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Abstract

Homography estimation serves as a fundamental tech-
nique for image alignment in a wide array of applications.
The advent of convolutional neural networks has introduced
learning-based methodologies that have exhibited remark-
able efficacy in this realm. Yet, the generalizability of these
approaches across distinct domains remains underexplored.
Unlike other conventional tasks, CNN-driven homography
estimation models show a distinctive immunity to domain
shifts, enabling seamless deployment from one dataset to
another without the necessity of transfer learning. This
study explores the resilience of a variety of deep homog-
raphy estimation models to domain shifts, revealing that the
network architecture itself is not a contributing factor to this
remarkable adaptability. By closely examining the models’
focal regions and subjecting input images to a variety of
modifications, we confirm that the models heavily rely on
local textures such as edges and corner points for homog-
raphy estimation. Moreover, our analysis underscores that
the domain shift immunity itself is intricately tied to the uti-
lization of these local textures. 1

1. Introduction
Homography is a cornerstone in computer vision, offer-

ing a geometric relationship between two images capturing
the same planar surface in space. The accurate estimation
of homographies between images is the first step in com-
prehending scene geometry. This pivotal step holds the po-
tential to greatly enhance the performance of various vi-
sion tasks, including but not limited to multi-frame HDR
imaging [9], multi-frame image super resolution [24], burst
image denoising [16], video stabilization [15], image/video
stitching [10, 27], and simultaneous localization and map-
ping [20, 31].

1https://github.com/MingzhenShao/Homography estimation.git

Homography estimation techniques can be categorized
into two main approaches: geometric methods and deep
learning-based methods. Geometric methods focus on
identifying meaningful correspondences, such as points or
edges, within visual data and subsequently leveraging these
correspondences to compute homographies.

The efficacy of geometric methods hinges on the preci-
sion of these identified correspondences. When correspon-
dences are easily discernible and align well, these methods
tend to yield favorable results. However, challenges arise
when attempting to establish correspondences across dis-
similar viewpoints, which can be particularly arduous and
time-intensive under specific circumstances. In certain sce-
narios, the need even arises for developers to devise distinct
approaches tailored to diverse scenes, factoring in view-
point variations, lighting conditions, and image characteris-
tics, in order to attain more accurate and robust correspon-
dence matches.

Given these challenges, there has been a growing interest
in leveraging deep learning-based methods in recent years.
Several models have been introduced and have demon-
strated impressive levels of accuracy on their respective
testing datasets [5, 6, 14, 21, 23, 29]. However, an impor-
tant aspect that has yet to be explored is the performance
of these models across diverse domains. Indeed, if attain-
ing improved accuracy with deep learning-based models
necessitates tailored designs for each individual case, the
broader feasibility of deploying such methods may be com-
promised.

Contrary to the prevailing notion that deep learning mod-
els necessitate domain adaptation when applied across var-
ious contexts, our research reveals a remarkable observa-
tion: all deep learning-based homography estimation mod-
els display immunity to domain shifts. This insight under-
scores the seamless functionality of these models across di-
verse datasets, obviating the need for domain-specific ad-
justments.

We validate this remarkable domain shift immunity by
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conducting a comparative assessment of one model’s per-
formance across divergent domains, achieved without ne-
cessitating any fine-tuning interventions. Intriguingly, this
observed domain shift immunity shares strong parallels
with the attributes of geometric methods, setting it apart
from conventional deep learning techniques. The correla-
tion with geometric methods raises a question: Could this
immunity potentially originate from the features utilized by
these models, resembling the features employed by geomet-
ric methods such as edges and corner points?

To tackle this question, the most straightforward av-
enue involves identifying the precise type of feature that
the model extracts from the input images. However, forg-
ing a direct and unequivocal connection between inputs and
outputs in deep learning models continues to pose a sig-
nificant hurdle. In our study, we adopt a widely acknowl-
edged method to approximate feature localization, mani-
fested through the visualization of the model’s focal region.

