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Abstract

Recent works have shown that the computational effi-
ciency of 3D medical image (e.g. CT and MRI) segmen-
tation can be impressively improved by dynamic inference
based on slice-wise complexity. As a pioneering work, a
dynamic architecture network for medical volumetric seg-
mentation (i.e. Med-DANet [44]) has achieved a favorable
accuracy and efficiency trade-off by dynamically selecting
a suitable 2D candidate model from the pre-defined model
bank for different slices. However, the issues of incomplete
data analysis, high training costs, and the two-stage pipeline
in Med-DANet require further improvement. To this end, this
paper further explores a unified formulation of the dynamic
inference framework from the perspective of both the data
itself and the model structure. For each slice of the input vol-
ume, our proposed method dynamically selects an important
foreground region for segmentation based on the policy gen-
erated by our Decision Network and Crop Position Network.
Besides, we propose to insert a stage-wise quantization se-
lector to the employed segmentation model (e.g. U-Net) for
dynamic architecture adapting. Extensive experiments on
BraTS 2019 and 2020 show that our method achieves com-
parable or better performance than previous state-of-the-art
methods with much less model complexity. Compared with
previous methods Med-DANet and TransBTS with dynamic
and static architecture respectively, our framework improves
the model efficiency by up to nearly 4.1 and 17.3 times with
comparable segmentation results on BraTS 2019. Code
will be available at https://github.com/Rubics-
Xuan/Med-DANet.

*Equal Contribution.†Corresponding author.

1. Introduction

As one of the most prevalent diseases, cancer results in
numerous fatalities annually. The precise measurements of
medical images play a vital role in accurate diagnosis and
appropriate therapy planning. Traditionally, these image
analysis approaches rely heavily on the doctors’ clinical ex-
perience. However, it is labor-intensive and time-consuming,
since a 3D volume produced by Magnetic Resonance Imag-
ing (MRI) [22] or Computerized Tomography (CT) [18] typ-
ically contains hundreds of 2D slices. Therefore, to improve
the accuracy and efficiency of clinical diagnosis, automated
and accurate segmentation of tumors and organs’ sub-regions
is a fundamental requirement for medical image analysis.

Thanks to the rapid development of deep neural networks,
they have been extensively applied in medical image segmen-
tation. The mainstream segmentation methods of medical
images comprise two categories: (1) applying 2D networks
for slice-by-slice predictions and (2) utilizing 3D models
to process image volumes consisting of multiple slices. 2D
U-Net [41]and its variants such as [30, 51] are the represen-
tatives of the former category, while 3D networks like 3D
U-Net [13] and V-Net [35] can achieve better results owing to
the associations modeling capability between different slices.
Besides, as a transition from 2D methods to 3D methods,
some 2.5D approaches [21, 25, 48] have combined informa-
tion from neighboring slices to achieve better segmentation
results in the current slice. Benefiting from the ability to
capture long-range dependencies, many Transformer-based
networks [5, 16, 17, 37] have begun to spring up. Neverthe-
less, due to the growing model scale and unique U-shaped
encoder-decoder design, the high computational cost is diffi-
cult to bear in practice, especially for those 3D models.

Therefore, lightweight medical image segmentation mod-
els [6, 10, 27, 32] have become one of the research hot spots.
Generally, those lightweight methods only focus on effi-
cient structural design, ignoring the unique slice heterogene-
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Figure 1. The comparison between the previous dynamic network Med-DANet and our proposed Med-DANet V2 (Ours).

ity property of the medical images. As a pioneering work
of applying dynamic inference to achieve efficient medical
volumetric segmentation, the recently proposed dynamic
architecture network namely Med-DANet [44] reveals its
potential for a promising trade-off between accuracy and
efficiency. Specifically, Med-DANet employs a decision
network to distinguish the specific segmentation difficulty
of the current input slice and accordingly selects a suitable
candidate network from the pre-defined model bank for in-
ference. In particular, the training of the decision network
is supervised by a comprehensive choice metric, which is
computed according to the accuracy and complexity of the
incorporated candidate models. Nevertheless, as illustrated
in Fig. 1, Med-DANet has mainly three drawbacks: (1) Med-
DANet lacks comprehensive dynamic and efficient design
considering the medical data properties. Although Med-
DANet chooses to directly skip to generate the segmentation
mask that is filled with only background category, it ignores
the spatial redundancy in those simple images (i.e., reaching
precise foreground segmentation is feasible utilizing only a
portion of the image); (2) Med-DANet needs to train multiple
models as candidate networks in the pre-defined model bank,
which results in high training cost and limited scalability, and
it also doesn’t consider further lightweight design of each
candidate network. (3) As the decision network requires a
pre-calculated comprehensive choice metric for supervision,
Med-DANet must be trained with a complicated two-stage
pipeline, which is unfriendly for practical deployment.

