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Abstract

When faced with an out-of-distribution (OOD) question
or image, visual question answering (VQA) systems may
provide unreliable answers. If relied on by real users or
secondary systems, these failures may range from annoy-
ing to potentially endangering. Detecting OOD samples
in single-modality settings is well-studied; however, limited
attention has been paid to vision-and-language settings. In
this work, we examine the question of OOD detection in the
multimodal VQA task and benchmark a suite of approaches
to identify OOD image-question pairs. In our experiments,
we leverage popular VQA datasets to benchmark detection
performance across a range of difficulties. We also produce
composite datasets to examine impacts of individual modal-
ities and of image-question agreement. Our results show
that answer confidence alone is often a poor signal and that
methods based on image-based question generation or ex-
amining model attention can lead to significantly better re-
sults. We find detecting ungrounded image-question pairs
and small shifts in image distribution remain challenging.

1. Introduction
While the visual question answering (VQA) task is fairly

open-ended and recent techniques have gained increasingly
strong performance, their competency is typically restricted
to the concepts and language seen during training – that is
to say for in-distribution samples. On out-of-distribution
examples where either the question or the image does not
resemble the training set, VQA models may provide unre-
liable responses [53]. In real applications, these responses
might range from annoying to potentially endangering – es-
pecially for potential use-cases involving the visually im-
paired. If these out-of-distribution (OOD) samples could
be reliably identified, then the model could instead ab-
stain from answering [5, 9, 18]. Currently, OOD detec-
tion in deep networks remains an active area of research
even in single-modality settings like image or text classi-
fication, and few attempt have focused on multi-modality

Figure 1. In the wild, VQA models are likely to encounter
out-of-distribution (OOD) image-question pairs that are not well-
represented in their training sets due to A novel visuals , C novel
language , or B novel combinations of in-distribution images and
question. In this work, we study OOD detection in VQA.

tasks [27, 34]. In this work, we explore the problem of
out-of-distribution detection in the multimodal visual ques-
tion answering (VQA) setting by benchmarking several ap-
proaches to out-of-distribution (OOD) detection across dif-
ferent model architectures and popular datasets.

Given a training set of image-question pairs sampled
from some joint distribution Pin(I,Q), a new test-time
sample may be out-of-distribution in a number of ways.
It may contain a novel image i′ that is not represented in
the marginal Pin(I) – i.e., a visual novelty. Likewise, it
may contain a novel question q′ that lacks support under
Pin(Q) – i.e., a linguistic novelty. Alternatively, both i′ and
q′ may be in-distribution with respect to their correspond-
ing marginals but are a novel combination without support
under Pin(I,Q) – i.e., a combination novelty. To examine
these cases, we construct a benchmark for VQA OOD de-
tection from six popular VQA datasets – taking VQAv2 [10]
as the in-distribution set and evaluating OOD detection on
samples from VizWiz [11], GQA [14], CLEVR [17], VQA
Abstract Scenes [3] and QRPE [34]. In contrast to prior
work [27], these OOD samples are image-question pairs
and are drawn from data sources that range from very differ-
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ent (CLEVR) to quite similar (GQA) to the in-distribution
set. Taken together, these OOD settings allow us to exam-
ine OOD detection methods for VQA under a wide range of
visual, linguistic, and combination novelties.

We examine unimodal, VQA model-based, and image-
based question generation approaches to detecting novel
image-question pairs – comparing common OOD base-
line approaches. In total, we study twenty-eight differ-
ent model/method configurations and find that question-
generation-based OOD scores can result in strong perfor-
mance in most settings. We analyze the impact of backbone
task performance and pretraining for VQA model-based and
question generation methods. All methods tested still have
difficulty detecting subtle shifts in image distribution and
novel combinations of known images and questions.

