2, and axial resolution is 0.69 µm. The full DS2 volume
is 4096×4096×52 voxels. The training, testing, and valida-
tion volumes were split in the same ratios as those for DS1,
except the voxel size samples were 128×128×32 for model
training.

4.1.3 Janelia

We also conducted experiments using the Janelia dataset
from the BigNeuron Project [18], which consists of optical
microscopy data of single neurons from the adult Drosophila
nervous system. Janelia has 42 volumes of data, and so we
allocated 30 volumes for training, six for validation and six
for testing. We ended up using only one volume for testing
in case more training data was needed. All volumes were
scaled between zero and one using min-max normalization
and we used crop size of 128×128×32 for model training.

4.2. Model Implementation and Training

Our experiments on DS1 and DS2 consisted of training a
Residual 3D UNet with four resolution blocks using one of
our formulated loss functions and comparing performance
against clDice [25]. Our experiments on Janelia consisted of
using a Residual 3D UNet with squeeze and excitation blocks
(3DResSE UNet), and a Cascading 3D UNet as previously
described [19] with four and three resolution blocks for the
voxel-wise segmentation head and centerline detection head,

respectively. The Cascading 3D UNet used a multi-input
loss formulated as:

LM = (1− α)(1− segloss) + α(1− clloss) (6)

where α=0.8, and seg loss (segmentation loss) was the
chosen loss function for the voxel-wise segmentation task,
and cl loss (centerline loss) was the chosen loss function
for the centerline prediction task. We also compared per-
formance on the Janelia dataset against Warping loss [5].
Warping loss supersedes both TopoNet loss [6] and DMT
loss [7], and so we only tested against Warping loss. We tried
GATS with N=2, 3, 4, 5, or 10 while profiling the average
training time required for the 10 trials. Optimal hyperparam-
eters for clDice were determined experimentally by testing
α=0.5 or 0.65, and k=3 or 8. All our models were trained
using an Intel Xeon G6 node (40 cores) with 2 NVIDIA
Volta V100 GPUs of 337 GiB memory.

We used a PyTorch framework for data processing, al-
gorithm development and model training. All data used
were pre-processed by clipping the highest and lowest 0.01%
of values, applying a median filter, and scaling between
0 and 1. Besides using data augmentation during training
and inference as previously described in [19], we used a
series of affine rotation transformations that were particular
for each dataset. Each experiment was repeated 10 times
using a model with or without 3D spatial and channel at-
tention (SCA) [8]. We tried efficient channel attention [30]
and triplet attention [16] as well (Supplementary Material),
but found that evaluation metrics were lower than those for
models trained on SCA, so only SCA results are reported.

The 3D U-Net implementation consisted of a 3×3×3 con-
volution layer followed by group normalization and acti-
vation using exponential linear units. Strided 2×2×2 max-
pooling and strided transpose convolutions with max pooling
were used for downsampling and upsampling, respectively.
An ADAM optimizer coupled with cosine annealing was
used, with an initial learning rate of 1×10−4 and weight de-
cay of 1×10−3. Each trial consisted of randomly cropped
and augmented samples from the input data in mini batches
of 16 samples. The segmentation output from each model
was skeletonized using a 3D-skeletonization algorithm to
acquire single voxel wide centerlines. Models were evalu-
ated using the Dice coefficient for voxel-wise similarity [35],
the clDice metric [25] and Betti number errors for topology
preservation [22], ρ-Dice coefficient for centerline detec-
tion accuracy [19], and the adjusted Rand Index (ARI) for
ground truth and predicted clusterings equivalence [21]. The
Betti numbers β0 and β1 measure the number of distinct
connected components and circular holes, respectively [25].
All tables bold the best metric in each category.
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Figure 2. Comparison of 3D Axon Projections for DS1. The
segmentation results (top) are contrasted with the centerline detec-
tion results (bottom), with automated annotation of a 3D volume
(right). For centerline detection results, true positives (green), false
negatives (blue), and false positives (red) are shown. The red label
for false positive does not apply to the automated annotation results.
The white arrows show differences in axonal connectivity across
models.

