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Abstract

This paper proposes a new image restoration method by
introducing a velocity variable on top of the data position
during recovery. Under the guidance of the degraded im-
age, it can effectively and dynamically control the direction
of the diffusion path in the reverse-time stochastic differen-
tial equation (SDE). So the crucial factor is how to com-
bine the degraded signal as a guide in this second-order
reverse process with velocity, especially in the moving di-
rection as a diffusion path. To this end, we propose a condi-
tional velocity score approximation (CVSA) method based
on the Bayesian principle to approximate the true posterior
conditional velocity score by the sum of a priori conditional
velocity score and an observation velocity score of the de-
graded measurement at the current moment. Our method is
versatile from two perspectives. It can be used for both non-
blind restoration and blind restoration. At the same time,
there is almost no requirement for the degradation operator,
and both linear and nonlinear tasks are acceptable. In non-
blind restoration, including deblurring, inpainting, super-
resolution, phase retrieval, and blind restoration, such as
deblurring experiments, CVSA is better than other methods
and achieves a new state-of-the-art.

1. Introduction
In recent years, with the rapid development of generative

models, especially diffusion generative models (DGM) [12,
27], many fields such as high-quality text-to-image [21],
molecular modelling [32], music synthesis [17], image edit-
ing [19], and image translation [16] have flourished. Among
them, the quality of image restoration based on DGMs have
also been unprecedentedly improved, such as image super-
resolution [9,15], image deblurring [1,4,16], image inpaint-
ing [5, 29] etc. The basic principle behind these restoration
methods is to use the DGM as the prior distribution of real
images, and the degraded image as the observation signal
to refine the prior to obtain the posterior of the ground truth
image. The power of the DGM is that it can generate real

images from white noise with high quality, although this
diffusion path is uncontrolled and the generated images are
inconsistent in content with the given degraded measure-
ments. Therefore, most image restoration methods inject
degraded images into the diffusion path as conditional in-
formation, control and deviate from the path to generate re-
stored images [4, 15, 16, 29]. However, most of these im-
age restoration methods are only carried out in the position
space at present, lacking the modelling of the velocity of the
image on the restoration path.

This paper proposes to model the image restoration in the
position-velocity space. Along the image recovery path, the
position and velocity of the image are diffused, coupled, and
affect each other together. The rate of change of position is
velocity, and the change of the speed can affect the direction
in which the noise image diffuses to the posterior manifold
in the Euclidean space. The key to controlling all this is the
conditional velocity score (CVS) based on the observed de-
graded image at each moment on the path. CVS controls the
evolution of the path that diffuses from the position-velocity
initial variable of white noise to the ground truth image (cor-
responding to the degraded one), but it is intractable. By
Bayes’ Theorem, the CVS can be transformed into the sum
of the unconditional velocity score and the observation ve-
locity score. In the case of a pre-trained DGM, the uncon-
ditional velocity score is immediately available, and thus
the only missing piece in the whole puzzle is the velocity
score of the degraded signal observed at the current mo-
ment. Based on an improved Jensen inequality, we convert
the degraded signal velocity score at the current moment to
the velocity score at the initial moment, which can be ob-
tained through the model of the image restoration problem.
To underline the critical computations in this image restora-
tion process, our method is termed as CVS approximation
(CVSA).

In summary, this paper makes the following technical
contributions,

• Via estimating CVS, we propose and realize image
restoration in position-velocity space for the first time.
Based on a general generative model in this space,
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Figure 1. CVSA can be competent for a variety of different tasks, including linear, nonlinear, and even blind recovery.

CVSA does not need to be trained for specific image
restoration tasks and is applicable to both linear and
nonlinear tasks as shown in Figure 1.

• We propose a method to transfer the observed signal
velocity score at the current moment to the calculation
of the score at the initial moment, enabling the estima-
tion of the intractable CVS.

• Experiments on multiple databases and multiple tasks,
including deblurring, inpainting, super-resolution,
phase retrieval, and blind deblurring, prove that CVSA
is effective and achieves state-of-the-art (SOTA) re-
sults.

The following content of this paper includes: First
we will introduce the related work and preliminary back-
ground; then the methodology and implementation details
of CVSA will be described in Section 4; afterwards, we
demonstrate the effectiveness of the method through exper-
iments and finally summarize the full paper.