In contrast to many other deep learning tasks, homog-
raphy can be calculated with a very limited set of corre-
spondences. However, when attempting to visually dissect
the feature map alongside real-world images, the abundance
of information within these images introduces a complex
array of disturbances during feature analysis. In order to
solve this problem, we introduce a geometrically simpli-
fied shape (GSS) dataset. This dataset serves to alleviate
the density of distinct feature types—edges, corners, and
colors—thus facilitating a more lucid analysis. Another
challenge arises from the potency of deep network archi-
tectures, which can obscure distinctions of diverse features
within a simple task like homography estimation. To ad-
dress this challenge, we introduce a specialized homogra-
phy estimation network (HEN) that consists of only eight
convolutional layers. This minimalist network architecture
not only enables the measurement of accuracy fluctuations
across various feature modifications but also averts con-
cerns pertaining to immunity originating only from deep
network structures.

Using the GSS dataset and HEN architecture, we suc-
cessfully identify the focal region during estimation, pre-
dominantly situated within regions of local texture and en-
compassing edges and corners, as opposed to the more uni-
form regions displaying distinct colors. To substantiate the
pivotal role of local texture in conferring the network’s do-
main shift immunity, we undertake a comprehensive perfor-
mance comparison under various texture densities and alter-
ations. The outcomes confirm that models rely on local tex-
tures (edges and corner points) for homography estimation
and demonstrate that the domain shift resilience is linked to
local texture. As long as this foundational texture remains
unaffected, the model consistently attains comparable pre-
diction accuracy across diverse domains.

Our contributions can be summarized as follows:

1. We demonstrate the domain shift immunity inherent
in deep homography estimation models, highlighting
the autonomy of the network structure in achieving this
exceptional trait.

2. We introduce a carefully designed dataset (GSS) and
architecture (HEN) tailored for dissecting the domain
shift immunity exhibited by deep homography estima-
tion models.

3. We substantiate that the models depend on local tex-
tures for accurate homography estimation, and the ob-
served domain shift immunity is intricately linked to
the utilization of these local textures.

2. Related work

Traditional homography estimation methods typically
rely on matched image feature points, such as SIFT [17],
SURF [3], ORB [22], LPM [19], GMS [4], SOSNet [26],
LIFT [25], and OAN [28]. Once a set of corresponding
features is obtained, the homography matrix is typically
estimated using Direct Linear Transformation (DLT) [11]
along with outlier rejection techniques such as RANSAC
[8], IRLS [12], and MAGSAC [2].

These conventional methods heavily depend on the qual-
ity of the captured image features. When feature correspon-
dences are accurately established, these methods tend to ex-
hibit good performance. However, their accuracy can be
compromised by an insufficient number of matched points
or poor feature distribution. This limitation is often en-
countered in situations involving textureless regions (e.g.,
sky, ocean, grassland), repetitive patterns (e.g., forest, book-
shelf, symmetrical buildings), or variations in illumination.
Moreover, the presence of dynamic objects (e.g., a moving
bus) further challenges the effectiveness of outlier rejection
techniques.

Another category of traditional methods for homogra-
phy estimation is known as direct methods. For example,
the Lucas-Kanade algorithm [18] is in this category, com-
puting the sum of squared differences (SSD) between two
images to guide image shifts and update the homography.
An advanced technique, the enhanced correlation coeffi-
cient (ECC) [7], has been proposed as a more robust re-
placement for SSD. In comparison to feature-point-based
approaches, these direct methods are more susceptible to
interference factors such as dynamic objects and variations
in illumination.

In recent years, inspired by the success of various deep
learning-based methods across a range of challenging tasks,
DeTone et al. [5] introduced the first deep learning-based
homography estimation model. This model, comprising
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just eight convolutional layers, presents an end-to-end ap-
proach to homography estimation. It takes original and
transformed images as inputs, using the transformation ma-
trix as ground truth for supervised training. Subsequent
studies [6, 14] have embraced this framework, augmenting
performance by substituting the backbone with more intri-
cate network architectures.