In this paper, we further explore the potential of dynamic
inference in medical volumetric segmentation tasks. To the
best of our knowledge, we are the first to unify the spatial-
wise dynamic adaption and dynamic model quantization
to handle the slice heterogeneity problem in MRI/CT data.
Compared to Med-DANet, a more efficient end-to-end frame-
work named Med-DANet V2 is proposed to get closer to clin-
ical applications. To achieve more fine-grained spatial-wise
dynamic adaption, we minimize input image redundancy
through dynamic resolution selection and apposite crop po-
sition determination, thereby reducing the computational
complexity of the entire architecture. For more flexible

dynamic architecture adaption, a stage-wise bit selection
module is inserted into the segmentation model for dense
model quantization, pursuing an extremely efficient model
structure. Besides, our proposed Med-DANet V2 has strong
compatibility and scalability. The basic segmentation model
can be replaced with any 2D network for various accuracy
and efficiency requirements.

In summary, the main contributions are as follows:
• Aiming at the slice heterogeneity in medical volumes, this

paper explores the potential of dynamic inference from
the perspective of data properties and model structure,
resulting in a promising trade-off between volumetric seg-
mentation accuracy and efficiency.

• By introducing the proposed decision network and bit-
width selector, we unify the spatial dynamic adaption and
dynamic model quantization to realize a highly efficient
medical image segmentation task.

• Our proposed Med-DANet V2 exhibits strong compatibil-
ity and scalability. The framework can be compatible with
any 2D segmentation network to meet various accuracy
and efficiency requirements.

• Extensive experiments on the MRI benchmark datasets
(BraTS 2019 and BraTS 2020 for brain tumor segmenta-
tion) demonstrate that our method reaches competitive or
better performance than previous state-of-the-art methods
with much less model complexity.

2. Related Work

Static and Lightweight Methods for Medical Image Seg-
mentation. Recently, U-Net [41] and its variants [5, 30, 43,
51] have shown promising performance in medical image
segmentation task. However, the high computational com-
plexities of these models pose a great challenge for timely
clinical diagnosis. Consequently, great efforts have been
dedicated to designing lightweight networks for more ef-
ficient segmentation. For instance, S3D-UNet [10] lever-
ages separable 3D convolution to improve model efficiency.
DMFNet [6] takes advantage of a 3D dilated multi-fiber net-
work to achieve the trade-off between model efficiency and
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accuracy in 3D MRI brain tumor segmentation tasks. HDC-
Net [32] replaces 3D convolutions with a novel hierarchical
decoupled convolution module to achieve a lightweight yet
efficient pseudo-3D model.
Spatial-wise Dynamic Networks. Most spatial-wise dy-
namic methods are designed for classification tasks [8, 28,
45, 47], and only a few works pursue to implement the dy-
namic inspiration in fine-grained segmentation tasks. Huang
et al. [19] employ a two-stage method. Input images are
quickly processed through a lightweight model, and then
uncertainty regions are re-evaluated using a more complex
network. Li et al. [26] introduce data-dependent routes to
adapt to the scale distribution of each image. Verelst et
al. [42] propose a dynamic block-based framework, where
image blocks are downsampled based on their complexity.
Although these spatial-wise dynamic methods on natural
images adopt diverse strategies for different regions, the
entire input is essentially segmented. However, the charac-
teristics of having a large area of background regions (even
pure background) in 3D medical data determine that there is
great potential in segmenting mainly the foreground regions,
which remains unexplored by previous researchers.
Network Quantization. As an effective method for model
compression, quantization reduces the model size and mem-
ory requirements, thereby accelerating inference. Although
the quantization technique in the natural image field has at-
tracted widespread attention in the community, its potential
in medical image analysis has rarely been explored. Ad-
ditionally, the utilization of low bit-width methods for net-
work quantization leads to significant performance degrada-
tion [1, 12, 20, 49]. Thus, some mixed-precision bit-width
methods [11, 15, 31, 46] have become popular to improve
quantization for a better trade-off. Although applying this
method to medical image segmentation models can reduce
the varying redundancy of different layers, it cannot adap-
tively allocate appropriate quantization bit widths for specific
medical slices. Therefore, dynamic quantization in the medi-
cal field remains challenging and to be exploited, especially
for medical image segmentation tasks that require separating
tissues and organs with high precision.

