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Abstract

Chest X-Ray (CXR) images play a crucial role in clini-
cal practice, providing vital support for diagnosis and treat-
ment. Augmenting the CXR dataset with synthetically gen-
erated CXR images annotated with radiology reports can
enhance the performance of deep learning models for vari-
ous tasks. However, existing studies have primarily focused
on generating unimodal data of either images or reports. In
this study, we propose an integrated model, CXR-IRGen, de-
signed specifically for generating CXR image-report pairs.
Our model follows a modularized structure consisting of a
vision module and a language module. Notably, we present
a novel prompt design for the vision module by combin-
ing both text embedding and image embedding of a ref-
erence image. Additionally, we propose a new CXR re-
port generation model as the language module, which effec-
tively leverages a large language model and self-supervised
learning strategy. Experimental results demonstrate that
our new prompt is capable of improving the general quality
(FID) and clinical efficacy (AUROC) of the generated im-
ages, with average improvements of 15.84% and 1.84%, re-
spectively. Moreover, the proposed CXR report generation
model outperforms baseline models in terms of clinical effi-
cacy (F1 score) and exhibits a high-level alignment of image
and text, as the best F1 score of our model is 6.93% higher
than the state-of-the-art CXR report generation model. Our
code is available at https://github.com/junjie-shentu/CXR-
IRGen.

1. Introduction

Medical imaging plays a crucial role in medical practice
by providing spatially resolved information about organs,
tissues, and bones. The chest X-Ray (CXR) image is the
most common medical image due to its cost-effectiveness
and low radiation dose. Notably, on average, 238 CXR im-
ages are acquired per 1000 of the population annually in
industrialized countries, with 129 million CXR images ac-

quired in the United States in 2006 [4]. However, the large
number of CXR images increases the workload and diagno-
sis time, posing a challenge for radiologists. Deep learning
techniques provide huge support to this issue by demon-
strating promising performance in AI-assisted medical ap-
plications, including segmentation and diagnosis [26, 38].
Nonetheless, the availability of high-quality medical data
is still limited due to privacy protocols and imbalanced
data distribution, which further constrains the deployment
of deep learning models in the medical field [19, 27, 40].

For this purpose, deep generative models are utilized to
augment the CXR image dataset. Previous studies have
demonstrated the generation of CXR images using deep
generative models, including generative adversarial net-
works (GANs) and diffusion models [2, 3, 5, 6, 19, 21, 27,
31,43]. CXR images are typically annotated with radiology
reports detailing clinical observations made by radiologists,
as depicted in Fig. 1. However, the majority of previous
studies have primarily focused on generating high-quality
CXR images, overlooking the importance of paired radiol-
ogy reports. To the best of our knowledge, no study has
yet addressed the feasibility of generating paired CXR im-
ages and radiology reports in a unified workflow. The gen-
erated CXR image-report pairs can significantly extend the
applications of the augmented dataset and provide substan-
tial support for training deep learning models that handle
data from various modalities.

This work introduces Chest X-Ray-Image Report Gener-
ation(CXR-IRGen), an integrated model designed to gener-
ate CXR image-report pairs. In detail, CXR-IRGen is modu-
larized and consists of a vision module and a language mod-
ule (Fig. 2), providing high flexibility in generating multi-
modal CXR image-report pairs or unimodal images or re-
ports. Furthermore, we evaluate the performance of CXR-
IRGen on the test split of MIMIC-CXR dataset [18] and
compare it with the baseline models concerning the gen-
eral quality and clinical accuracy of the generated CXR im-
age and report. Experimental results demonstrate that CXR-
IRGen surpasses the baseline models in generating high-
quality and clinically accurate CXR images and reports,
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while ensuring clinical alignment of the generated image-
report pairs. In summary, the contributions of our paper are
as follows:

1. We propose CXR-IRGen, an integrated model that gen-
erates CXR image-report pairs based on a modularized
structure comprising a vision module and a language
module. The model supports multiple generative tasks,
including the generation of unimodal images, reports,
and multimodal image-report pairs.