2. Related Work
Our work belongs to the field of image restoration (in-

verse problem solving) based on diffusion models. Re-
search in this area is divided into two categories, one is
supervised regression using paired data for each specific re-
covery problem; the other is a universal method for all re-
covery tasks based on a general DGM. There are two ways
to realize the method in the former category. One is to use

the degraded measurement as the conditional input and the
original signal as the output to train the DGMs, such as
SR3 [24], SR [31], etc. The other way is image-to-image
translation, which is to directly find the continuous diffu-
sion path between the degraded signal distribution and the
ground truth image distribution through training, such as
Palette [23], I2SB [16], etc. This category of method re-
quires a model trained separately for each restoration task,
which is not universal and cannot be applied to other tasks.

Our method belongs to the second category, which is
more related to CVSA. This type of method has received
more and more attention due to its advantage that one model
can solve all problems. There are two paradigms in this cat-
egory, namely replacement-based and reconstruction-based.
The philosophy behind the replacement-based method is
to directly add the degraded measurement to the predic-
tions on the diffusion path, and the resulting combined sig-
nal is used as the input for the next diffusion step. Typ-
ical methods include ΠGDM [26], Pyramid DDPM [22],
MCG [6], etc. The principle of the reconstruction-based
method is to correct the conditional score by approximating
the classifier guidance term based on minimizing the error
between the degraded signal and the constructed degraded
signal predicted by the DGMs. Typical examples include
ScoreSDE [27], DDRM [15], ILVR [2], CCDF [7], DPS [5],
etc. Most of the above methods are carried out in the image
space, lacking the simulation of the diffusion speed of the
image on the restoration path. Our CVSA fills this gap.
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3. Preliminaries

Diffusion models have achieved state-of-the-art perfor-
mance in image restoration [5, 26, 29]. The basic principle
of these methods is to add conditional information into the
diffusion process from white noise to real images, such as
degraded images to control the direction of the generated
diffusion paths. This paper attempts to further explicitly
introduce the velocity (or momentum) field to control the
direction of the restoration path, so as to obtain a better and
faster method.

Generative models based on first-order stochastic dif-
ferential equations (SDE) can be enhanced, both in terms of
the quality and speed in generation of data, by introducing
a characterization of the velocity in the diffusion process.
A typical representative of which is the following critically-
damped Langevin diffusion (CLD) process [8]{

dxt = M−1βvtdt,

dvt = −βxtdt+ ΓβM−1vtdt+
√

2Γβdwt.
(1)

where xt,vt ∈ Rd, t ∈ [0, 1] are the position (data) and
momentum process respectively. M > 0 is mass, and it
controls the degree of coupling between xt and vt; friction
coefficient Γ > 0 governs the amount of noise (from the
standard Wiener process wt) injected into the system; scal-
ing coefficient β > 0 guarantees that the system converges
to an equilibrium state within a finite time. M and Γ must
satisfy the critical damping condition Γ2 = 4M , so that
the system can smoothly converge to an equilibrium data
distribution without oscillations.

The image restoration problem is defined as follows

y = H(x) + n, (2)

where the only unknown is x ∈ Rd which is the ground
truth image that needs to be recovered. H is the measure-
ment (or degradation) operator, it can be linear or nonlin-
ear. For example, inpainting, super-resolution, Gaussian
deblurring or motion deblurring are all linear problems,
while phase retrieval and non-uniform deblurring are non-
linear problems. The method proposed in this paper can
be used for both types of operators, as long as it is dif-
ferentiable. n ∈ Re is the measurement noise satisfying
n ∼ N (0, σ2Ie), and y is the observation signal. The task
of image restoration is to produce x̂ given y under the con-
straints of realness (x̂ ∼ q(x), which is the distribution of
ground truth images) and consistency (y = H(x̂)). It can
be formulated as

x̂ = arg min
x

[
‖y −H(x)− n‖22 − λ log q(x)

]
, (3)

which is the problem to be addressed in the next section.