3. Methodology

3.1. Preliminary: Designing Details of Med-DANet

Med-DANet [44] is a dynamic architecture network that
aims to handle 3D medical images where segmentation tar-
gets are sparsely distributed among slices. Given a 3D vol-
ume, a slice-specific decision is learned by the Decision
Network to dynamically select a suitable model from the
pre-defined model bank for subsequent segmentation. The
Decision Network undertakes a n + 1-class classification
task, where the n+ 1 categories represent n candidate net-
works and a skip process. The Decision Network and model

bank are respectively formulated as follows

D(x) = {D̂|x; θ}, (1)
B(x) = [∅,M1(x),M2(x), ...,Mn(x)], (2)

where θ denotes the parameters of Decision Network and D̂
is the prediction of D(x). M1 ∼Mn indicate the candidate
models and (∅) represents the skip operation.

During the training process, Med-DANet proposes a com-
prehensive choice metric to supervise the framework, which
is computed by the accuracy and complexity of the incorpo-
rated models. The metric is calculated as follows.

D =

{
0, Pf < 1
argmax((1− α) ∗ Si + α ∗ softmax( 1

Fi
)) + 1, Pf > 1

,

(3)
where Si and Fi are respectively the Dice Score and FLOPs
of each candidate model Mi. Pf denotes the number of
foreground target pixels.
Limitations of Med-DANet. (1) Although Med-DANet
selects models of corresponding scales based on the difficulty
of slices, it ignores handling simple images with various
background regions from the input perspective. (2) The
model bank with multiple models must be pre-established,
which requires a high training cost. (3) The pre-calculated
comprehensive choice metric requires Med-DANet to be
trained using a complex two-stage pipeline, which may pose
challenges for users.

Given these limitations, a more flexible and unified dy-
namic one-stage model architecture named Med-DANet V2
is developed. In terms of the input data, more fine-grained
spatial-wise dynamic adaption will be determined by two
decision modules. As for the model capacity, the bit-width
quantization will be considered to achieve more flexible
dynamic architecture adaption.

3.2. Overall Architecture

The overall architecture of the proposed Med-DANet V2
is depicted in Fig. 2. In general, our framework consists of
the data decision part (i.e. Policy Network (P ) and Crop Po-
sition Network (C)) and the Dynamic Quantization Network
(Q). To deal with the medical datasets where segmentation
targets are sparsely distributed among inter and intra-slices,
a slice-specific decision dynamically selects a suitable crop
size (i.e. obtained by P ) and a crop-center (i.e. obtained by
C) to locate the cropping image. Then the cropped image
will be segmented by the Dynamic Quantization Network,
which can automatically allocate the bit-width inside the
model to achieve different model scales. Dynamic choice
of architecture and the subsequent segmentation task are
formulated by Eq. 4:

y = Q[P (x) o C(x)], (4)

where x denotes the input image and y is the corresponding
prediction. Q[P ◦ C] indicates feeding the slice of a dy-
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Figure 2. The illustration of the our Med-DANet V2. The Policy Network takes a 2D image slice as input and generates a choice depending
on the segmentation difficulty of the current slice. Based on the optimal choice made by the Policy Network, our method can adaptively
decide whether to skip the current slice (i.e. directly generating the result with all zero – "background" class) or send the input with a suitable
resolution to the Dynamic Quantization Model (with the cropping region determined by the Crop Position Network). A stage-wise Decision
Module is inserted into the Dynamic Quantization Model for suitable model capacity selection. By unifying data-architecture dynamic
inference, our method can achieve accurate and efficient segmentation.

namic crop into the dynamic quantization model. In the rest
of this section, the designing details about Spatial Dynamic
Adaption (Sec. 3.3), Dynamic quantization (Sec. 3.4), and
Training/Inference Strategy (Sec. 3.5) will be explained. As
a whole, the Policy Network combined with the Crop Posi-
tion Network will comprehensively consider the foreground
and background regional distribution inter and intra slice,
which can make the most appropriate crop choice(i.e. con-
taining skip). Regarding the Dynamic Quantization Model,
any 2D network can be tailored as the foundation to flexi-
bly accommodate diverse accuracy and efficiency demands.
More discussions on the model choices and ablation study
are presented in Sec. 4.3.