2. Related Work

Visual Question Answering (VQA). Proposed by Antol
et al. [3], VQA tasks systems with providing answers to
natural language questions about images. The topic has
received significant interest with many follow-up datasets
[3, 11, 14, 17] and increasingly powerful methods [2, 20,
50, 52, 55]. In this work, we are concerned with identi-
fying out-of-distribution (OOD) question-image pairs that
are sufficiently different from a source dataset. To char-
acterize OOD detection performance, we sample represen-
tative VQA models. Epitomized by Anderson et al. [2],
early VQA models were relatively small networks that per-
formed question-guided image attention before fusing im-
age and question representations. As transformer-based
attention mechanisms [42] gained ground, many models
began incorporating them as part of more complex atten-
tion schemes [50]. Recently, a contingent of methods
pretrain large transformer-based methods on vision-and-
language data from the web to learn broadly useful fea-
tures [33,52,55] before being fine-tuned on the downstream
VQA task. For our analysis, we examine [2], [50], and [52].

Out-of-Distribution Detection (OOD). OOD detection
has been studied in computer vision [13,22,28,30,43,51,54]
and natural language processing [21,26,31,38] extensively,
with much of the work focusing on classification tasks.
These unimodal techniques often focus on predicted con-
fidence [13, 28, 43], energy-based models [30], Bayesian
methods [22], data density estimation, or reconstruction er-
ror [38, 51] to provide anomaly scores indicating if a given
datapoint is OOD. Work in this space can be further divided
by whether out-of-distribution samples are available during
training or tuning (e.g. outlier exposure). In this work, we
consider the OOD detection problem without outlier expo-
sure in a complex multimodal setting.

OOD Detection in Visual Question Answering. Some
prior work has examined specific types of out-of-

distribution samples. Mahendru et al. [34] examined detect-
ing ungrounded samples where both the image and question
were in-distribution but the question mentioned concepts
not present in the image. Likewise, samples in the VizWiz
dataset [11] may be unanswerable for multiple reasons [4]
including severe image blur or image content not aligning
with the question. We include a similar ungrounded setting
in our benchmark. In both of these settings, a dataset of
ungrounded (or unanswerable) image-question pairs is pro-
vided and leveraged to train a supervised model [4, 34]. In
contrast, we consider the setting without outlier exposure.

Most related to our work, Lee et al. [27] examine a
more general OOD detection setting – creating synthetic
OOD examples by replacing images or questions in image-
question pairs. Specifically, Lee et al. used images from
low-resolution image classification datasets like MNIST
and non-question sentences dataset like IMDB. The syn-
thetic distribution shifts may be too severe to adequately
assess the shifts in real-world application. In their setting,
[27] demonstrate that answer confidence alone may not be a
strong signal and proposed the average maximum attention
probability (MAP) method which was shown to be effective
for simple settings with outlier exposure. In this work, we
consider OOD in VQA by bridging across different VQA
datasets – ensuring the OOD sets contain grounded image-
question pairs. Further, we do not use any outlier exposure
to set parameters as in [27].

Selective Prediction in VQA. In selective prediction set-
ting, a model may abstain from samples for which its an-
swer is likely to be wrong [8, 16, 18, 46, 49]. A selective
prediction model consists of a learned function for the tar-
get task and a prediction selector to determine if a sample
should be abstained. Whitehead et al. [45] explore the prob-
lem in the VQA domain with in-distribution data. Dancette
et al. [5] proposed to split training data into subsets and
evaluate them with the VQA backbone trained with the
complement to achieve a better generalization for the pre-
diction selector. They then evaluate their method on OOD
data to measure generalization. Compared to selective pre-
diction, we consider OOD detection in general but note that
our approach could be paired with a VQA model to perform
the selective prediction task.

Robustness to Shortcut Learning in VQA. When associ-
ations between questions and their answers are very con-
sistent in training, prior work has shown that VQA models
may ignore the image content entirely [1, 19, 41]. For in-
stance, if the vast majority of images contain green grass
(rather than yellowed) during training, then VQA models
may learn to “shortcut” the actual visual reasoning and re-
ply to “What color is the grass?” with “green” regardless
of the image content. Benchmarks like VQA-CP [1] and
GQA-OOD [19] that intentionally amplify these answer-
bias effects have been developed to study shortcut learn-
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Figure 2. Novelty types in our benchmark, example out-of-distribution instances, and associated datasets. We note whether a dataset
provided “grounded” pairs – i.e., whether sample question appropriately refer to entities in their associated image.

ing in VQA. These benchmarks represent distribution shifts
where concepts seen during training are presented at differ-
ent rates during testing – e.g. yellowed grass being rare-
but-present in training and frequent in test. Unlike our set-
ting, this means that there is not a notion of any individ-
ual question-image pair being out-of-distribution for these
benchmarks. Further, approaches developed for these tasks
have focused on avoiding shortcut learning due to answer
bias rather than detecting the distributional shift.