5. Results
5.1. Axon Segmentation and Centerline Detection

We compared GATS against two topology-preserving
losses, one which uses skeletonization (clDice) and one
which does not (Warping). The performance of Warping
loss was only compared for the Janelia dataset as even after
24 hours Warping loss does not finish training three of 10
trials on DS1 or DS2, which does not make a reasonable
comparison for either clDice or our method.

For results in Table 1, MPR algorithmically determined
its own number of iterations to perform either soft skele-
tonization (GASK) or topological smoothing (GATS). A
comparison of thinning or smoothing outputs is shown (Fig-
ure 1). MPR (Algorithm 2) determined k=5 for DS1 and
k=3 for DS2. For DS1 we found that when the number
of iterations used to perform skeletonization are acquired
via the MPR method, the model performance drops unless
topological smoothing is performed (GATS), as seen in Ta-
ble 1 and Figure 2, indicating the need for morphological
smoothing for topological preservation. The GASK models
perform poorer on DS1 because MPR determined k=5 leads
to over-thinning with a method like soft-skeletonization, but
not with the topological smoothing method. For DS2 GASK
without attention is comparable in performance to clDice
with manually selected hyperparameters, indicating the ef-
ficacy of using geometric assessment for determining the
optimal number of iterations for morphological thinning (see
Figure 3 for a visual comparison). On DS2 the GATS model

performs better for all metrics except the centerline detection
metric (clDice) than the model trained on the clDice loss
as alpha is affixed to 0.5 for GASK/GATS models. This
shows the sensitivity of alpha and k parameter choices for
segmentation and centerline detection. Ideally, hyperparame-
ter tuning can be data driven and not manually optimized, as
GASK/GATS aims to do. The MPR algorithm can select any
N random slices (without replacement) from a given input
volume, and the training time of N = 2, 3, 4, 5 and 10 was
compared. We found that when N=10, the mean training
time for 10 trials with GATS was double that of the mean
training time of trials with clDice (5.2h vs. 10h). However,
choosing N=4 seemed sufficient for each dataset, though
slower by 1h for DS2 and 2h for DS1 (Table 2); this is most
likely due to the use of the Canny detector for boundary
determination. Based on our evaluation, it would appear that
adding an attention mechanism is useful for datasets with
lower voxel resolution like DS1.

5.2. Ablation Study

We carried out an ablation study by systematically remov-
ing one of three components from GATS in three separate
trials using models without attention unless indicated other-
wise. The first trial consisted of removing MPR and manually
setting k=5 as it was previously determined by MPR as the
optimal number of iterations for topological smoothing for
DS1 but not DS2. The second trial consists of removing
the average pooling-based morphological thinning and using
a general thinning algorithm from Scikit Image to perform
morphological thinning while using MPR to determine the
number of iterations to perform. The third trial consisted
of removing GATS and using a Dice loss. For DS1, GASK
without attention is comparable to MPR-ablated Soft Skel
(k=5), where k=5 was the number of iterations previously
determined by MPR as optimal for DS1. GATS without
attention has a worse evaluation metrics than MPR-ablated
Smooth(k=5), though the latter has worse Betti error rates,
which is unexpected but maybe likely due to the random
sampling approach for MPR which gave an incorrect as-
sessment for at least one of the ten trials used to compute
the average for GATS without attention. However, given
that MPR-ablated k=5 model with topological smoothing
(Smooth, k=5) on DS1 performs better than clDice without
attention (0.782 vs. 0.744), there is merit to finding the
number of iterations required for a thinning or smoothing
algorithm as trials in Table 1 use k=3 for DS1. On DS2
the MPR-ablated model (k=5) with topological smoothing
performs marginally worse than its GATS counterpart with-
out attention (Table 1, row 9 vs. Table 3, row 4). The
same holds for the MPR-ablated soft-skeletonization model
without attention, though its Dice, ARI and Betti 1 scores
are marginally better for the MPR ablated version. The at-
tention model for DS1 without topological smoothing but
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with a general thinning algorithm for skeletonization has a
worse centerline line detection metric (clDice) versus GATS
with attention (0.735 vs. 0.799), indicating that for DS1
the average-pooling based topological smoothing was ef-
fective for preserving topological connectivity. However
the smoothing-ablated model has marginally less Betti er-
rors relative to both clDice and GATS, indicating the need
to explore different approaches for morphological thinning
or smoothing. For DS2, removing attention, topological
smoothing and using a general thinning algorithm results in
a more performant model (Table 1, row 9 vs. Table 3, row 7)
relative to the dice metrics used for comparison. This indi-
cates that for inputs with higher voxel resolution topological
smoothing might be deleterious, while these inputs may still
benefit from topological skeletonization (Table 1, row 8 vs.
Table 3, row 7).

