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Abstract

This paper tackles the problem of object counting in
images. Existing approaches rely on extensive training
data with point annotations for each object, making
data collection labor-intensive and time-consuming. To
overcome this, we propose a training-free object counter
that treats the counting task as a segmentation problem.
Our approach leverages the Segment Anything Model
(SAM), known for its high-quality masks and zero-shot
segmentation capability.  However, the vanilla mask
generation method of SAM lacks class-specific information
in the masks, resulting in inferior counting accuracy. To
overcome this limitation, we introduce a prior-guided mask
generation method that incorporates three types of priors
into the segmentation process, enhancing efficiency and
accuracy. Additionally, we tackle the issue of counting
objects specified through text by proposing a two-stage
approach that combines reference object selection and
prior-guided mask generation. Extensive experiments on
standard datasets demonstrate the competitive performance
of our training-free counter compared to learning-based
approaches. This paper presents a promising solution
for counting objects in various scenarios without the
need for extensive data collection and counting-specific
training. Code is available at https://github.
com/ shizenglin/training - free — object —
counter.

1. Introduction

Object counting refers to the task of estimating
the number of specific objects present in an image.
Traditionally, class-specific object counting approaches
have been developed to count objects belonging to
predefined categories such as humans, animals, or cars.
These approaches, e.g., [I, 8, 12, 18, 23, 26, 29, 30, 33],
demonstrate excellent performance when counting objects
within their trained categories. = However, they face
limitations in counting objects that fall outside their
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Figure 1. The objective of this work is to build a training-free
object counting model, where we can specify what to count with
prompts such as points, boxes, or texts.

predefined categories during testing. On the other hand,
class-agnostic object counting approaches, as seen in recent
works [13, 16, 17, 19, 24, 27, 28], offer a more flexible
solution by enabling the counting of objects from arbitrary
categories with the aid of a few support exemplars. This
paper aims to contribute a training-free class-agnostic
counting approach, thereby enhancing the versatility and
applicability of object counting in various scenarios.

In class-agnostic counting, the dominant approach
involves generating a density map through a similarity
map, which compares visual features between exemplars
and query images. The advantage of the similarity map
is its independence from specific object classes, allowing
dynamic adaptation during counting. Research efforts have
focused on improving the quality of similarity maps to
enhance counting accuracy [5,13,17,19,27,28,31,32]. Once
a high-quality similarity map is obtained, the goal is to learn
a model that maps it to the corresponding density map. The
count is derived by summing the density values. However,
these methods typically require a large amount of training
data with point annotations for each object, making data
collection labor-intensive and time-consuming. As a result,
scaling density-based counting approaches across multiple
visual categories becomes challenging.

To address the challenges mentioned earlier, this paper
aims to develop a training-free object counter capable of
counting specified objects through input prompts such as
points, boxes, or texts, as illustrated in Fig. 1. To achieve
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this, the counting task is formulated as a segmentation
problem. Specifically, a segmentation model is employed
to identify and separate individual objects specified by
input prompts, resulting in a set of binary segmentation
maps corresponding to different target objects.  The
estimated object count is then obtained by counting the
number of these maps. For the segmentation model,
the Segment Anything Model (SAM) is considered due
to its exceptional ability to generate high-quality masks
and perform zero-shot segmentation in diverse scenarios
using input prompts like points or boxes. However,
the vanilla mask generation method of SAM alone does
not produce satisfactory results, as it lacks class-specific
information in the masks. To mitigate this issue, a
prior-guided mask generation method is introduced by
incorporating three types of priors into the segmentation
process of SAM. These priors serve as additional guidance
to refine the mask generation process and enhance counting
accuracy. Furthermore, we tackle the challenge of counting
objects specified through text. To address this, we
propose a two-stage approach that combines reference
object selection and prior-guided mask generation. This
approach enables accurate counting of objects specified
through textual prompts.

Overall, we make three contributions in this paper:
(i) We approach the class-agnostic counting task as a
prompt-based segmentation problem. By doing so, we
eliminate the need for extensive data collection and
model training, thereby making counting more accessible
to the public. (1) We propose a new prior-guided
mask generation method that improves the efficiency
and accuracy of the segmentation process in SAM by
incorporating three types of priors. (iii) We present a
new two-stage approach for counting objects specified
through text, combining reference object selection with
the prior-guided mask generation method.  Through
extensive experiments on standard datasets, we validate the
competitive performance of our training-free counter when
compared to learning-based approaches.