Supervised training, however, presents a conspicuous
challenge: acquiring accurate homography matrices from
real image pairs proves to be a formidable task. A popu-
lar strategy involves employing synthetic transformed im-
ages to circumvent this issue, yet this method occasionally
introduces depth disparities. In response, novel avenues
have been explored, leading to the proposal of unsupervised
training techniques. Nguyen et al. [21] introduced an inge-
nious unsupervised approach that calculates a photometric
loss between two images, coupled with the utilization of a
spatial transform network (STN) [13] for image warping.
Building upon this approach, Zhang et al. [29] presented
an innovative methodology for cultivating a content-aware
mask, departing from the conventional approach of directly
computing loss based on intensity and uniformity across the
image plane. This advancement aims to bolster the predic-
tion accuracy of unsupervised training procedures.

Learning-based methods have demonstrated the capac-
ity to attain pixel-level performance that greatly surpasses
that of traditional approaches. Nevertheless, unlike their
conventional counterparts, these methods do not explain
their capability to effectively handle images from diverse
domains or provide insight into the inner mechanics gov-
erning their estimation processes. The concept of domain
shift immunity, critical for numerous vision tasks, is closely
intertwined with the deployability of a homography esti-
mation method. Although deep learning-based approaches
can offer greater accuracy, the practicality of these methods
may be compromised if achieving such accuracy necessi-
tates domain-specific fine-tuning.

3. Methods
3.1. Reforming the homography matrix

The most widely used representation of a homography
is a 3 × 3 transformation matrix and a fixed scale. Using
[u, v] for pixels in an image and [u′, v′] for their projection
onto another image in homogenous coordinates, we get the
representation of a homography matrix as follows: u′

v′

1′

 =

 H11 H12 H13

H21 H22 H23

H31 H32 H33

 u
v
1

 (1)

However, these nine parameters (H11, H12, ...,H33) blend
rotational and translational terms performed on different
scales into a single vector. Employing these parameters di-

rectly for training deep learning models can result in imbal-
ance issues, intensifying the training challenge. To address
this concern, we adopt the utilization of four 2D offset vec-
tors (comprising eight values) to represent the homography
matrix.

To derive four 2D offset vectors from a homography,
we initiate the process by selecting four points denoted as
(ui, vi), i ∈ [1, 4] to form a rectangular configuration. Next,
we identify the corresponding four points within the homo-
geneous coordinate plane, represented as (u′

i, v
′
i), i ∈ [1, 4].

Subsequently, we calculate the 2D offset vectors as ∆ui =
u′
i − ui and ∆vi = v′i − vi, for each i ∈ [1, 4].

Using the four offset vectors, the process of obtaining the
homography matrix H with 8 degrees of freedom becomes
straightforward through the solution of a linear system. The
four-point parameterization manifests a homography in the
following manner:

H4point =


∆u1 ∆v1
∆u2 ∆v2
∆u3 ∆v3
∆u4 ∆v4

 (2)

3.2. Homography estimation network (HEN)

Figure 1. Homography estimation network structure.

Several recent studies have introduced intricate models
with sophisticated backbones, aiming to attain superior ac-
curacy or robustness in comparison to the initial approach
proposed by DeTone et al. However, the incorporation
of potent backbones in these models could obscure subtle
distinctions stemming from diverse input features, thereby
posing a challenge when attempting to dissect the influence
of different features.

To effectively discern significant variations when manip-
ulating different features, we need to employ a network that
exhibits heightened sensitivity to feature alterations. As
a result, we introduce a homography estimation network
(HEN) composed of only nine convolutional layers. HEN
employs a global average pooling (GAP) layer, converting
the eight-channel feature maps into eight output values. Un-
like conventional networks that rely on fully connected (FC)
layers, HEN’s utilization of the GAP layer provides better

4802



accuracy and establishes a more transparent relationship be-
tween the ultimate prediction and the feature maps.

Our HEN operates on a grayscale original and trans-
formed image pair as input, generating eight values
(H4point) as a representation of the homography matrix.
HEN may not achieve state-of-the-art accuracy due to its
relatively shallow architecture, but it still delivers robust
pixel-level precision, surpassing that of a classical ORB de-
scriptor with the RANSAC method. Given that classical
methods are regarded as domain-unrelated, the achieved ac-
curacy of HEN is sufficient for conducting an analysis of
domain shift immunity, particularly if the observed changes
in accuracy remain within a range comparable to or lesser
than that of the classical methods. The structural layout of
the proposed homography estimation network is illustrated
in Figure 1.