2. We introduce a novel design of the prompt for the text-
to-image diffusion model in the vision module by com-
bining text embedding with image embedding of a ref-
erence image. The new prompt enhances the genera-
tion quality across different backbones of the diffusion
model.

3. We propose a novel CXR report generation model as
the language module, which utilizes a large language
model and self-supervised learning strategy. The gen-
erated CXR reports exhibit promising performance in
terms of both natural language metrics and clinical ef-
ficacy metrics.

Figure 1. CXR image with radiology report

2. Related Work
2.1. Generative models for CXR image generation

In recent years, Generative Adversarial Networks
(GANs) are frequently adopted for generating CXR images,
and promising results were attained [2, 3, 19, 21, 27, 31, 39,
46]. Nonetheless, GANs exhibit problems including mode
collapse and training instabilities, which increase training
difficulties, and degrade generation quality. On the other
hand, denoising diffusion models are proposed recently,
which avoid these problems by adopting likelihood-based
models and have been verified to outperform GANs in terms
of the generation quality in general fields [10, 14, 32, 36].
In the medical domain, Chambon et al. [5, 6] sought the
feasibility of adapting a pre-trained latent Diffusion Model
[37](LDM) for generating CXR images, finding that fine-
tuning the U-Net component of the LDM enables the do-
main adaption of a pre-trained LDM. They presented the

RoentGen that can generate high-fidelity and diverse CXR
images with radiology-specific text prompts. Packhäuser
et al. [33] verified the performance of LDM in generat-
ing high-quality CXR images, and found that the images
generated by LDM outperform those by PGGAN in an ab-
normality identification task. Weber et al. [43] proposed a
cascaded LDM Cheff that can generate high-quality CXR
images on a 1-megapixel scale. Based on the conclusions
drawn by Chambon et al. [5,6], we adopt a pre-trained LDM
as the backbone of the vision module, and attempt methods
to further improve generation quality.

2.2. Generation of CXR reports

Many prior studies treat the generation of CXR reports
as an image captioning task that generates natural language
text conditioned on image input [25]. Image captioning
models adopt an image encoder to extract information from
the input image and a text decoder to synthesize corre-
sponding text conditioned on the extracted vision informa-
tion [41, 44]. Jing et al. [17] leveraged a CNN-RNN struc-
ture with a hierarchical LSTM [22] being the text decoder
to generate corresponding descriptions and localize sub-
regions. Xue et al. [45] used a stacked LSTM decoder in
the CNN-RNN structure. Liu et al. [25] introduced a hier-
archical generation strategy for CNN-RNN-RNN architec-
ture, which enables the model to look at different parts of
the image and enhance captioning accuracy. Ma et al. [29]
introduced the contrastive attention mechanism that can bet-
ter represent the visual features of abnormal regions. Chen
et al. [7] proposed the memory-driven Transformer that
uses transformers as backbones of the encoder and decoder.
Based on Meshed-Memory Transformer (M2Trans) [9],
Miura et al. [30] proposed two new rewards for capturing
the factual completeness and report consistency, and opti-
mized these rewards via reinforcement learning.

On the other hand, the presence of medically inconsistent
and incoherent reports can still be frequently found in the
reports generated by image captioning models [16]. Endo
et al. [12] developed a retrieval-based CXR report genera-
tion method CXR-RePaiR that uses a Contrastive Language-
Image Pre-training (CLIP [35]) model to retrieve the report
with the highest similarity score. CXR-RePaiR gets a higher
F1 score than the baseline models, but much lower natu-
ral language metrics. Jeong et al. [16] also introduced a
retrieval-based method X-REM that uses a novel image-text
match score. Our work takes advantage of both the image
captioning model and retrieval-based model, and applies a
two-stage CXR report generation method in the language
module, which further improves generation quality com-
pared to the aforementioned models.
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3. Method
The inference process of CXR-IRGen is depicted in