2. Related Works
2.1. Learning-based object counting

Class-specific object counting focuses on counting
objects belonging to predefined categories, like humans,
animals, or cars. The dominant approach is to employ
regression-based methods to generate density maps. This
method, initially proposed by Lempitsky et al. [8], has
been the foundation for subsequent works [2—4, 10, |1,

,22,25,26,33]. Density-based counting requires point
annotations for each countable object in training images.
These points are convolved with Gaussian kernels to create
density maps for training. A model is then trained to predict

a density map for each input image, and the object count
is obtained by summing the pixel values in the predicted
density map. While class-specific counters perform well on
trained categories, they lack flexibility in counting objects
outside their predefined categories during testing.

Class-agnostic object counting aims to count objects of
arbitrary categories using only a few support exemplars
[5, 13, 16, 17, 19, 20, 24, 27, 28, 30-32].  Unlike
class-specific counting relying on predefined common
objects in training images, class-agnostic counting allows
users to define and customize objects of interest using
support exemplars. While density map prediction remains
prevalent, class-agnostic methods learn a mapping from
similarity maps to density maps. The key is that the
similarity map is independent of specific object classes,
enabling dynamic adaptation for counting arbitrary classes.
Research focuses on improving similarity map quality [13,

,19,27,28] and addressing issues like test-time adaptation
[16] and the need for human-annotated exemplars [16,24].

Density-based counting methods often demand extensive
training data with point annotations for each object, which
can be a laborious process when dealing with millions of
objects across thousands of images. Scaling these methods
across various visual categories becomes challenging. To
overcome this, we introduce a training-free object counter.
It allows object counting using prompts like points, boxes,
or text, eliminating the need for training. This approach
broadens the possibilities for counting objects in diverse
scenarios, without the data collection and counting-specific
training burden

2.2. Prompt-based foundation model

The emergence of large language models like ChatGPT
has transformed the field of natural language processing
and extended to computer vision. These “foundation
models” exhibit impressive generalization in zero-shot
and few-shot scenarios. In computer vision, CLIP is a
notable foundation model that utilizes contrastive learning
to train text and image encoders, enabling it to handle
novel visual concepts and data distributions through text
prompts [15]. CLIP demonstrates exceptional zero-shot
transfer capabilities across diverse visual domains. Another
foundation model, the segment anything model (SAM), is
designed for image segmentation [7]. SAM utilizes prompts
like points and boxes to generate high-quality object masks,
achieving remarkable performance on various segmentation
benchmarks and showcasing zero-shot transfer abilities
across diverse datasets.

These foundation models have revolutionized the field of
computer vision, offering exciting possibilities for powerful
generalization and the capacity to tackle novel tasks and
data distributions without requiring explicit training on
those specific instances. Building upon the capabilities
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Figure 2. Training-free counting model with prompts. (a): The first step in the vanilla method is to create a similarity map from the
input prompts (see Figure 3). Then, we generate masks for all objects in the image using point grids as prompts, which are processed
in batches. To score each object indicated by a mask, we calculate the average similarity within the masked area. If the score exceeds a
preset threshold, e.g., 0.5, we identify it as a target object. Finally, we count all the identified target objects to determine the total. (b): Our
advanced method improves SAM’s mask generation by integrating three key priors. Firstly, we create a similarity map using input prompts,
as in the vanilla method, which helps label positive and negative points. Secondly, we maintain an overall segment map that includes all
current segmented regions, avoiding redundant processing by checking for existing points. Thirdly, we use the reference object feature F'r
as a semantic prior, enhancing SAM’s ability to identify and segment target objects in the image. These priors enable us to focus solely on
target objects, improving segmentation accuracy. The object count is determined by the number of output segment maps.

of CLIP and SAM, we propose a training-free object
counter in this work, pushing the boundaries of zero-shot
learning and generalization capabilities in the field of object
counting.

3. Training-free Counting Method

This paper considers the problem of class-agnostic
counting, in which the category of objects is specified by
input prompts such as points, bounding boxes, or texts.
To tackle this problem, we present a new approach that
eliminates the need for training. Our method leverages
the segmentation foundation model as its basis, enabling
accurate and efficient counting. A comprehensive overview
of our method is provided in Fig. 2.

3.1. Counting by segmentation

We formulate our counting task as a segmentation
problem. Specifically, we employ a segmentation model
to identify and separate the individual objects specified
by input prompts from an image, resulting in a set of
binary segmentation maps corresponding to different target
objects. The estimated object count is calculated as the
number of these maps.