3.3. Data generation

(a) Randomly crop a
square at position p
from the original im-
age I as Is.

(b) Perturb four cor-
ners of the square to
get a tetragon and
compute the homog-
raphy H .

(c) Apply H−1 to I
and crop a square at
the same position p as
image Id.

Figure 2. Three steps of the data generation process.

We adhere to the identical experimental setup employed
in prior studies, wherein synthetic image pairs are utilized
for both training and evaluating networks. This methodol-
ogy affords us the capability to create image pairs spanning
diverse domains while maintaining pixel-level ground truth.

The generation process unfolds through three distinct
steps, each outlined in Figure 2. Initially, a square patch
Is of dimensions 128 × 128 is randomly cropped from the
reference image I , positioned at p. To avoid subsequent bor-
dering artifacts during the data generation pipeline, border
areas are intentionally avoided. Subsequently, the four cor-
ners of the image patch Is undergo random perturbations by
values denoted as δ, within the range of [−32, 32]. Conse-
quently, these four perturbed correspondences collectively
define a homography H . Employing the inverse of this ho-
mography, H−1, we transform the reference image I into
a new image denoted as I ′. A second patch, Id, is then
cropped from I ′ at the identical position p. The two patches,
Is and Id, are stacked channel-wise and serve as a 2-channel
input for the model.

3.4. Geometric simple shape (GSS) dataset

Visualizing the focus of a deep learning model is a
widely employed technique for model analysis. However,
homography estimation, distinct from various other deep
learning tasks, has the capacity to be computed from a
very limited number of correspondences. Consequently, the
act of visualizing the focus of networks on commonplace
datasets (e.g., BSD300, AFLW2000) could yield regions of
elevated response without evident or coherent logical con-
sistency.

Thus, we have developed a purposeful dataset named ge-
ometric simple shape (GSS), designed to minimize potential
disruptions arising from an excess of information during fo-
cus analysis. The GSS images adhere to a consistent black
background and showcase only elementary geometric en-
tities such as squares, triangles, and circles. These forms
are placed randomly, each possessing varying dimensions.
Moreover, the shapes can be outlined or solidly filled with
distinct colors (grayscale) to assess the focus on diverse fea-
ture types, encompassing texture, color, and more.

The focus visualizations on various datasets are illus-
trated in Figure 3 using the class activation mapping (CAM)
technique introduced by Zhou et al. [30]. By superimposing
the heatmap onto the original image, we effectively high-
light the areas of focus within HEN. This visualization ap-
proach shows that the proposed GSS dataset significantly
enhances our ability to deduce the specific types of features
that the network is emphasizing.

Figure 3. Visualization results of different datasets. (top: BSD300
& AFLW2000, bottom: GSS)

4. Experimental results and analysis
In this section, we first demonstrate the inherent do-

main shift immunity of deep homography estimation mod-
els. Through an evaluation across various network archi-
tectures, we establish that this immunity remains consistent
regardless of the chosen network structure.

To delve into the contributing factors behind this im-
munity, our approach entails the initial visualization of
the model’s focus region during estimation using our GSS
dataset. Our findings highlight a pronounced emphasis on
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Model Dataset
AFLW2000 MS-COCO BSD300 ISBI

ORB+RANSAC 12.37 11.57 12.33 11.03
ResNet50 1.11 1.15 1.05 0.77
VGG16 3.42 3.65 2.60 2.25

HEN 5.84 5.65 5.47 4.95

Table 1. Accuracy of predictions across diverse domains measured in MAE in pixels for various models.

local texture regions during the estimation process. Then,
we conducted performance comparisons across varying lo-
cal texture densities to pinpoint the pivotal features for ac-
curate homography estimation. Our results substantiate that
local texture emerges as the critical feature governing ho-
mography estimation.

To determine the potential linkage between domain shift
immunity and the utilization of local texture in homography
estimation, we test the model’s performance across datasets
distorted in terms of local texture. Through these experi-
ments, we illustrate the central role that local textures play
in domain shift immunity.