4. Methods
In order to obtain realness and consistency at the same

time, we inject the given degraded measurement y as condi-
tional information into the reverse CLD generation process

dxt = −M−1βvtdt,

dvt = βxtdt+ ΓβM−1vtdt
−2Γβ∇vt log p(xt,vt|y)dt+

√
2Γβdw̄t,

(4)

via the CVS ∇vt
log p(xt,vt|y). However, since the form

of conditional y in different image restoration tasks is dif-
ferent, there is no general diffusion model (or score estima-
tion model) to calculate the CVS. And what we have is a
generic unconditional velocity score estimation model [8].
Intractable CVS needs to be converted into a computable
form. Through Bayes’ Theorem

∇vt
log p(xt,vt|y) = ∇vt

log p(xt,vt)

+∇vt
log p(y|xt,vt), (5)

CVS can be converted into the sum of the unconditional
score ∇vt

log p(xt,vt) and the observation (or measure-
ment) velocity score (OVS) ∇vt log p(y|xt,vt). Among
them, the unconditional score can be obtained by a pre-
trained general CLD diffusion model, while the OVS is
mostly intractable, since there is no direct analytic closed
relationship between diffusion state xt,vt and the measure-
ment y. They are connected by the initial state (x0,v0),
where (xt,vt) and (x0,v0) are associated by Eq. (1), and
y and (x0,v0) are related by Eq. (2). In the next subsec-
tion, we will give an approximation of the OVS through
these two connections.

4.1. Observation Velocity Score Approximation

Let u0 = (x0,v0)>, ut = (xt,vt)
>, and introducing

u0 into the OVS, and integrating over it, we get

p(y|ut) =

∫
p(y|u0)p(u0|ut)du0 ' p(y|û0), (6)

where û0 = Eu0∼p(u0|ut)[u0] =
∫

u0p(u0|ut)du0. Here
we have used the convex integral version of Jensen’s in-
equality [13]

φ

(∫
uf(u)du

)
≤
∫
φ(u)f(u)du, (7)

where f(u) and φ(u) are arbitrary probability density func-
tions and convex functions, respectively. Due to the as-
sumption that n is Gaussian in Eq. (2), thus p(y|u0) is a
convex function in u0. Let p(y|·) → φ(·) and p(·|ut) →
f(·) in Eq. (7), then we have

p

(
y|
∫

u0p(u0|ut)du0

)
≤
∫
p(y|u0)p(u0|ut)du0,
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Figure 2. The position and velocity of the data on the generation path controlled by the input conditions are mutually coupled and evolve,
and it can be seen that both controlled and affected by the input degraded face.

and the gap is roughly proportional to the fourth power of
the distance between ground truth x0 and estimated x̂0 at
time t.

Proposition 4.1. (Determination of the probability of
measurement y given ut) For simplicity of notation,
Eu0∼p(u0|ut) is denoted as E. Under the condition of diffu-
sion state ut at time t, the probability of observing y can be
derived from

p(y|ut) = E [p(y|u0)] = p(y|û0)

+ cE
[
‖H(x0 − x̂0)‖2 ‖x0 − x̂0‖2

]
, (8)

where

c =
1

σ2

∫ 1

0

1

2πd/2σd/2
exp

(
−s

2

2

)
(1− s)

(
s2

σ2
− 1

)
ds.

Proof sketch. Take p(y|su0 + (1 − s)û0) as a function
of s, and then perform a second-order Taylor expansion at
s = 0. Computes the second-order derivative d2p(y|su0 +
(1−s)û0)/ds2, bringing it into the remainder of the second-
order integral. Finally extract the terms that have nothing to
do with s to get Eq. (8). The detailed proof is presented in
the supplementary section.

So far, Eq. (6) and Eq. (8) tell us that û0 (in fact x̂0,
since the particle is assumed in stationary state at the initial
moment, that is the initial v̂0 is assumed to be 0) is the final
piece of the puzzle.

4.2. Initial State Estimation

Getting ut from x0 is easy. Eq. (1) shows that ut is
obtained by directly adding white noise to the velocity v0,
that is, indirectly adding noise disturbance to the image x0

through several diffusion steps. They are linked by the prob-
abilistic transition kernel of linear SDEs [25]. In terms of
CLD as in Eq. (1), we have the exact relation [8]

p(ut|u0) = N (ut;µt,Σt), (9)

where

µt =

(
2βtΓ−1x0 + 4βtΓ−2v0 + x0

−βtx0 − 2βtΓ−1v0 + v0

)
e−2βtΓ−1

= e−2βtΓ−1

(
2βtΓ−1 + 1 4βtΓ−2

−βt −2βtΓ−1 + 1

)(
x0

v0

)
= Dt

(
x0

v0

)
, (10)

and

Σt = Σt ⊗ Id,

Σt =

(
Σxxt Σxvt
Σxvt Σvvt

)
e−4βtΓ−1

, (11)