Fig. 2. CXR-IRGen accomplishes a ”label-to-image & re-
port” task, taking the label from the MIMIC-CXR dataset
as input, which alleviates the difficulties and complexities
of input preparation. The input labels are subsequently con-
verted into simple text to leverage the capabilities of the
pre-trained CLIP text encoder. Simultaneously, a reference
image with the same label is selected from the training set
and encoded by a pre-trained CLIP image encoder. By com-
bining the CLIP text and image embeddings, we obtain the
conditional information for LDM sampling. The image em-
bedding produced by the denoising backbone serves two
purposes. First, it is decoded into the pixel space to cre-
ate human-perceptible images. Additionally, it is projected
into text embedding by a prior model for report generation.
Consequently, we can obtain clinically accurate and aligned
CXR image-report pairs by inputting simple labels.

3.1. Text-to-image generation and optimization
with the diffusion model

The diffusion model is a probabilistic model specifically
designed to describe the distribution of an observed sample
x0 ∼ q(x0) by learning the reversal of a gradual and multi-
step noising process, in which a Markov Chain of variables
x1 . . . xT is produced and expressed as [14, 28]:

q (xt | xt−1) = N (xt;
√
αtxt−1, (1− αt) I) (1)

where α is a noise schedule parameter. Furthermore,
LDM applies the diffusion model in a latent space through
the VAE (variational autoencoder) [20], which compresses
the high-dimensional images into low-dimensional latent
space. The denoising process is performed by a denoising
backbone conditioned on the input information. The opti-
mizing objective of LDM is given by:

LLDM = EE(x),y,ε∼N (0,1),t

[
∥ε− εθ (zt, t, c)∥22

]
(2)

where x represents an input image x ∈ RH×W×3 in pixel
space, and c denotes the conditioning information. E is the
VAE encoder, t ∈ [1, T ] is a timestep, and zt is the im-
age latent at timestep t of the Markov Chain. ε and εθ
are standard Gaussian noise and predicted noise residue, re-
spectively. In the vanilla LDM, the denoising backbone is a
CNN-based U-Net consisting of down-sampling blocks and
up-sampling blocks with skip connections between them.
Besides, the feasibility of replacing the CNN layers with
Vision Transformer (ViT) [11] was discussed, and a ViT-
based backbone named U-ViT was proposed [1]. Following
the conclusions drawn by Chambon et al. [5,6], we fine-tune
the LDM on CXR images using a text-to-image approach to
evaluate its domain-adapting performance. Both the U-Net

and U-ViT backbones are involved and analyzed. To lever-
age the powerful capabilities of the pre-trained CLIP text
encoder, we transform input labels into semi-structured text
using the format of ”A chest X-Ray image with ..., without...,
and unclear about ...”, where the three blanks are filled by
pathology marked as 1.0, 0.0, and -1.0 in the label, respec-
tively.

In text-to-image generation [37], the text prompts are
projected into text embedding, and we additionally com-
bine the CLIP reference image embedding of an image that
shares the same label as the input label with the CLIP text
embedding. We hypothesize that the inclusion of an addi-
tional reference image embedding is beneficial for generat-
ing high-quality CXR images, as the model can access more
structural and semantic information from the input. There-
fore, the optimization objective can be expressed as:

LLDM = EE(x),y,ε∼N (0,1),t

[
∥ε− εθ (zt, t, τt(yt), τi(yi))∥22

]
(3)

where yt represents the input text, and yi represents the ref-
erence image. τt and τi denote the CLIP text encoder and
CLIP image encoder, respectively. Due to the difference in
model architecture, the combination of the CLIP reference
image embedding with the CLIP text embedding varies. For
the U-Net backbone, we concatenate the image embedding
and text embedding, while for the U-ViT backbone, we take
the average value of them. Moreover, during the preparation
of the reference image, we first search for a reference im-
age with the same label in the training set. If none is found,
then we search for an image with the same positive elements
(marked as 1.0) but different negative elements (marked as
-1.0) as the reference image.