In our experiments, we train all the models on
the BSD300 dataset using the proposed data generation
method, and subsequently test them on target datasets with-
out any additional fine-tuning.

4.1. Domain shift immunity

To demonstrate domain shift immunity, we have cu-
rated a selection of multiple datasets that encompass a wide
array of content domains. Our chosen datasets include
BSD300, MS-COCO, AFLW2000, and ISBI, which respec-
tively cover scenery, faces, and cells. These datasets ex-
hibit varying levels of texture density. Specifically, the ISBI
dataset displays the highest local texture density, whereas
the AFLW2000 dataset includes a higher proportion of flat
regions.

To establish the independence of immunity from dif-
ferent network structures, we proceed with a performance
comparison encompassing a range of models. This compar-
ison involves the proposed HEN network alongside more
intricate and deep networks such as VGG16 and ResNet50.

In Table 1, we first notice that even the most shallow
network, HEN, effectively maintains domain shift immu-
nity. This performance highlights that such immunity is
not exclusively linked to deep architectures or confined to
specific structural intricacies. Importantly, domain shift im-
munity doesn’t mandate identical accuracy across datasets.
Instead, it signifies the network’s capacity to consistently
deliver accurate predictions across diverse datasets. In
comparison to the fluctuations observed in classical meth-
ods (ORB+RANSAC), the variability we observe in deep
learning-based models does not compromise the core prin-

ciple of domain shift immunity.
We also observe a consistent trend in which the overall

performance across all domains improves with increasing
network depth. This phenomenon is easily explainable by a
well-established attribute: deeper architectures have more
capability to encapsulate intricate features. Notably, the
sub-pixel accuracy achieved through ResNet50 reaffirms
that the employment of heavier structures is superfluous for
this particular task. Some results of predictions using HEN
are presented in Figure 4.

4.2. Focus visualizations

The concept of domain shift immunity underscores that
homography estimation models leverage specific common
features present across diverse domains for accuracy. To
identify these features, a direct approach involves visualiz-
ing the regions upon which the model focuses during es-
timation. However, we refrain from employing deep net-
works such as ResNet50 for this analysis. These powerful
networks, as indicated in Table 1, are adept at extracting
information from inputs, which could obscure subtle dis-
tinctions caused by alterations in specific textures. There-
fore, to ensure clarity in our analysis, we choose to utilize
the proposed HEN architecture in conjunction with the GSS
dataset.

Before delving into focus visualization, we conduct a
straightforward experiment to demonstrate that the resul-
tant visualization outcomes effectively pinpoint the high-
contribution regions employed during estimation. The ex-
periment juxtaposes the performance of two feature den-
sities, namely normal2gap and selected2gap. In the nor-
mal2gap approach, all outputs of the final convolutional
layer are used as input to the GAP layer. Conversely, in
the selected2gap approach, only the top 80% high-response
features based on the focus map are utilized. Given that the
GAP layer computes the mean of inputs, it logically follows
that features containing more pertinent information for pre-
diction would result in heightened accuracy.

In Table 2, we observe an approximate accuracy im-
provement of 1.7 pixels when using the selected2gap ap-
proach. This result provides evidence for the efficacy of
the visualization method in identifying the regions that con-
tribute to the estimation process.
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Figure 4. Results of predictions across diverse domains using HEN. The ground truth is depicted in blue, while the predictions are illustrated
in red. (From top to bottom: BSD300, AFLW2000, and ISBI)

Feature type normal2gap selected2gap

MAE (pixel) 12.03 10.37

Table 2. Prediction accuracy on GSS with varying features.

The accuracy of predictions on the GSS dataset (nor-
mal2gap) is slightly lower compared to other datasets such
as MS-COCO and BSD300. This reduction in accuracy can
be attributed to the inherent information density within the
GSS dataset. The presence of extensive black (0) regions in
the GSS dataset, which lack relevant information for predic-
tion, likely contributes to this decline in accuracy. However,
in the context of the performance exhibited by classic meth-
ods on the same dataset (31.43 pixels), a prediction error of
around 12 pixels can still be considered reasonable.