3. Out-of-Distribution Detection in VQA
Given a set of question-image examplesDin drawn from

a distribution Pin(Q, I), we are interested in mechanisms to
determine whether a new sample (q, i) is also drawn from
Pin or from some unknown distribution Pout. A typical
paradigm for OOD detection tasks is to define some scoring
function f(q, i) based on Din such that in-distribution and
out-of-distribution samples receive different scores. In this
benchmark, we evaluate a set of scoring functions across
a range of different definitions of Dout with varying simi-
larity to the in-distribution dataset. In this section, we de-
fine the experimental setting and demonstrate the effect of
out-of-distribution data on answer quality. We describe our
scoring functions in the following section.

3.1. Benchmark Datasets

We consider VQAv2 [10] as the in-distribution dataset
and five other visual question answering datasets in our ex-
periments – GQA [14], VizWiz [11], CLEVR [17], VQA
Abstract Scene [3] and QRPE [34] to compose our OOD
validation sets. An overview of the associated novelty types
that we explore is shown in Fig. 2 above.

In-Distribution Dataset. We take the widely-used VQAv2
[10] dataset as our in-distribution set. VQAv2 consists of
over 1 million question-answer pairs based on ∼205,000
images from COCO [29]. By construction, these are con-
sumer photographs containing at least one instance of 80
common objects including vehicles, animals, foods, house-
hold objects, road features, and sporting equipment. The
images tend to be of real scenes, well-framed, and not
blurry. Questions were generated via crowd-sourcing.
Workers were provided an image and prompted to ask a
question about the image that a human could easily answer
but a smart robot might not be able to answer. We denote
the training set as Dtrain

in and test-standard set as Dtest
in .

Out-of-Distribution Sets. We draw OOD samples from the
validation sets of the remaining datasets to represent differ-
ent novelty types. Samples are shown in Fig. 2. We describe
each dataset and its relation to VQAv2 below:

• GQA [14] consists of synthetic questions paired with
natural images. The images are a subset of those from
VQA and thus there is no visual novelty relative to VQA.
The questions however are generated using a probabilis-
tic grammar based on annotations of objects, attributes,
and relationships depicted in the images. Compared with
VQA, GQA questions are more detailed and focus on re-
lations and attributes, i.e., “to the left of” and “small”,
which are not frequently used in VQA questions.

• VQA Abstract Scenes (VQAABS) [3] consists of cartoon
images and human-annotated questions. The images are
composed by humans from a dictionary of clipart and
are significantly different from VQA images. However,
VQAABS questions are quite similar to VQA, having been
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collected in the same fashion under similar instructions.

• VizWiz [11] consists of questions asked by visually-
impaired users via a cellphone application. These images
are often blurry, low-resolution, or do not frame their
content well. The questions focus heavily on identify-
ing objects or writing on objects in the scene. As such
VizWiz represents a departure in both image and ques-
tion content compared to VQA.

• CLEVR [17] is a fully synthetic dataset consisting of
rendered images and automatically generated questions.
The images are generated programmatically as a collec-
tion of geometric primitives with limited types, sizes and
textures in a gray scene. Like GQA, CLEVR questions
are generated via a grammar based on image contents.
CLEVR questions tend to be longer and focus on com-
positions of reasoning skills. As such, CLEVR differs
significantly from VQA in image and question content.

• QRPE [34] is a VQA-based dataset constructed such that
questions refer to entities not present in the images but
are generally plausible given the depicted scene. As both
questions and images come from VQAv2, QRPE samples
are examples of challenging combination novelties.

• IIn/QOut, and IOut/QIn. We construct pairs where
either the question or image from in-distribution VQA
samples is replaced by a random question or image from
one of the out-of-distribution datasets. These are useful
to examine if the in-distribution component acts as a dis-
tractor or if novelty in one modality is easier to detect.