The fine-tuning process follows the standard design of
LDM fine-tuning and domain-adaption [5, 6] with the ex-
ception of the input design, as depicted in Fig. 3. We use
a pre-trained Stable Diffusion model (checkpoint v1.4 [37])
with the U-Net backbone as the LDM, and a pre-trained U-
ViT backbone [1].

3.2. CXR report generation with self-supervised
learning

Image captioning models often exhibit inconsistency and
incoherence between input images and generated reports,
whereas retrieval-based models prioritize clinical accuracy,
overlooking the consistency between retrieved and original
reports [12]. We propose a two-stage CXR report genera-
tion method in the language module of CXR-IRGen that in-
tegrates the strengths of both models. In the first stage, we
utilize a pre-trained large language model with an encoder-
decoder architecture to process the CXR reports. Specifi-
cally, we encode the text into a sequence of text embedding
and obtain the average value of all text embedding in the
sequence as a representative text embedding. Subsequently,
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Figure 2. An overview of the inference process of CXR-IRGen

Figure 3. Illustration of the training process of the vision module (* denotes the frozen part)

we use this representative text embedding as the prompt for
the decoder to reconstruct the input text. The loss function
is calculated as the cross-entropy between the original and
reconstructed text, expressed as:

LCE = −
n∑

i=1

tilog(pi) (4)

where ti and pi are ith elements of the original and re-
constructed text, respectively. n denotes the total sequence
length.

In the second stage, a prior model is employed to project
the image embedding produced by the vision module into
the corresponding text embedding. The training objective
is to minimize the mean squared error and maximize the
cosine similarity between the original and reconstructed text
embeddings, which is given by:

Lprior =
1

m

m∑
i=1

(yi − ŷi)
2
+λ

[
1−

∑m
i=1 yiŷi∑m

i=1(yi)
2
∑m

i=1(ŷi)
2

]
(5)

where yi represents the text embedding projected by the
prior model, and ŷi represents the text embedding encoded
from the input text. m is the dimension of text embedding,
and λ is a scaling coefficient that aligns the magnitude of
the cosine similarity with that of the mean squared error,

set at 0.01 for this study. Other options for Lprior will be
discussed in the ablation tests in Sec. 5.3.

Specifically, the first stage resembles the image caption-
ing models that recurrently produce a sequence of text.
However, in our approach, we utilize highly summarized
text information from the representative text embedding as a
prompt for the decoder, rather than using vision information
extracted from images. This design enhances the consis-
tency between the original and generated reports compared
to retrieval-based models. Similar to contrastive learning,
which is commonly used in retrieval-based models, the sec-
ond stage operates on image and text embeddings. Both the
image encoder and text encoder are pre-trained and frozen.
Instead of comparing the image embedding and text embed-
ding based on cosine similarity, we employ a prior model
to directly project and match the image and text embed-
ding pair using a novel loss function Eq. (5) under self-
supervised learning, thereby strengthening their alignment.
This approach ensures that the generated report exhibits
high consistency with both the image and the original re-
port.

For the large language model, we select Bidirectional
and Auto-Regressive Transformers (BART [23]) as the
backbone, and for the prior model, we utilize ViT as the
backbone. The training process of both stages is depicted in
Fig. 4.
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(a) First stage (b) Second stage

Figure 4. Illustration of the training process of the language module during (a) first stage and (b) second stage (* denotes the frozen part)

4. Experiments
4.1. Dataset

In this study, we use MIMIC-CXR [18] for training and
evaluation. MIMIC-CXR is a publicly available large-scale
dataset consisting of 377,110 images and 227,943 reports
from 225,000 studies. Following Chambon et al. [5], we
extract images in the ”PA” (postero-anterior) view position
from the training set to fine-tune the vision module. For
training the language module, we extract the findings and
impression sections separately from all reports in the first
stage. In the second stage, we select images in the ”PA”
view position from each study that contains a report, and
if ”PA” is inapplicable, we consider images in the ”AP”
(antero-posterior) view position, as they are also taken from
a frontal view and present the same content to those in the
”PA” view position but in a mirrored position. All the
extracted images are matched with the reports to form a
dataset of image-report pairs.