3.3. Fine-grained Spatial-wise Dynamic Adaption

Due to the large amount of redundant background regions
in some simple medical image slices, feeding only the fore-
ground part into the network is sufficient for obtaining good
results. Besides, minimizing the proportion of the meaning-
less regions can make the segmentation model more focused
on significant feature extraction (e.g. features of crucial
tumor regions), accordingly achieving better performance.
To achieve this, two decision networks are introduced to
determine the resolution size and center point of the cropped
image tile for the following segmentation. Then the selected
slice region based on the decisions is sent to the segmentation
network to obtain the final result.

Following Med-DANet, the high-efficiency ShuffleNet
V2 [33] is selected as our Policy Network and Crop Posi-
tion Network. Hence, only negligible computation cost is
added to the entire framework. The Policy Network acts
as a classifier to distinguish n + 1 categories, which refer

to n candidate resolutions and a direct skip operation. Be-
sides, we utilize Gumbel-Softmax Sampling [23] strategy
to enable the network optimization process through stan-
dard back-propagation. Specifically, when choosing the skip
operation, the whole architecture will skip the subsequent
segmentation process and produce the segmentation maps
with the background class. If the choice of full-resolution
image is made, the input slice will be straightly fed into
the Dynamic Quantization Model for final prediction. Oth-
erwise, the Crop Position Network comes into effect and
undertakes a regression task to determine the center point for
cropping, which is used before and after the segmentation
model for resolution downsampling and restoration.

For the process of altering resolution, we follow AdaFo-
cus V2 [45] to use differentiable bilinear interpolation for
downsampling. Assuming the sizes of the whole input and
the cropped image are H ×W and Pn × Pn. Each pixel
(xn, yn) in the cropped patch can be expressed by the center
position (xcn, y

c
n) and a fixed offset oij :

(xn, yn) = (xcn, y
c
n)+oij , oij ∈ {−

Pn

2
,−

Pn

2
+ 1, . . . ,

Pn

2
}
2

. (5)

Then the actual values of the cropped pixels are calculated
by the continuous (xcn, y

c
n) via interpolation. To effectively

adapt the dynamic resolution cropping strategy to segmenta-
tion tasks, we propose a reverse process with little modifica-
tion in the segmentation network for the generation of full-
resolution segmentation masks. Concretely, feature maps
of the cropped input image are initially positioned at the
upper left corner of a full-sized map with all elements set to
zero. Afterward, an affine translation is performed on the
full-sized map according to the center point position. Intu-
itively, directly interpolating the cropped segmentation result
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to full resolution may not provide precise results. Instead
of designing a brand-new module to refine, we interpolate
the feature maps before the last decoder stage in the Dy-
namic Quantization Model, and then use size-independent
last decoder stage to obtain the final segmentation results.

3.4. Flexible Dynamic Architecture Adaption

Previous quantization works [1, 12, 39] have normally
quantized the network with a fixed bit-width. Nevertheless,
different network stages exhibit different degrees of quantiza-
tion sensitivity (performance drop from a fixed-bit quantiza-
tion). Therefore, we aim to dynamically assign bit widths for
the layers at different stages based on the feature complexity
of the slices, avoiding the significant accuracy reduction and
computing resources waste of uniformly quantizing a fixed
bit-width network. To achieve high average flops-reduction
with less accuracy loss, we propose a novel stage-distribution
dynamic quantization method that allocates optimal bits to
quantize each operator at different stages of the model.

Generally, to replace the majority of floating-point oper-
ations with lower-bit operations in a universal model, the
input feature and weight of each layer can be respectively
quantized [12, 24]. Given the operator weight of the j-th
layer, it will be quantized to Qb

(
wj
)
:

Qb

(
wj
)
=

⌊
clip

(
wj , a

)
· r(b)
a

⌉
· a

r(b)
, (6)

where wj is first truncated with the clip function and scaled
to [-1, 1] with the scale parameter a. Then, it is scaled to
the integer range [−r(b), r(b)] of the given bit-width, where
r(b) = 2b−1. We use the simplest quantization strategy in
implementation, the weight scale parameter a is determined
simply by a = max(wj).

In our framework, each convolution and linear layer will
be quantized, one of which is in turn selected by a bit se-
lector consisting of K bit-width quantization candidates, as
illustrated in Fig. 2. To realize the bit-width selection in the
model’s different stages, we use a lightweight bit selection
module that assigns quantization bits adaptively according to
the feature complexity extracted from the slice (i.e. gradient
of spatial feature and standard deviation of channel feature).
The bit-width selector is applied before each stage and the
highest probability bit-width will be selected.