Evaluation and Metrics. For each Dtest
in , Dout pair, we

sample 50,000 examples from each to form a combined
evaluation set. We will provide these instance indexes upon
acceptance to aid replicability. Each question-answer pair is
evaluated by the score function and higher values are inter-
preted as evidence of being in-distribution. Following ex-
isting work in unimodal OOD detection [22, 28, 30, 54], we
report Area Under the Curve of Receiver Operating Char-
acteristic (AUCROC), to compare performance of different
methods. The scale of AUC ROC is [0, 1] and larger AUC
implies better performance.

3.2. Effect of OOD Data on VQA Task Performance

To further motivate our study of OOD detection, we re-
port a cross-domain evaluation of an X-VLM [52] model
trained on the VQA dataset. Without any finetuning, we
evaluate the VQA-trained model on the GQA and CLEVR
datasets and present results in Table. 1 (row 1). While
the model performs well in the in-distribution VQA eval-
uation, performance is significantly degraded for GQA
and CLEVR. These drops cannot just be explained by a
change in dataset difficulty either, because the X-VLM

Methods VQAv2 GQA CLEVR

1 X-VLM (VQAv2 train) 78.4 55.8 32.9

2 In-Distribution SOTA 84.0 [44] 73.6 [35] 99.8 [48]

Table 1. Overall accuracy of X-VLM model tested on OOD
datasets (grey). We find significant performance degradation.

cross-domain performance significantly underperforms in-
distribution trained models (row 2). These results corrob-
orate similar drops in performance identified in [53] while
studying cross-domain transfer for VQA. This suggests out-
of-distribution image-question pairs reduce the reliability of
VQA models; however, if models were equipped with an
OOD detection mechanism, it could possibly abstain from
answering. In the following section, we explore a range of
OOD models and techniques for VQA.

4. Out-of-Distribution Detection Methods
To perform OOD detection, we consider different scor-

ing functions f(q, i) in four broad categories – density-
based, reconstruction-based, prediction-based, and feature-
based scoring functions – reflecting common directions in
OOD methods [47]. We take as convention that high f(q, i)
scores indicate that a sample is likely to be in-distribution.
We overview these methods below and provide full details
of each model in the supplementary materials.

4.1. Density-based Scoring Functions

Directly fitting a distribution toDin is a straight-forward
approach to OOD detection. Given the difficulties of fitting
image density models, we do not present a model of Pin(I)
and instead target just the question distribution.
Language Model (LangM). We train a simple language
model PTransf(q) that approximates the question distribution
Pin(Q) with a 4-layer Transformer. This model is trained
via cross-entropy loss to mimic in-distribution questions.
We take the score function of question q to be

fLangM(q, i) =
|q|
√
PTransf(q) (1)

where |q| denotes the length of q. This a geometric mean of
per-word conditional probabilities and is preferred over tak-
ing PTransf directly to reduce the bias against longer sentences
which tends to occur in language models.
Image-to-Question Captioning Model (I2Q). To jointly
model both modalities, we also fit an image-to-question
(essentially a captioning model) which approximates
Pin(Q|I). We develop a transformer-based encoder-
decoder model [42] that produces a question given spatial
grid features from a ResNet101 [12] model pretrained on
ImageNet [6]. This model is trained via cross-entropy loss
to mimic in-distribution questions given the corresponding
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image. For a new (q, i) pair, we compute a score as the
geometric mean probability of q given a certain image i:

fI2Q(q, i) =
|q|
√
p(q|i) (2)

4.2. Reconstruction-based Scoring Functions

Reconstruction-based methods assume that autoencoder
style models trained on in-distribution methods are likely to
reconstruct out-of-distribution inputs poorly.
RIAD [51] masks portions of an input image and then mea-
sures the error in image inpainting. A U-Net-based [37]
image inpainting network UNET(·) is trained to reproduce
masked out regions in images from Din. At evaluation, a
new image is masked and the negative mean squared error
of the reconstruction is the basis for the OOD score, i.e.

fRIAD(q, i) = −||i− U NET(m� i)||22. (3)

where m is a random mask and� an element-wise product.
Language Variational Autoencoder (Lang-VAE). For
questions, we train a a transformer-based Gaussian VAE.
Inspired by Jiang et al. [15], the model encodes each token
of a question q to a distribution over latent states p(zi|q) and
then decodes the feature sequence Z′ ∼ p(Z|q) back to q.
The model is trained using the standard ELBO-based VAE
objective [23]. For a given (q, i) pair, we measure the geo-
metric mean of probability of reconstructing q as the score:

fLangVAE(q, i) =
|q|
√
p(q|Z′) (4)