5.3. Comparing Topology-Preservation on Janelia

For automated annotation of unannotated brain imagery,
a simpler solution may be to improve curvilinear structure
segmentation using a topology preserving loss without any
multitasking for centerline detection. We compared the per-
formance of topology-preserving losses via their Betti errors
on two architectures: 1) 3DResSE UNet, and 2) a multi-
headed Cascading 3D UNet as described earlier [19]. MPR
determined k=3 for Janelia. In Table 4, Smooth Dice was
given inputs that were passed through topological smoothing.
Based on the best scores for the models trained on the loss
functions we compared, we find that topological smoothing
reduces Betti error rates for the Janelia dataset.

5.4. Automated Annotation of Unannotated Brain
Imagery

To visualize automatic annotation of unannotated 3D
brain imagery, we used NeuroTrALE [15], a variant of Neu-
roglancer, which is a WebGL-based viewer for volumetric
data. We used the best performing clDice or GASK/GATS
trained model according to the clDice metric on DS1 and
DS2. As mentioned, Warping loss does not finish training
even three of 10 trials on DS1 or DS2 in 24 hours, and so
was not used as a comparison on these datasets. Models
trained on our method produce longer and less disconnected
axons, as seen in Figure 2 for DS1 and Figure 3 for DS2.
For the centerline detection results in Figures 2 and 3, green
indicates true positive, blue indicates false negative and red
indicates false positive for model predictions relative to the
ground truth. Manual tracings are the ground truth.

6. Discussion
Topology-preserving methods which use skeletonization

may over-thin 3D brain imagery, and so techniques such
as average pooling-based smoothing, as seen in our topo-
logical smoothing method, may be needed. However, our

Figure 3. Comparison of 3D Axon Projections for DS2. 3D axon
predictions of DS2 show that the GASK version produces longer
and more connected axon segments (white arrows), which shows
that soft-skeletonization can overthin if an incorrect k hyperparame-
ter is chosen. For centerline detection results, true positives (green),
false negatives (blue), and false positives (red) are shown. The red
label for false positive does not apply to the automated annotation
results.

ablation study suggests that the approach used by both soft-
skeletonization and topological smoothing is possibly too
aggressive for the type of 3D brain imagery used here, even
though a loss function formulated using topological smooth-
ing performs relatively better for segmentation and centerline
detection. We find it limiting that our best models are all
some flavor of a UNet architecture, and aim to incorporate
our findings into other deep learning architectures, e.g., like
an adapter module for Segment Anything [13].

7. Conclusive Remarks

We show that the optimal number of thinning or smooth-
ing iterations for a morphological operation can be deter-
mined using N random slices for a volumetric input of
brain imagery, and that average pooling-based morphologi-
cal smoothing can improve both segmentation and centerline
detection metrics, indicating increased topological preser-
vation. We also show that our loss function, GATS, can be
used to train models for automatic annotation of volumes of
brain imagery.
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