The selector outputs a quantization function of the max
probability, which is a discrete non-differentiable process
and cannot be optimized end-to-end. The straight-through
estimator trick [4] substitutes the discrete process to make
the process differentiable, as shown in Eq. 7, during forward-
propagation and back-propagation:

bk
∗

n =

{
argmaxbknPbkn

(xn) forward∑K
k=1 b

k
n · Pbkn

(xn) backward
, (7)

where Pbkn
is the probability assigned to the bit-width bkn of

the n-th stage among K numbers of candidate.
Previous works [36, 40] have mainly focused on optimiz-

ing a fixed bit-width quantized network in a static manner,
by taking the original network as the teacher model with a
knowledge distillation loss and a conventional pixel-wise
supervision loss. To realize a more efficient quantization
strategy to adaptively adjust the model capacity in a dynamic
way, we directly employ the obtained computational com-
plexity of the dynamic quantized model as the loss value. To
achieve a better trade-off between the computational cost
and restoration performance, the bit-widths of quantization
modules with a larger impact on precision should be allo-
cated a large number of quantization bits, resulting in the
following GFLOPs loss:

GFLOPs Loss =

N∑
0

GFLOPs(Qb(w
j), bk

∗

j ), (8)

where N represents the stage numbers.

3.5. Training and Inference Strategy

Training. The two decision networks and the Dynamic
Quantization Model are trained at three different periods.
Firstly, we train the full-precision segmentation model to
ensure benchmark accuracy. Next, we train the dynamic
quantization model, which adaptively assigns bit-widths
based on feature complexity and adjusts the weights of the
entire model accordingly. Finally, we train the entire archi-
tecture, including the decision networks and quantization
model together, pursuing an optimal balance between accu-
racy and computational complexity. To address the problem
of inter-slice image and intra-slice region distribution (i.e.
background occupies a significant portion or the entirety of
a slice, which is a substantial part of the dataset), the com-
bination of Dice Loss (Eq. 9) and GFLOPs Loss (Eq. 8)
is employed to meet well trade-off between segmentation
accuracy and model complexity. Specifically, the Dice Loss
is used to supervise the entire network, while GFLOPs Loss
is utilized to supervise the selection of the Policy Network
and Dynamic Quantization Model.

Dice Loss =

C∑
i=1

(1− 2|predi ∩ truthi|
|predi|+ |truthi|

), (9)

Loss = Dice Loss+ λ GFLOPs Loss, (10)

where Loss represents the overall loss, C denotes class num-
bers and λ is a weight parameter.
Inference. After the one-stage training phase mentioned
above, the well-trained decision networks and Dynamic
Quantization Model are cascaded sequentially to achieve
efficient inference. Given a 2D slice as input, our lightweight
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Policy Network will decide to skip the current slice or gen-
erate a specific crop decision according to the segmentation
difficulty of the current slice. A segmentation map with
all zeros will be directly adopted as the final result if the
skip operation is determined by the Policy Network. Oth-
erwise, based on the current slice’s feature complexity, an
appropriate combination of crop size and crop center point
is determined by the Policy Network and Crop Position Net-
work. Subsequently, the cropped or whole image will be
segmented by our Dynamic Quantization Model, which can
allocate bit-width quantization for different model stages
according to the complexity of image features. In this way, a
dynamic slice-dependent architecture with greatly improved
efficiency is realized by our method in terms of both input in-
formation and model scale. On one hand, compared with the
previously proposed lightweight static structure, our Med-
DANet V2 simultaneously takes advantage of spatial-wise
dynamic selection and dynamic architecture to adjust the
inter-slice image and intra-slice regions instead of treating
all inputs and regions equally. On the other hand, com-
pared with the previously proposed dynamic methods that
train multiple models for constructing a pre-defined model
bank or utilize early exit to construct the cascaded dynamic
architecture, our highly efficient Med-DANet V2 not only
requires low training costs (i.e. only trains a single model)
but also implements an extremely lightweight dynamic archi-
tecture network by adopting dynamic resolution adjustment
and adaptive quantization simultaneously.