4.3. Prediction-based Scoring Functions

Maximum Softmax Probability (MSP). A common OOD
score in classification tasks is simply to consider the pre-
dicted confidence of the classifier. For VQA, this means
taking the probability of the predicted answer of a VQA
model MVQA(·) as the scoring function,

fMSP(q, i) = max
a

MVQA(a|q, i) (5)

While simple, the maximum softmax probability (MSP) has
proven surprisingly effective in image-based OOD detec-
tion when the base model is highly performant on the in-
distribution task – even outperforming more complex meth-
ods [43]. In our experiments with MSP, we consider three
VQA models described in the following section.

4.4. Feature-based Scoring Functions

Feature-base scores use intermediate feature represen-
tations of a trained model to score a sample; for instance,
computing distances to in-distribution samples in some en-
coding of a pretrained network.

Negative Mahalanobis Distance (Maha). Given some fea-
ture encoder z = e(·) we can estimate a mean µ and covari-
ance matrix Σ using data from Dtrain

in and then compute a
negative Mahalanobis distance as

fMaha(ztest) = −
√

(ztest − µ)T Σ−1(ztest − µ), (6)

where ztest is the representation of a given image, question,
or image-question pair from e(·). We use Maha-L, Maha-V,
and Maha-X to refer to distances computed from language,
vision, or a multimodal embeddings.
Average Maximum Attention Probability (MAP) [27]
considers intermediate states of a VQA model and is only
applicable to models using attention mechanisms. Without
loss of generality, an attention-augmented model contains
some number of attention operations that given a set of k in-
put feature vectors produces a k-dimensional attention dis-
tribution A. These features may represent image regions
or question tokens and may be conditioned on some con-
text vector. In the case of modern transformer-based mod-
els, there are many such distributions due to the many self-
attention layers with multiple attention heads. Proposed
in [27], the MAP score for a network with n cross-modal at-
tention distributions (image↔query) A1(q, i), ..., An(q, i)
is computed as the average maximum attention probability
across the attention distributions,

fMAP(q, i) =
1

n

n∑
j=1

maxAj(q, i). (7)

In our experiments, we refer to the original MAP score as
MAP-X and extend it to Language-only/Vision-only vari-
ants MAP-L/MAP-V, where MAP is calculated from only
question / image self-attention modules. We also denote the
average of these three as MAP-A.

5. Benchmarking VQA OOD Detection
We apply the scoring functions from Section 4 to

the datasets from Section 3 – taking VQAv2 as our in-
distribution dataset and all others as out-of-distribution sets.
Using testing splits, we report area under the ROC curve
(AUCROC) for in- vs. out-of-distribution detection as our
metric by thresholding the scoring function outputs.
Base Models. Some of our score functions require pre-
trained VQA models or feature encoders (MSP, MAP,
Maha). We examine a range of three VQA models of dif-
fering task performance and complexity:

• BUTD [2] (2017) is a representative pre-transformer era
VQA model that deploys only a single round of cross-
modal attention between LSTM-encoded question fea-
tures and region features from a pretrained object de-
tector. We use a VinVL-based object detection model
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[55] pretrained on COCO [29], OpenImages [24], Ob-
jects365 [39], and Visual Genome [25] rather than the
original BUTD features. The implementation we use
achieves 66.98% VQA-accuracy on VQAv2 test-dev.

• MCAN [50] (2019) is an early transformer-based model.
Images are encoded as in BUTD, but features are pro-
cessed by multiple rounds of modality-specific self-
attention and question-guided cross-modal attention. The
implementation we use achieves 69.44% VQA-accuracy
on VQAv2 test-dev.