Σxxt = Σxx0 + e4βtΓ−1

− 1 + 4βtΓ−1 (Σxx0 − 1)

+ 4β2t2Γ−2 (Σxx0 − 2) + 16β2t2Γ−4Σvv0 ,

Σxvt = −β2tΣxx0 + 4βtΓ−2Σvv0

− 2β2t2Γ−1 (Σxx0 − 2)− 8β2t2Γ−3Σvv0 ,

Σvvt = Γ2

4

(
e4βtΓ−1

− 1
)

+ βtΓ + β2t2 (Σxx0 − 2)

+ Σvv0

(
1 + 4βt2Γ−2 − 4βtΓ−1

)
.

But it is not easy to get x0 from ut, since tens or hundreds
of Gaussian diffusion steps have occurred between them.
The distribution of x0 given ut is no longer a simple Gaus-
sian distribution, but its expectation still has a closed-form
solution.

Proposition 4.2. (Estimate the mean of the initial image
from the current moment) Under the condition of ut at time
t, the posterior mean value of the image at time 0 can be
derived from[

Σ−1
t DtE[u0|ut]

]
∆

= ∇vt log p(ut)

+
[
Σ−1
t ut

]
∆
, (12)
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where ∆ .
= d+ 1, d+ 2, · · · 2d indicates to take the second

half of this vector.

Proof sketch. First, x and v are bundled together, and the
relationship between ut and u0 is simplified by using the
fact that the probability density transition matrix (or distur-
bance matrix) of the linear SDEs is a Gaussian distribution.
This relationship is then separated into the product of a dis-
tribution containing only ut and a simple power distribution
containing ut and u0. The last step is to separate x and v,
that is, to take the log and find the score respective to v,
and the result can be obtained by doing an inverse matrix
multiplication. For detailed derivation please refer to the
supplementary section.
Remark 4.3. The distribution of v0 is simple and clear, and
the initial value is taken as 0, although it is a Gaussian distri-
bution with variance λMId. Therefore, the only unknown
quantity in Eq. (12) is x̂0, so it can be obtained.

Now from Eq. (2), Eq. (6), and v0 = 0 we know that

∇vt
log p(y|ut) ' ∇vt

log p(y|x̂0,0)

= ∇vt

[
− 1

2σ2
‖y −H(x̂0)‖22

]
, (13)

which can be obtained through the automatic differentiation
function torch.autograd [20].

Bringing this OVS approximation in Eq. (13) into the
decomposition of CVS in Eq. (5), and then into the reverse
generative CLD in Eq. (4) with conditional input, we can
get the overall image restoration algorithm CVSA, which is
summarized in the next section.

4.3. Algorithm

For the clarity of the algorithm description, all elements
of theDt in Eq. (10) and Σ−1

t in Eq. (11) matrices are listed
as follows

Dt =

(
Dxx
t Dxv

t

Dvx
t Dvv

t

)
, Σ−1

t =

(
σxxt σxvt
σxvt σvvt

)
, (14)

and the whole restoration process of CVSA is shown in Al-
gorithm 1. Figure 2 shows how CVSA controls the evolu-
tion of position and velocity under the influence of the ini-
tial degraded image conditional input in the case of mutual
coupling.

4.4. CVSA for Blind Restoration

As can be seen from Algorithm 1, we need to know the
exact form of H to use CVSA. But in practical applica-
tions, such as blind deblurring, the exact hyperparameters
in the blurring kernel of H are not known, and the problem
in Eq. (3) becomes

x̂, k̂ = arg min
x,k

[‖y − k ∗ x− n‖22

− λ1 log q1(x)− λ2 log q2(k)]. (15)

Algorithm 1 CVSA for image restoration
Input and initialization: Observed measurement y, the
degradation operator H in Eq. (2), xT ∼ N (0, Id), vT ∼
N (0,MId), uT = (xT ,vT )>, dt = 1/T , v0 = 0, and
the pre-trained general velocity score (∇vt

log p(ut)) pre-
diction model is Sθ(ut, t).
1: for t = T, T − 1, · · · , 1
2: #Initial state estimation from current moment

dt ← σxvt ∗Dxx
t + σvvt ∗Dvx

t ,
x̂0 ← [σxvt ∗ xt + σvvt ∗ vt + Sθ(ut, t)] /dt.