4. Experimental Evaluation

4.1. Experimental Setup

Data and Evaluation Metric. The first 3D MRI dataset
used for experiments is provided by the Brain Tumor Seg-
mentation Challenge (BraTS) 2019 [2, 3, 34]. It comprises
a training set with 335 cases and a validation set with 125
cases, each with four modalities (T1, T1c, T2, and FLAIR)
rigidly aligned. The size of each modality is resampled to
240× 240× 155. All cases are labeled by four categories:
background (label 0), necrotic and non-enhancing tumor
(label 1), peritumoral edema (label 2), and GD-enhancing
tumor (label 4). The segmentation performance on three
classes: enhancing tumor region (ET, label 4), regions of the
tumor core (TC, labels 1 and 4), and the whole tumor region
(WT, labels 1, 2, and 4) is evaluated by the Dice score and the
Hausdorff distance (95%) metrics, while FLOPs is utilized
for computational complexity measurement. The second
3D MRI dataset employed in our study is obtained from the
Brain Tumor Segmentation Challenge (BraTS) 2020. The
dataset consists of 369 cases for training and 125 cases for
validation. Apart from the difference in sample quantity, the
remaining information for these two MRI datasets is iden-
tical. Due to space limitations, we place the visualization

results in the supplementary material.
Implementation Details. Our Med-DANet V2 is imple-
mented based on PyTorch [38] and trained with 4 Geforce
RTX 3090 GPUs. The candidates for Policy Network are set
to skip, whole image, and crop size 96, while the quantiza-
tion bit selection space is set to 8 bits and 16 bits. We trained
our method for 350 epochs with a batch size of 64. The train-
ing process consists of three phases: the initial 200 epochs
when the Policy Network and full precision segmentation
module are trained, then the middle 100 epochs to train the
employed Crop Position Network and Dynamic Quantization
Model, and the final 50 epochs to train the entire framework.
The initial learning rate is set to 2e−4 and 1e−4 for BraTS
2019 and 2020 respectively. The Adam optimizer and poly
learning rate strategy with warm-up are employed for model
training. We follow the data augmentation techniques and
model regularization in [44]. A combination of the softmax
Dice Loss and GFLOPs Loss is employed, while the weight
factor λ for balancing the two losses is set to 0.06.
Baseline Selection. As the representation of CNNs, U-
Net [41] achieves state-of-the-art performance in medical
segmentation owing to its powerful information extraction
ability. Compared to the original U-Net, the modified ver-
sion makes an improvement in both accuracy and complexity.
Thus we choose the modified 2D U-Net with 16 base chan-
nels as the baseline in our framework.

4.2. Results and Analysis

BraTS 2019. We conduct experiments on the BraTS
2019 validation set and compare our Med-DANet V2 with
previous state-of-the-art (SOTA) approaches. The quantita-
tive results are as reported in Table 1. Obviously, our method
achieves comparable or higher performance than previous
SOTA methods with significantly less computational com-
plexity. Specifically, our method reaches the Dice scores of
80.08%, 90.27%, 81.28% on ET, WT, TC, respectively. In
addition, Hausdorff Distance metrics of 3.494%, 5.871%,
6.170% on ET, WT, TC prove the credibility of our segmenta-
tion results from another perspective. Besides, Med-DANet
V2 has impressively lower complexity compared to other
SOTA methods. For instance, Med-DANet [44] has a com-
putational complexity 4.1 times of ours per slice, while the
model complexity of TransBTS [43] is incredibly 17.3 times
of ours. These findings strongly support the effectiveness of
unifying data and model structure for dynamic inference.

BraTS 2020. The comparisons between our Med-DANet
V2 with previous SOTA approaches on BraTS 2020 are as
reported in Table 2. Our method reaches 80.38%, 90.14%,
81.16% on Dice scores and 10.172%, 6.153%, 8.221% on
Hausdorff Distance with a GFLOPs of 33.85 per case. It
shows that our framework can significantly improve infer-
ence efficiency while maintaining comparable segmentation
accuracy. For example, Med-DANet [44] has a computa-
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Table 1. Performance Comparison on BraTS 2019 Validation Set.

Backbone
Dice Score (%) ↑ Hausdorff Dist. (mm) ↓ FLOPs (G) ↓

ET WT TC ET WT TC Per Case Per Slice

3D U-Net [13] 70.86 87.38 72.48 5.062 9.432 8.719 1,669.53 13.04
V-Net [35] 73.89 88.73 76.56 6.131 6.256 8.705 749.29 5.85

Attention U-Net [37] 75.96 88.81 77.20 5.202 7.756 8.258 132.67 1.04
Wang et al. [13] 73.70 89.40 80.70 5.994 5.677 7.357 - -
Chen et al. [9] 74.16 90.26 79.25 4.575 4.378 7.954 - -
Li et al. [26] 77.10 88.60 81.30 6.033 6.232 7.409 - -

TransUNet [7] 78.17 89.48 78.91 4.832 6.667 7.365 1205.76 9.42
Swin-UNet [5] 78.49 89.38 78.75 6.925 7.505 9.260 250.88 1.96
TransBTS [43] 78.36 88.89 81.41 5.908 7.599 7.584 333.09 2.60

Med-DANet [44] 79.99 90.13 80.83 4.086 5.826 6.886 77.78 0.61

Ours 80.08 90.27 81.28 3.494 5.871 6.170 19.36 0.15

Table 2. Performance Comparison on BraTS 2020 Validation Set.