• X-VLM [52] (2021) is a representative large trans-
former architecture wherein pretrained components are
combined and further tuned on large-scale multimodal
datasets. The visual encoder is initialized with a pre-
trained Swin Transformer [32] and the question encoder
and cross-modal layers by a pretrained BERT model [7].
These are then further pretrained with self-supervised ob-
jectives on a combined dataset including VQA [3], Vi-
sual Genome [25], SBU Captions [36] and Conceptual
Captions [40] to learn multimodal representations. The
model is then fine-tuned on the downstream VQA task.
This end-to-end multimodal training is in contrast to the
frozen pretrained elements in MCAN and BUTD. The
implementation we use achieves 78.07% VQA-accuracy
on VQAv2 test-dev. To study the influence of multi-
modal pretraining, we include a variant X-VLM∗ which
has same initialization (Swin+BERT), but is then directly
finetuned on the VQA task.

To study the role of pretrained vision and language en-
coders, we also consider the pretrained Swin [32] and BERT
[7] models used to initialize the X-VLM model.
Features for Maha-*. When extracting features, we take
the outputs from the final modality-specific layer for Maha-
V and Maha-L variants and the final joint encoding for
Maha-X variants. If more than one representation exists
(e.g. for multiple visual or text tokens), we perform a mean-
pool operation. The specific layers used for feature extrac-
tion are described in the supplemental material. Note – for
the sake of space, we report results for Maha-* and MAP-*
for BUTD and MCAN in the supplement only, but summa-
rize the result in the following section.
AUCROC Upper Bounds for VizWiz and GQA. As both
VizWiz and GQA contain real images paired with common
sense questions, it is possible some samples should be con-
sidered in-distribution for VQAv2. As a result, the maxi-
mum achievable AUCROC might be less than 1. To estab-
lish an estimate for this upper bound, we train classifiers to
distinguish training set instances from VQAv2 from those
drawn from VizWiz or GQA. We adapt pre-trained X-VLM
models for this binary classification task. We note that this
outlier exposure setting assumes access to outlier samples –
an oracle setting relative to our actual methods and bench-

mark. These models achieve 0.936 and 0.999 AUCROC
for GQA and VizWiz respectively on our benchamrk, indi-
cating that the sampled in- and out-of-distribution sets are
distinguishable from each other.

5.1. Experimental Results

We report results for selected model-score combination
across datasets in Table 2 due to space limitations, but the
full set of results is available in the supplement. Where
a model can admit multiple score functions, we denote
the score function in parenthesis. We also note whether a
method considers the image and question in column 2-3.
In real-world usage, OOD VQA pairs may originate from a
wide range of cases, we report average over the OOD set-
tings we consider as an aggregate metric. Methods relying
solely on single modalities must gain a score near 0.5 on
mixed datasets which contains OOD data only in the un-
observed modality. We include these for completeness but
gray them out to avoid visual clutter.

We organize our discussion around specific questions
and will refer to row numbers shown in the second column.
How do different scoring function categories compare?
In general, we find that density (rows 1-2) and feature-
based (8-19) tend to outperform reconstruction (3-4)
and prediction-based (5-7) methods on average.

The average performance of reconstruction models is
limited because we only consider unimodal models but mul-
timodal novelties; however, we also see low performance
in settings that rely heavily on the target modality. For in-
stance, RIAD (3) performs poorly in the visually distinct
CLEVR setting – likely because reconstructing the images
with simple background and few objects is quite easy, con-
founding RIAD’s MSE-based scoring function.

For prediction-based methods using maximum softmax
probability (5-7), we find that answer confidence is an un-
reliable predictor of IIn/QOut, and IOut/QIn which are par-
tially in-distribution and ungrounded – corroborating prior
findings for OOD detection of non-question sentences [27].
Interestingly, these methods outperform others on QRPE –
suggesting the VQA models are able to provide reasonable
confidence estimates when both the image and question are
in-distribution. We note that improved VQA task perfor-
mance does weakly correlate with improved OOD detection
from MSP; however, the overall result suggest that model
confidence alone is insufficient for strong OOD detection in
VQA if novel images or questions are expected.