For model testing, we utilize the official testing split of
the MIMIC-CXR dataset. We randomly extracted 1000
images in the ”PA” view position to evaluate the vision
module. Subsequently, we select images in the ”PA” or
”AP” view position that are paired with reports and extract
findings and impression sections, resulting in 2608 image-
findings/impression pair samples and 1460 image-findings
pair samples. The former is adopted to evaluate the clinical
efficacy of generated reports, while the latter is employed to
evaluate the natural language metrics.

4.2. Baselines and evaluation metrics

We conduct a comparative analysis between the vision
module of CXR-IRGen and the vanilla Stable Diffusion
model. Additionally, we compare the effects of different
backbones fine-tuned with and without the CLIP reference
image embedding. For the text module of CXR-IRGen,
we employ three CXR report generation models that have
been tested on MIMIC-CXR, including two image caption-
ing models, namely, R2Gen [7] and M2Trans [30], as well
as one retrieval-based model CXR-RePaiR [12]. Particu-

larly, we re-implement R2Gen and M2Trans using publicly
available code and checkpoints, and we cite the results of
CXR-RePaiR from the original paper.

For the generated CXR images, the general quality is
evaluated using image quality metrics, including Fréchet
Inception Distance (FID) [13], Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity Index (SSIM) [42]. The
clinical efficacy is assessed by the Area Under the Receiver
Operating Characteristic (AUROC) value calculated in bi-
nary classification tasks on CXR images with and without
specific pathologies. Moreover, the quality of the gener-
ated CXR reports is assessed using conventional natural lan-
guage metrics, including BLUE [34] and ROUGE-L [24],
alongside the clinical efficacy metric F1 score. The F1 score
is calculated based on the labels generated by the CheX-
pert [15] labeler for both the original and generated reports.

4.3. Evaluation of CXR images

The image labels from the testing set are used as input
to generate 1000 images for evaluation. The general image
quality metrics are presented in Tab. 1. Compared to the
vanilla LDM, all three metrics exhibit improvements after
fine-tuning, confirming that fine-tuning on domain-specific
data contributes to domain adaptation. When solely tak-
ing text embedding as input, the U-Net backbone variant
fine-tuned for 5k steps outperforms the one fine-tuned for
10k steps. In contrast, for the U-ViT backbone, the vari-
ant fine-tuned for 5k steps demonstrates a better FID score
but worse PSNR and SSIM scores compared to the variant
fine-tuned for 10k steps. Furthermore, we investigate the
effect of the reference image embedding, which shows an
overall improvement in the generation quality of the U-Net
backbone. As for the U-ViT backbone, the reference image
embedding improves the FID score but slightly degrades the
PSNR and SSIM scores. These different effects on general
metrics could be attributed to the way we combine CLIP
text embedding and reference image embedding, as taking
the average value of the text embedding and image embed-
ding may induce information loss.

We employ the U-Net backbone for investigating the
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Table 1. General metrics of CXR images generated by different
models (RIE: reference image embedding)

Model FID↓ PSNR↑ SSIM↑
Baseline
Vanilla LDM 303.4451 6.7723 0.9734

LDM with the U-Net backbone
5k steps without RIE 54.0164 10.9598 0.9889
5k steps with RIE 49.5479 11.2136 0.9897
10k steps without RIE 59.8236 10.3455 0.9873
10k steps with RIE 53.1351 10.4316 0.9875