Backbone
Dice Score (%) ↑ Hausdorff Dist. (mm) ↓ FLOPs (G) ↓

ET WT TC ET WT TC Per Case Per Slice

3D U-Net [13] 68.76 84.11 79.06 50.983 13.366 13.607 1,669.53 13.04
V-Net [35] 61.79 84.63 75.26 47.702 20.407 12.175 749.29 5.85

Deeper V-Net [35] 68.97 86.11 77.90 43.518 14.499 16.153 - -
3D Residual U-Net [50] 71.63 82.46 76.47 37.422 12.337 13.105 407.37 3.18

Liu et al. [29] 76.37 88.23 80.12 21.390 6.680 6.490 - -
Ghaffari et al. [14] 78.00 90.00 82.00 - - - - -

TransUNet [7] 78.42 89.46 78.37 12.851 5.968 12.840 1205.76 9.42
Swin-UNet [5] 78.95 89.34 77.60 11.005 7.855 14.594 250.88 1.96
TransBTS [43] 78.50 89.00 81.36 16.716 6.469 10.468 333.09 2.60

Med-DANet [44] 80.57 90.28 81.34 6.474 6.718 7.416 77.71 0.61

Ours 80.38 90.14 81.16 10.172 6.153 8.221 33.85 0.26

tional complexity 2.3 times of our method, while the com-
plexity of TransBTS [43] is incredibly 10.0 times of ours.

4.3. Ablation Study

To better understand the proposed Med-DANet V2, we
conduct ablation experiments on components and settings.
All studies are conducted with a U-Net baseline on the BraTS
2019 training set under the five-fold cross-validation setting
unless specified otherwise.
Ablation Study on the Dynamic Architecture. We first
conduct effectiveness validation of Med-DANet V2 frame-
work for the dynamic adaption in the spatial domain (S)
and quantization architecture (Q). As shown in Table 3a,
our method achieves significant improvements in both seg-
mentation accuracy and model efficiency compared to base-
line. The fine-grained spatial-wise dynamic adaption reduces
the computational complexity by nearly 2.2 times and im-
proves all the Dice Scores. The flexible dynamic architecture
adaption reduces computational complexity by about 1.9
times without sacrificing too much precision. By integrat-
ing the advantages of both aspects, the results of accuracy

and efficiency prove the significance of taking spatial and
architecture-wise adaption into consideration for dynamic
medical inference.

Ablation Study on the Weight Factor λ of the GFLOPs
Loss. In this section, we explore the optimal balance be-
tween model complexity and performance. As described
in Sec. 3.5, we introduce λ to control the computational
complexity of the model. Ablation results are listed in Table
3b, which indicates that λ = 0.06 is the optimal weight
for achieving the best trade-off. Continuing to increase the
constraint on computational complexity will make the model
select some slices to use higher resolution while they perform
better in low resolution. And also the high-resolution slices
with small foregrounds may weaken the model’s ability to
focus on large targets.

Ablation Study on the Policy Space. We explore the effect
of policy space by using different combinations of resolution
and skipping. The resolution candidates are set to 2n, namely
32, 64, 96, and the whole image. As shown in Table 3d, the
policy space of {Skip, 96, Whole} achieves the best trade-off
in accuracy and efficiency compared to all the alternatives.

7877



Dynamic Dice Score (%) ↑ FLOPs (G) ↓

S Q ET WT TC Per Slice

- - 78.31 90.61 82.59 17.07

X 78.40 90.95 83.39 7.87

X 77.10 90.76 81.86 9.01

X X 78.55 91.01 82.85 2.75

(a) Ablation Study on the Components of Med-
DANet V2 Architecture.

λ
Dice Score (%) ↑ FLOPs (G) ↓

ET WT TC Per Slice

0.1 78.5 90.86 82.88 2.17
0.08 78.43 90.93 82.80 2.23

0.06 78.55 91.01 82.85 2.75

0.04 78.32 90.43 82.36 4.12

(b) Ablation Study on the Weight Factor λ
of the GFLOPs Loss.