3: #Approximate the CVS
st ← Sθ(ut, t) +∇vt

[
− 1

2σ2 ‖y −H(x̂0)‖22
]
.

4: #Use the Eq. (4) to update x and v, that is
xt−1 ← xt −M−1βvtdt, and
vt−1 ← vt + βxtdt+ ΓβM−1vtdt− 2Γβstdt

5: #Do not add Wiener noise in the last step
If t > 0, then vt−1 ← vt−1 +

√
2Γβ
√
dtz,

where z ∼ N (0, Id).
Output: x0.

It can be seen from the above problem that k and x are in
a symmetrical position, and neither of them has particular-
ity. Therefore, CVSA can also be used to restore k just like
restoring x, that is to say, k and x can be predicted at the
same time only when a blurred image y is observed. The
model and process of predicting k are similar to those of x
and its complete calculation process is summarized in Al-
gorithm 2.

5. Experiments
5.1. Datasets and Setup

We tested CVSA on four different datasets all
at 256×256 resolution, including CelebA-HQ [18],
AFHQ [3], FFHQ [14], and Products-6k [10].

For the image degradation operator H in Eq. (2) and the
corresponding restoration tasks, we tested and compared the
performance of CVSA under 8 configurations, namely (1)
Gaussian blur, using a kernel with a size of 61×61 and a
standard deviation of 3.0; (2) Motion blur, using the third-
party generated code1 with a kernel of size 61×61 and in-
tensity of 0.5; (3) For box-type inpainting, randomly mask
out the signals on all RGB channels with a size of 128×129;
( 4) For random-type inpainting, 92% of the pixels on all
channels are randomly masked; (5) Non-linear blurring, us-
ing an algorithm called Blur Kernel Space encoding [28] to
generate; (6) Phase recovery, where the degradation opera-
tor is a Fourier transform, and only its amplitude informa-
tion is taken; (7) Super-resolution, using bicubic downsam-
pling; (8) Blind deblurring, which has both motion blur and
Gaussian blur, the size of both kernels are 61×61 with a
Motion Blur strength of 0.5 and a Gaussian Blur strength of
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Figure 3. Qualitative comparison of different algorithms on FFHQ.

3.0. n was the same in all tasks, and σ was 0.05.

CVSA was compared with several of the best methods
at present, including denoising diffusion restoration mod-
els (DDRM) [15], diffusion posterior sampling (DPS) [5],
manifold constrained gradient (MCG) [6], iterative la-
tent variable refinement (ILVR), and parallel DPS (Blind-
DPS) [4]. For all these methods, we use their publicly avail-
able pre-trained checkpoints. However not all methods have
available models on all data. For example, DDRM has only
CelebA-HQ checkpoints; DPS, MCG, and BlindDPS only
have pre-trained models on FFHQ, while ILVR has avail-
able models on all datasets except Products-6k.

1https://github.com/LeviBorodenko/motionblur

5.2. Results and Discussion

We have done quantitative evaluations based on peak
signal-to-noise-ratio (PSNR) [30], structural similarity in-
dex (SSIM) [30], and Fréchet Inception Distance (FID) [11]
distances for image restoration qualities. Mean square error
(MSE) is used to evaluate the recovery accuracy of the ker-
nel in blind deblurring.

The results of five linear restoration tasks are shown
in Table 1. It can be seen that CVSA is better than al-
most all other comparison methods on FFHQ, CelebA-HQ,
and AFHQ-dog in PSNR, SSIM, and FID. Compared with
the previous SOTA method DPS, CVSA has a relative im-
provement of 5% in SSIM and a relative decrease of 10%
in FID. Compared with ILVR on the three datasets, CVSA
has an average performance improvement of 50% on both
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Table 1. PSNR, SSIM, and FID in a comparative study of different SOTA image restoration methods with our CVSA on FFHQ, CelebA-
HQ, and AFHQ-dog under 5 different linear degradation operators. Bold: best on each dataset.