Both density and feature-based models contain variants
that perform well, with the image-to-question (I2Q) model
(2) serving as a strong baseline for settings requiring as-
sessing both modalities. Despite its relative simplicity and
limited training data (just VQA), I2Q shows stable perfor-
mance across different OOD conditions and achieves the
strongest average performance.
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# Method (Score) Q I VIZWIZ GQA CLEVR VQAABS IIn/QOut IOut/QIn QRPE Average
D

en
si

ty
-b

as
ed 1 LangM X 0.768 0.869 0.983 0.606 0.913 0.500 0.439 0.725

2 I2Q X X 0.729 0.884 0.983 0.755 0.956 0.792 0.620 0.817

R
ec

on
st

.
-b

as
ed 3 RIAD X 0.246 0.546 0.016 0.584 0.500 0.145 0.492 0.361

4 LangVAE X 0.554 0.522 0.835 0.512 0.666 0.500 0.512 0.586

Pr
ed

ic
tio

n
-b

as
ed

5 BUTD (MSP) X X 0.775 0.512 0.700 0.608 0.580 0.529 0.698 0.629
6 MCAN (MSP) X X 0.794 0.506 0.667 0.591 0.573 0.518 0.739 0.627
7 X-VLM (MSP) X X 0.714 0.583 0.670 0.656 0.605 0.549 0.726 0.644

Fe
at

ur
e

-b
as

ed

8 X-VLM (Maha-V) X 0.967 0.442 0.988 0.999 0.500 0.732 0.592 0.746
9 X-VLM (Maha-L) X 0.593 0.686 0.940 0.530 0.875 0.500 0.432 0.651

10 X-VLM (Maha-X) X X 0.852 0.534 0.784 0.705 0.685 0.640 0.619 0.688
11 Swin (Maha-V) X 0.933 0.488 0.997 0.983 0.500 0.756 0.561 0.745
12 BERT (Maha-L) X 0.645 0.836 0.942 0.496 0.872 0.500 0.390 0.669

13 Swin (MAP-V) X 0.323 0.623 0.178 0.452 0.500 0.396 0.493 0.424
14 BERT (MAP-L) X 0.449 0.782 0.977 0.519 0.848 0.500 0.550 0.661
15 X-VLM (MAP-V) X 0.849 0.332 0.985 0.495 0.500 0.671 0.542 0.625
16 X-VLM (MAP-L) X 0.960 0.916 0.999 0.570 0.999 0.500 0.605 0.793
17 X-VLM (MAP-X) X X 0.930 0.578 0.857 0.528 0.922 0.816 0.680 0.759
18 X-VLM (MAP-A) X X 0.953 0.880 1.000 0.562 0.998 0.630 0.652 0.811
19 X-VLM∗ (MAP-A) X X 0.962 0.872 0.996 0.560 0.990 0.548 0.681 0.801

Table 2. AUCROC results of OOD detection on different OOD sets (higher is better). All models are trained on the VQAv2 dataset as
in-distribution. The best performing methods are bolded and second best underlined. The Q and I columns denote if the question or image
are considered by the model-score combination. The Average is the averaged score among all categories. Single-modality results are
grayed for off-modality OOD settings – e.g., for a vision-only method evaluated on purely language novelty.

How effective are different modalities? Many of our
model-score combinations have unimodal variants which
we find can perform quite well on individual OOD datasets
where the corresponding modality is more distinct. For
instance, all language-only variants (1,9,12,14,16)
perform well on the CLEVR dataset. Similarly, vision-
only variants based on Swin transformer feature distances
(8,11) identify the cartoonish VQAABS images eas-
ily. However, these approaches can hardly identify QRPE
samples representing novel combinations of in-distribution
questions and images whereas the VQA-based models with
MSP (6, 7) can achieve some non-trivial detection.

For VQA model-based methods, cross-modal score vari-
ants tend not to retain the performance of their unimodal
counterparts. For instance, X-VLM (Maha-X) (10) under-
performs either its vision (8) or language (9) variant (or
both) on all datasets, but achieves relatively stronger perfor-
mance on QRPE where assessing multimodal alignment is
critical. We speculate this is a result of individual modality
information becoming diluted during cross-modal fusion,
such that samples which may be identifiable through one
modality but not the other become more difficult to dis-
cern. On the other hand, compared with X-VLM (Maha-X)

(10), the cross-modal X-VLM (MAP-X) (17) has stronger
IIn/QOut, IOut/QIn performance. Our X-VLM (MAP-A)

(18)model that instead averages the MAP-V, MAP-L, and
MAP-X scores seems to strike a balance between the two –
maintaining more of the individual modality performance
but sacrificing performance in the QRPE setting.