Quantization Dice Score (%) ↑ FLOPs (G) ↓

Space ET WT TC Per Slice

{8, 12} 77.07 90.41 82.63 2.74

{8, 16} 78.55 91.01 82.85 2.75

{12, 16} 76.81 90.27 81.58 2.69
{8, 12, 16} 77.69 90.59 82.73 3.25

(c) Ablation Study on the Quantization Space.

Policy Space
Dice Score (%) ↑ FLOPs (G) ↓

ET WT TC Per Slice

{Skip, 32, Whole} 78.24 89.41 81.37 2.67

{Skip, 64, Whole} 78.89 90.60 82.81 3.63

{Skip, 96, Whole} 78.55 91.01 82.85 2.75

{Skip, 64, 96, Whole} 78.64 90.52 82.26 3.67

(d) Ablation Study on the Policy Space.

Backbone Method
Dice Score (%) ↑ FLOPs (G) ↓

ET WT TC Per Slice

U-Net [41]
Baseline 77.04 90.27 82.53 17.07

Ours 78.55 91.01 82.85 2.75

TransBTS [43]
Baseline 78.55 91.25 82.80 37.73

Ours 79.01 91.03 82.18 3.55

(e) Ablation Study on Different Baselines.

Table 3. Ablation study of various aspects of our proposed Med-DANet V2 approach.

And the further increase of candidates in policy space may
not achieve better performance.
Ablation Study on the Quantization Space. In this sec-
tion, we investigate the impact of using different combi-
nations of Quantization Space, as displayed in Table 3c.
Intermediate quantization bits such as 8, 12, and 16 are se-
lected as candidates for the quantization space. Among them,
{8,16} achieves the best balance between accuracy and com-
putational complexity. Setting the quantization space as
{8,12,16} and {12,16} would increase the model’s capac-
ity, but the fixed constraints of λ introduce biases towards
smaller values in both the decision space and quantization
space, resulting in inadequate segmentation performance.
Although {8,12} has the similar computational complexity
as {8,16}, its upper limit of 12 bits hinders the segmentation
for some complex slices.
Ablation Study on Different Baselines. We choose two
baselines (the modified 2D UNet and the 2D version of
lightweight TransBTS) to verify the compatibility and scala-
bility of our framework because they represent two popular
architectures (i.e. convolutional neural networks and vision
Transformers). As shown in Table 3e, by unifying spatial
adaption and dynamic quantization architecture, our frame-
work significantly surpasses both baselines in computational
complexity with comparable or even better performance.

5. Discussion and Conclusion

In this paper, we present a study to explore the potential
of dynamic inference in medical volumetric segmentation.
We propose to unify the spatial dynamic adaption and dy-
namic model quantization to handle the slice heterogene-
ity in medical volume data. From the perspective of data

properties and model structure, we focus on the 3D MRI
brain tumor segmentation and propose a novel framework
named Med-DANet V2 with adaptive input selection and
dynamic architectures to pursue the trade-off between seg-
mentation accuracy and efficiency. In comparison with the
previous work Med-DANet in this research direction, more
fine-grained dynamic spatial adapting, and more flexible dy-
namic structural adapting are jointly incorporated to greatly
promote the model efficiency. Extensive experiments on two
benchmark datasets for multimodal 3D MRI brain tumor
segmentation demonstrate that our Med-DANet V2 reaches
comparable or better performance than previous state-of-the-
art methods with significantly less model complexity.
Broader Impact and Limitation. Our study offers a novel
perspective and solution to realize efficient medical volu-
metric segmentation for clinical applications by holistically
considering the unique characteristics of medical volume
data along with adaptive model capacity adjustments. Our
approach could be especially beneficial for time-sensitive
medical diagnoses and treatment planning, where our frame-
work’s efficiency could lead to quicker and potentially more
accurate clinical decisions. The proposed framework opens
up a new avenue for achieving efficient volumetric segmen-
tation in clinical settings, thereby serving as a catalyst for
future research in this domain.

However, one potential limitation could be that our cur-
rent method for fine-grained, spatially-aware dynamic adap-
tation is restricted to isolating important foreground regions
with regular geometries. This shortcoming identifies an av-
enue for future research, specifically the development of
more nuanced dynamic input adaptation techniques capable
of accurately identifying and segmenting foreground regions
with irregular shapes.
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