Data Method 4 × SR Inpainting (box) Inpainting (random) Deblurring (Gauss) Deblurring (motion)
PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓

FFHQ

MCG 18.05 / 0.245 / 172.1 10.98 / 0.206 / 337.7 10.50 / 0.047 / 477.2 11.33 / 0.147 / 299.6 11.27 / 0.093 / 328.6
ILVR 17.30 / 0.413 / 40.84 15.09 / 0.352 / 83.23 11.39 / 0.353 / 171.4 17.19 / 0.409 / 41.07 17.12 / 0.410 / 42.22
DPS 23.64 / 0.666 / 35.63 23.22 / 0.800 / 30.06 23.64 / 0.686 / 34.38 24.85 / 0.702 / 29.15 23.31 / 0.652 / 31.64

CVSA 26.65 / 0.690 / 30.86 24.22 / 0.857 / 27.41 24.22 / 0.724 / 30.87 23.10 / 0.738 / 28.83 23.60 / 0.674 / 29.77

CelebA
DDRM 29.06 / 0.828 / 38.87 - 15.49 / 0.421 / 149.6 31.16 / 0.870 / 28.04 -
ILVR 18.03 / 0.457 / 41.44 15.31 / 0.395 / 71.40 10.96 / 0.366 / 194.6 17.90 / 0.455 / 41.63 17.92 / 0.456 / 42.18
CVSA 33.14 / 0.831 / 33.47 30.53 / 0.574 / 38.06 13.44 / 0.456 / 14.35 38.76 / 0.892 / 26.76 40.40 / 0.554 / 35.00

AFHQ ILVR 17.60 / 0.378 / 33.70 14.89 / 0.319 / 60.88 11.73 / 0.313 / 210.27 17.41 / 0.373 / 32.91 17.31 / 0.371 / 33.54
CVSA 26.70 / 0.743 / 22.15 25.20 / 0.696 / 28.54 23.59 / 0.686 / 27.33 24.13 / 0.701 / 24.19 23.53 / 0.635 / 23.37

Algorithm 2 CVSA for blind deblurring
Input and initialization: Observed signal y, xT ∼
N (0, Id), vT ∼ N (0,MId), uT = (xT ,vT )>, dt = 1/T ,
v0 = 0, and the pre-trained general score (∇vt

log p(ut))
prediction model is Sθ(ut, t); kT ∼ N (0, Ik), v′T ∼
N (0,MIk), u′T = (kT , v′T )>, v′0 = 0, and the pre-
trained unconditional velocity score (∇v′t

log p(u′t)) predic-
tion model is Sθ′(u

′
t, t).

1: for t = T, T − 1, · · · , 1
2: #Initial image state prediction from current moment

dt = σxvt ∗Dxx
t + σvvt ∗Dvx

t ,
x̂0 ← [σxvt ∗ xt + σvvt ∗ vt + Sθ(ut, t)] /dt.

3: #Initial kernel state prediction from current moment
dt = σkv

′

t ∗Dkk
t + σv

′v′

t ∗Dv′k
t ,

k̂0 ←
[
σkv

′

t ∗ kt + σv
′v′

t ∗ v′t + Sθ′(u
′
t, t)
]
/dt.

4: #Approximate the CVS for image

st = Sθ(ut, t) +∇vt

[
− 1

2σ2

∥∥∥y − k̂0 ∗ x̂0

∥∥∥2

2

]
.

5: #Approximate the CVS for kernel

s′t = Sθ′(u
′
t, t) +∇v′t

[
− 1

2σ2

∥∥∥y − k̂0 ∗ x̂0

∥∥∥2

2

]
.

6: # Use Eq. (4) to update
xt−1 ← xt −M−1βvtdt,
vt−1 ← vt + βxtdt+ ΓβM−1vtdt− 2Γβstdt.

7: Then use the Eq. (4) to update,
kt−1 ← kt −M−1βv′tdt,
v′t−1 ← v′t + βktdt+ ΓβM−1v′tdt− 2Γβs′tdt.

8: #Do not add Wiener noise in the last step
If t > 0, then vt−1 ← vt−1 +

√
2Γβ
√
dtz,

v′t−1 ← v′t−1 +
√

2Γβ
√
dtz′,

where z ∼ N (0, Id) and z′ ∼ N (0, Ik).
Output: x0 and k0.