LDM with the U-ViT backbone
5k steps without RIE 64.4917 11.1186 0.9896
5k steps with RIE 43.4003 10.4192 0.9876
10k steps without RIE 54.5434 11.1798 0.9897
10k steps with RIE 47.8233 10.5437 0.9878

clinical efficacy of the generated CXR images, considering
its clear tendency and superior robustness in analyzing im-
age general metrics, as elaborated in Tab. 1. To evaluate
clinical efficacy, we select five pathologies, namely, Atelec-
tasis, Cardiomegaly, Lung opacity, Effusion, and Pneumo-
nia as positive labels, while No finding serves as the nega-
tive label. Each label is used to generate 500 CXR images,
which are grouped together, resulting in five sub-testing
sets, each containing 500 positive samples and 500 negative
samples. Subsequently, a pre-trained classification model
(DenseNet-121, XRV [8]) is applied to perform a binary
classification task on each sub-testing set, and the AUROC
value is calculated to assess the classification accuracy, with
results presented in Tab. 2. It is observed that CXR images
generated by vanilla LDM exhibit the worst performance, as
all AUROC values are close to 0.5. Following fine-tuning,
the AUROC values for all pathologies improve, and variants
fine-tuned with reference image embedding achieve higher
AUROC values than those without reference image embed-
ding by an average value of 1.84%, indicating that the addi-
tional CLIP reference image embedding enhances clinical
characteristics. Notably, the variant fine-tuned for 10k steps
generates CXR images with higher AUROC scores than the
original images extracted from the training set. This implies
potential overfitting as the model might learn certain fea-
tures highly discriminative to the XRV, therefore the train-
ing steps should be prudently designed, but the effect of
the reference image embedding can still be reflected as the
mean AUROC is improved by 1.89% for this variant.

4.4. Evaluation of CXR reports

We conduct a performance comparison of the language
module of CXR-IRen with the baseline models. The evalua-
tion results, presented in Tab. 3, are based on the original

CXR images from the testing set. Unless specified oth-
erwise, both the original and generated CXR reports refer
to the findings section. We introduce two variants, namely
CXR-IRGen (F) trained solely on the findings section, and
CXR-IRGen (F+I) trained jointly on the findings and im-
pression sections. The natural language metrics are evalu-
ated using only the former, while both variants are used for
assessing clinical efficacy. In comparison to the retrieval-
based model CXR-RePaiR, CXR-IRGen demonstrates a dra-
matic improvement in BLUE-2 score. As the CXR reports
in the dataset are highly diverse, the reports retrieved by
CXR-RePaiR are clinically matched with images but usually
different from the originals. On the other hand, CXR-IRGen
learns the common textual description of the images in the
same class and achieves good proficiency in generating re-
ports consistent with the originals, resulting in the highest
BLUE-1 score among all models, with the other four natu-
ral language metrics being on par with those of R2Gen but
slightly below those of M2Trans. However, it should be
noted that M2Trans’s image encoder is additionally trained
on the CheXpert dataset [15], which may enhance CXR
report generation quality and leads to unfair comparison.
Furthermore, CXR-IRGen exhibits exceptional clinical ac-
curacy, with the variant CXR-IRGen (F+I) achieving the
highest F1 score among all the models.

We also compare the clinical efficacy of all models on
the CXR images generated by the vision module of CXR-
IRGen. We utilize the 3000 generated CXR images intro-
duced in Sec. 4.3 for report generation. The evaluation re-
sults are provided in Tab. 4. It is evident that CXR-IRGen
(F+I) outperforms all other models in terms of clinical ef-
ficacy on the generated CXR images. While CXR-IRGen
(F) demonstrates superior clinical efficacy to R2Gen, it falls
short compared to M2Trans. This difference can be at-
tributed to the fact that M2Trans employs an image encoder
that is additionally trained on the CheXpert dataset [15],
which aids in feature recognition and representation. The
impact of reference image embedding on clinical efficacy is
also reflected. For M2Trans and CXR-IRGen, the F1 scores
are higher on the CXR images generated by the vision mod-
ule trained with reference image embedding by an average
value of 6.58%.