What effect does pretraining have? We introduce a ver-
sion of our best performing model without multimodal
pretraining. X-VLM (MAP-A) (18) and X-VLM* (MAP-A)

(19) differ only in that the X-VLM* did not undergo self-
supervised multimodal pretraining before it was fine tuned
on the VQA dataset. Comparing these, we can see that the
multimodal pretraining does not yield much improvements
in OOD detection performance, much of the capability can
be acquired from initialization and VQA finetuning.

As X-VLM is originally initialized with the Swin and
BERT models, we can also examine the joint effect of mul-
timodal pretraining and VQA task finetuning on these uni-
modal models. Comparing the vision (8) and language-
based (9) Maha variants with the corresponding Swin
(11) and BERT (12) models from which they were ini-
tialized, we see that feature distances do not significantly
nor consistently change in their utility for unimodal OOD
detection. This is in contrast to the behavior for MAP
scores. Both X-VLM (MAP-V) and X-VLM (MAP-L) signifi-
cantly outperform the Swin (MAP-V) and BERT (MAP-L) meth-
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Figure 3. Sample high- and low-scoring samples under four multimodal model-score combinations. For each, we a high and low scoring
sample from in VQA, GQA, VQAABS, and QRPE. We use background color when scores align with in/out-of-distribution status.

ods. Taken together, these results suggest that while the
usefulness of representations does not change dramatically
from multimodal task training, the dynamics of attention do.

Finally, the strong performance of our I2Q model (2)
trained only on VQA suggests that large-scale multimodal
pretraining may not be necessary for strong OOD detection.

5.2. Qualitative Analysis

Figure 3 shows examples that are scored as highly likely
(within top-1% of score) or highly unlikely (within bottom
1% of score) to be in-distribution samples. We consider four
of our methods (rows) that rely on both images and ques-
tions. We select samples to represent no-novelty (VQA),
linguistic-novelty (GQA), visual-novelty (VQAABS), and
combination-novelty (QRPE).

For I2Q (row 1), we find OOD samples with high scores
tend to be simple, well-grounded questions; whereas, the
low scoring examples tend to be not questions “tell me sign
in board”, grammatically incorrect “is the mom and baby
have lunch outside?” or poorly grounded. The “cd” being
difficult to see in the GQA sample and the QRPE sample
being unrelated entirely.

For X-VLM (MSP) (row 2), many of the high scoring
examples have simple questions with strong answer pri-
ors – e.g., “Does the keyboard sit beside the mug?” or
“What other object could the couple sit on?”. The model
may place probability only on a small set of reasonable an-
swers (yes/no or chair/bench/sofa), resulting in a high MSP
score. In contrast, the lower scoring samples are all ques-
tions which VQA models find difficult – measuring heights,

telling time, or judging subjective questions. These samples
suggest that MSP based methods may suffer from biases re-
garding the model’s actual capabilities. This effect may be
particularly amplified by the prevalence of binary questions.

For X-VLM (Maha-X) (row 3), all high-scoring samples are
binary questions while the low-scoring are diverse. This
may be because binary questions make up the plurality of
questions in VQA (38.17% [3]) – skewing the mean and
covariance in the Mahalanobis distance to favor represen-
tations of binary questions. In fact, we observe binary
questions to occur in the top 500 scored VQA example at
roughly twice the rate expected by chance.

For X-VLM (MAP-A) (row 4), the top-scoring samples
tend to have many references to easily-visible objects in the
scene; whereas, the bottom-scoring samples tend to lack
grounding or refer to background elements. This might
be explained by easily-groundable references resulting in
highly activated attention maps.

6. Conclusion

We investigated out-of-distribution detection in visual
question answering – presenting a more realistic VQA OOD
setting composed of 6 popular VQA datasets and 2 compos-
ite datasets. We benchmark OOD detection methods based
on density estimation, reconstruction error, model predic-
tion, and intermediate network features. Further, we exam-
ine how different modalities and pretraining schemes affect
OOD detection. We find that the image-to-question (I2Q)
model achieves strong results despite not benefiting from
large-scale multimodal pretraining.
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