PSNR and SSIM, and an average 30% decrease on FID.
Figure 3, 4, and 5 show the qualitative results on the three
datasets, and it can be seen that CVSA is better than other
methods in terms of authenticity and consistency. There are
also sample results on two nonlinear restoration tasks in
Figure 3, 4, and 5, which also show that CVSA is supe-

Figure 4. Qualitative comparison of different algorithms on
AFHQ-dog.

rior to other comparison methods. In particular, other meth-
ods have failed on the phase retrieval task, and CVSA can
still restore the ground truth image. Table 2 proves this
advantage from the quantitative perspective. On FFHQ,
CVSA outperforms both DPS and ILVR on three image
quality metrics. On CelebA-HQ and AFHQ, CVSA im-
proves PSNR by at least 40%, SSIM by at least 50%, and
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Table 2. PSNR, SSIM, and FID in a comparative study of dif-
ferent SOTA image restoration methods with our CVSA in phase
retrieval and non-linear deblurring on FFHQ, CelebA-HQ, and
AFHQ-dog. Bold: best on each dataset.

Data Method Phase retrieval Non-linear deblurring
PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓

FFHQ

MCG - 14.86 / 0.245 / 200.0
ILVR 6.128 / 0.069 / 369.7 17.19 / 0.410 / 41.44
DPS 11.81 / 0.318 / 169.2 22.87 / 0.636 / 37.68

CVSA 12.45 / 0.326 / 50.87 25.25 / 0.653 / 34.80

CelebA ILVR 6.248 / 0.081 / 311.4 17.81 / 0.451 / 41.27
CVSA 15.20 / 0.421 / 97.78 24.54 / 0.662 / 25.04

AFHQ ILVR 6.035 / 0.061 / 218.5 17.33 / 0.371 / 33.95
CVSA 11.10 / 0.245 / 44.33 24.19 / 0.593 / 27.40

Figure 5. Qualitative comparison of different algorithms on
CelebA-HQ.

Table 3. PSNR, SSIM, FID, and MSE (for kernel estimation) in
a comparative study of different SOTA blind deblurring methods
with our CVSA on FFHQ. Bold: best.

Method Motion deblurring Gaussian deblurring
PSNR↑/SSIM↑/FID↓/MSE↓ PSNR↑/SSIM↑/FID↓/MSE↓

BlindDPS 23.66 / 0.684 / 29.62 / 0.130 26.18 / 0.757 / 26.18 / 0.101
CVSA 25.83 / 0.700 / 26.92 / 0.116 28.90 / 0.781 / 24.23 / 0.071

FID by more than 50% on average compared with ILVR.
Table 3 shows the performance on blind deblurring

task. Although the performance of CVSA on the four met-

Figure 6. CVSA can be applied to the preprocessing of com-
plex and fast automatic checkout for de-occlusion and de-blurring,
improving checkout efficiency and commodity recognition perfor-
mance.

rics is better than the previous SOTA method BlindDPS, the
advantage is not obvious. Therefore, how to further improve
the performance of CVSA in blind recovery is an interesting
future direction. At the same time, its application can also
be extended to other blind restoration tasks, such as imaging
through turbulence.

CVSA is a model that can be applied to all kinds of
datasets, not just images of human faces or dogs. Figure 6
shows that the image of products in the supermarket can
also be restored very well. This preprocessing method can
overcome hand occlusion and quick motion blurring prob-
lems in the automatic checkout, thereby improving perfor-
mance and efficiency. This is a good application candidate
for the algorithm in this paper.

6. Conclusion

By introducing a position-velocity space and a second-
order Langevin inverse SDE conditioned on degraded im-
ages in this space, we propose an image restoration method
called CVSA. The key point of this method is to realize
the approximation of the difficult CVS by transferring the
measurement probability at current moment to the initial
moment. CVSA is suitable for linear and nonlinear tasks,
non-blind and blind restoration, and does not require sepa-
rate training for specific tasks. Experimental results show
that CVSA is better than previous SOTA methods.

In our method, the velocity score estimates p(y|û0) of
the degraded image at the current moment is the lower
bound of the true value p(y|ut). A more accurate estimate
can be obtained if the remainder of the Jenssen inequal-
ity estimate is added, which we expect to be achieved by
Monte Carlo sampling of the estimate. This is the direction
we want to try in future work.
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