In Figure 5, a collection of visualization results on the
GSS dataset is presented. The initial two columns show the
input image pairs, whereas the subsequent eight columns
exhibit the visualization of focus on the output channels.
To reveal the areas of focus, the heatmap of each channel
is superimposed onto the original inputs. Upon analyzing
the outcomes, it becomes evident that the regions exhibit-
ing high response are closely aligned with local texture seg-
ments, rather than regions defined by different colors (row 2
in the Figure 5). Furthermore, given that homography esti-
mation is achievable with minimal correspondences, not all
edges evoke a significantly heightened response.

4.3. Critical features for homography estimation

Expanding on the insights derived from our focus map
visualizations, we found the homography estimation mod-
els’ tend to prioritize regions rich in local texture during the
estimation process.

In order to furnish tangible proof of the pivotal role lo-
cal textures play in homography estimation, we employ a
direct approach. Our objective is to determine the signif-
icance of local textures by comparing the performance of
the HEN across different texture densities. If deep learning
models depend on local textures for accurate homography
estimation, images containing a higher prevalence of such
textures should yield improved performance. To validate
this hypothesis, we curate images with different numbers of
shapes from our GSS dataset and evaluate the performance
of the HEN trained on BSD300. The results of these pre-
dictions are presented in Table 3.

We observe that the input images with more shapes ex-
hibit better performance. This result confirms the critical
role played by local textures in homography estimation, as
the distinction between these images is based only on the
density of local textures.

Number of shapes 1 5 9 15

MAE (pixel) 13.25 12.45 11.75 10.23

Table 3. Prediction accuracy across various numbers of shapes.
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Figure 5. Visualization of focus maps on the GSS dataset. The left two columns display input image pairs, and the right eight columns
depict focus visualization across output channels.

Figure 6. Validating domain shift immunity in the HPatches dataset using HEN.

4.4. Decoding the domain shift immunity

Based on our experiments, we have found that homogra-
phy estimation models rely on local textures to attain accu-
rate predictions. Remarkably, these models exhibit robust
immunity to domain shift (comparable accuracy) when ap-
plied to datasets containing a diverse array of local textures.
However, this immunity seems to be less resilient, resulting
in lower accuracy when the models process datasets charac-
terized by lower texture density, such as the GSS dataset.

This performance discrepancy strongly suggests that the
core of domain shift immunity is linked to local textures.
To substantiate this association, we undertake a series of
experiments in which we apply a 3x3 Gaussian kernel to
blur different datasets, thereby reducing their local textures.
The ensuing performance of the identical model on these
altered datasets is documented in Table 4.

We observe a decrease of approximately 1.5 pixels in
prediction accuracy across all domains after applying the
blur. This finding further validates that the domain shift im-
munity is primarily attributed to local textures.

One concern regarding our explanation is that it is based

Model Blurred Dataset
AFLW2000 MS-COCO BSD300 ISBI

HEN 7.11 6.82 6.84 7.22

Table 4. Accuracy of HEN predictions across different blurred
datasets. (measured in MAE in pixels)

on synthetic datasets. However, although physical-world
image pairs may contain noise, depth information, and
lighting changes, these factors do not notably affect local
textures. To address this concern, we further demonstrate
the persistence of domain shift immunity when applying
a HEN model trained on the synthetic BSD300 dataset to
real-world images from the HPatches dataset [1], as shown
in Figure 6.

5. Conclusions
This paper examines the domain shift immunity exhib-

ited by deep homography estimation networks. To validate
this immunity, we utilize datasets spanning diverse domains

4806



and employ various network architectures. Remarkably, our
findings indicate that this immunity remains robust across
various underlying network structures. Through an anal-
ysis of the model’s focal regions and a performance eval-
uation across various texture densities using the proposed
dataset and architecture, we reveal the significant depen-
dency of estimation models on local textures for precise ho-
mography estimation. Moreover, by conducting a compre-
hensive comparative analysis of domain shift performance
under varying local texture alterations, we have established
a direct correlation between the observed domain shift im-
munity in homography estimation networks and their fun-
damental reliance on the utilization of local textures.
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