5. Ablation

We conduct an analysis of various design choices in
CXR-IRGen that might affect the generation quality, includ-
ing (1) the strategy of extracting the representative text em-
bedding; (2) utilizing the image or image embedding for
report generation; and (3) different options for Lprior. Note
that all the variants discussed in this section are trained us-
ing the findings section of the CXR report.
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Table 2. AUROC values of the binary classification task on original CXR images and CXR images generated by different models (RIE:
reference image embedding)

Source Atelectasis Cardiomegaly Lung opacity Effusion Pneumonia Mean

Baseline
Original 0.7799 0.8197 0.8081 0.8921 0.7127 0.8025
Vanilla LDM 0.5504 0.5378 0.5876 0.5785 0.5458 0.5600

Proposed approach (U-Net backbone)
5k steps without RIE 0.6303 0.7284 0.6397 0.8128 0.5769 0.6776
5k steps with RIE 0.6470 0.7326 0.6605 0.8126 0.5956 0.6897
10k steps without RIE 0.8897 0.9800 0.8938 0.9867 0.8267 0.9150
10k steps with RIE 0.8688 0.9836 0.9537 0.9953 0.8602 0.9323

Table 3. Comparison of CXR-IRGen and baselines models on original CXR images (Results with * are taken from the original paper [12])

Model BLUE-1↑ BLUE-2↑ BLUE-3↑ BLUE-4↑ ROUGE-L↑ F1 score↑
Baseline
CXR-RePaiR-2* [12] - 0.0690 - - - 0.2560
CXR-RePaiR-Select* [12] - 0.0500 - - - 0.2740
R2Gen [7] 0.2870 0.1651 0.1072 0.0726 0.2093 0.1716
M2Trans [30] 0.3174 0.1917 0.1195 0.0734 0.2252 0.2665

Proposed approach
CXR-IRGen (F) 0.3200 0.1760 0.1066 0.0669 0.2080 0.2695
CXR-IRGen (F+I) 0.2930

5.1. Extracting representative text embedding

During the first training stage of the language module
in CXR-IRGen, we select a representative text embedding
from a sequence of text embedding and use this representa-
tive embedding as input for the BART decoder. The goal is
to ensure that the representative text embedding captures as
much semantic information as possible. Several strategies
for extracting the representative text embedding are con-
sidered, including using the text embedding of the [BOS]
(beginning of sentence) token, the text embedding of the
[EOS] (end of sentence) token, or the averaged text em-
bedding of all tokens. The reconstruction quality is evalu-
ated using different representative text embeddings, and the
results are presented in Fig. 5. Notably, the averaged text
embedding of all tokens outperforms the other strategies in
terms of BLUE and ROUGE-L scores, displaying higher
scores and a more consistent increase during the training
process.

5.2. Image vs. Image embedding

In the language module of CXR-IRGen, we utilize image
embeddings as input for the prior model, whereas image
captioning models typically take images directly as input.
To compare the generation quality, we evaluate the perfor-
mance using both image embeddings and images, and the

Figure 5. Comparison of different representative text embedding
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Table 4. F1 scores of CXR-IRGen and baselines models on CXR images generated by the vision module CXR-IRGen (RIE: reference
image embedding)

Model 5k steps without RIE 5k steps with RIE 10k steps without RIE 10k steps with RIE

Baseline
R2Gen [7] 0.1095 0.1102 0.1895 0.1794
M2Trans [30] 0.2328 0.2347 0.3226 0.3738

Proposed approach
CXR-IRGen (F) 0.2157 0.2280 0.3410 0.3627
CXR-IRGen (F+I) 0.2390 0.2543 0.3603 0.3719

Table 5. Comparison of different variants of CXR-IRGen

Model BLUE-1↑ BLUE-2↑ BLUE-3↑ BLUE-4↑ ROUGE-L↑ F1 score↑
Proposed approach
CXR-IRGen (F) 0.3200 0.1760 0.1066 0.0669 0.2080 0.2695

Change input
Input image 0.3096 0.1658 0.0975 0.0594 0.1996 0.2617

Change loss function
Mean square error 0.3070 0.1616 0.0934 0.0558 0.1951 0.2433
Cosine similarity 0.0206 0.0055 0.0022 0.0008 0.0292 0.0696

results are detailed in Tab. 5. We observe that employing
image embedding as input leads to higher scores in both
natural language metrics and clinical efficacy metrics com-
pared to using raw images, suggesting that the encoding
process meaningfully compresses image information, em-
phasizing relevant details crucial for feature extraction and
recognition by the prior model. Notably, this is consistent
with the observation in image generation tasks reported by
Weber et al. [43], who concluded that semantic features are
more beneficial for a cascaded diffusion model in generat-
ing high-quality and high-resolution CXR images compared
to low-resolution images.

5.3. Choice of Lprior

The prior model within the language module of CXR-
IRGen is responsible for learning a projection from image
embeddings to text embeddings. To achieve this, it is cru-
cial to minimize the distance between the target embedding
space of this projection and the pre-determined text embed-
ding space. In the process of measuring this distance, sev-
eral options are available, including the mean square error,
the cosine similarity, or a combination of both, as shown in
Eq. (5). The mean square error quantifies the Euclidean dis-
tance between two vectors, while the cosine similarity mea-
sures the angle between them. We trained the prior model
with each of these metrics as loss functions, and the result-
ing model performances are presented in Tab. 5. The out-
comes indicate that combining the mean square error and

cosine similarity yields the best result. Particularly, solely
using cosine similarity as the loss function severely limits
model performance, but its inclusion alongside the mean
square error with a coefficient λ that balances their values
significantly improves performance.

6. Conclusion

In this study, we introduce an integrated model called
CXR-IRGen designed for generating high-quality CXR
image-report pairs. CXR-IRGen comprises a vision module
for generating CXR images and a language module for gen-
erating corresponding reports. These modules can either be
utilized together to produce CXR image-report pairs or in-
dependently to generate CXR images or reports separately.
The vision module incorporates a novel prompt design for
the text-to-image LDM by combining text embedding with
a reference image embedding, which enhances the general
quality and clinical efficacy of the generated CXR images.
For the language module, we propose a new CXR report
generation model that benefits from both image captioning
and retrieval-based approaches, leveraging a large language
model and self-supervised learning strategy. The proposed
report generation model demonstrates the ability to produce
coherent, consistent CXR reports, and it outperforms base-
line models in terms of clinical efficacy. Furthermore, the
CXR image-report pairs generated by CXR-IRGen exhibit a
high level of clinical alignment.
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Rügamer. Cascaded latent diffusion models for high-
resolution chest x-ray synthesis. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pages 180–191.
Springer, 2023. 1, 2, 8

[44] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua
Bengio. Show, attend and tell: Neural image caption gen-
eration with visual attention. In International conference on
machine learning, pages 2048–2057. PMLR, 2015. 2

[45] Yuan Xue, Tao Xu, L Rodney Long, Zhiyun Xue, Sameer
Antani, George R Thoma, and Xiaolei Huang. Multimodal
recurrent model with attention for automated radiology re-
port generation. In Medical Image Computing and Com-
puter Assisted Intervention–MICCAI 2018: 21st Interna-
tional Conference, Granada, Spain, September 16-20, 2018,
Proceedings, Part I, pages 457–466. Springer, 2018. 2

[46] Tianyang Zhang, Huazhu Fu, Yitian Zhao, Jun Cheng,
Mengjie Guo, Zaiwang Gu, Bing Yang, Yuting Xiao,
Shenghua Gao, and Jiang Liu. Skrgan: Sketching-rendering
unconditional generative adversarial networks for medical
image synthesis. In Medical Image Computing and Com-
puter Assisted Intervention–MICCAI 2019: 22nd Interna-
tional Conference, Shenzhen, China, October 13–17, 2019,
Proceedings, Part IV 22, pages 777–785. Springer, 2019. 2

5221