The segmentation model f plays a crucial role in
determining the accuracy of object counting. In this
paper, we leverage SAM [7] as the foundation model
for segmentation. SAM has been shown to generate
high-quality masks and perform zero-shot segmentation in
diverse scenarios, using input prompts such as points or
boxes. SAM comprises three essential components: an
image encoder f;., a prompt encoder f,., and a mask
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decoder f,,4. During the segmentation process, SAM first
utilizes f;. to extract the features of the input image, while
fpe encodes the provided prompts. The encoded image and
prompts are then fed into f,,q, which produces the final
mask output.

To incorporate SAM into our counting task, we start
by presenting a vanilla method, as illustrated in Fig. 2a.
In particular, given an image I and input prompts P, we
first generate binary segment masks of the reference objects
indicated by the input prompts, denoted as S=f(I, P).
Meanwhile, we can obtain the image feature Fr=f;.(I)
and compute the feature of the reference objects by
element-wise multiplication between the reference masks
and the image feature, denoted as Fr=F; ® S where
© denotes the Hadamard product. The similarity map
Sim between the image feature F; and the reference
feature FI(%k) is computed with the cosine similarity metric.
Subsequently, we proceed to generate masks for all objects
present in the image by employing point grids (32 points
on each side) as prompts to segment the entire scene,
resulting in {mask™,... mask(™}. The similarity
score of each object indicated by each mask is calculated
by averaging the masked similarity values, denoted as
scoreW=8Sim ® mask(®. If the score!”) surpasses a
predefined threshold e, we consider mask( as indicating
a target object. Finally, we determine the total count by
tallying all the identified target objects.

Despite the impressive performance of the vanilla
method in various scenarios, we have identified
two limitations that hinder its overall efficiency and
accuracy. Firstly, the post-processing step, which involves
determining target objects from all objects in the image
using a similarity map, is not as efficient as desired. This
process requires segmenting all objects, which can be
computationally expensive and time-consuming. Secondly,
determining the appropriate similarity score threshold e
presents a significant challenge. The similarity map is not
flawless, making it difficult to select an optimal threshold.
A high threshold may lead to missed target objects,
resulting in an underestimation of the object count, while a
low threshold may count non-target objects, leading to an
overestimation of the count. To address these limitations,
we propose a new approach called prior-guided automatic
mask generation. This approach leverages prior knowledge
to improve the efficiency and accuracy of object counting.

3.2. Prior-guided mask generation

In order to generate masks for all target objects in
the image, it would be ideal to have specific prompts for
each target object. However, in practice, we often only
have prompts for a few target objects. To overcome this
limitation, we employ a regular grid of ¢ x ¢ points that cover
the entire image as prompts to generate masks. However,
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Figure 3. Similarity map generation with point or box prompt.
To process the input image and prompt, we employ SAM, which
allows us to extract the image feature Fr and obtain the reference
object mask. By multiplying the image feature with the reference
object mask, we obtain the reference object feature Fr. The
similarity between the image feature F7 and the reference feature
Fr is calculated using cosine similarity. ©® and e denote the
Hadamard product and the Euclidean dot product, respectively.

this approach may segment non-target objects, leading to
inaccurate results. To address this challenge, we incorporate
three types of priors into the segmentation process. These
priors assist in distinguishing between positive and negative
points within the grid, ensuring that only the desired target
objects are accurately segmented. A visual illustration of
our method is provided in Fig. 2b.

Similarity prior. To incorporate the similarity prior, we
compute the cosine similarity between the reference object
feature and the image feature using the cosine similarity
metric, resulting in a similarity map, as illustrated in Fig.
3. We then apply Otsu’s binarization approach [14] to
create a binary similarity map, serving as the label map.
In the label map, points in the grids corresponding to a
value of 1 are considered positive points, while the rest are
regarded as negative points. By utilizing this label map,
SAM can effectively focus on segmenting the contiguous
regions surrounding the positive points while disregarding
the negative ones. This incorporation of the similarity
prior enhances the segmentation process by leveraging
the information from the similarity map, leading to more
precise identification and separation of the target objects
within the image.

Segment prior. To address the computational memory
constraints of SAM when processing all points from the
grids simultaneously, the points are divided into batches
for sequential processing. In this way, we can leverage the
segments generated from the first batches as priors to guide
the segmentation of the subsequent batches. Since multiple
points from grids may be used as prompts for an object,
these points may result in redundant processing by SAM,
leading to the generation of multiple masks for the same
object. This redundancy is both inefficient and inaccurate.
To address this issue, we maintain an overall segment map
that contains all the segmented regions up to the current
batch. When processing the current batch, if any points
from the batch are already present in the segment regions,
we remove those points from the current batch. Also, if
there are no positive points in the updated batch, this batch
won’t be processed by SAM. By leveraging the overall

326



Clip
Surgery

“strawberry” Clip similarity

Binarization

Yo

Similarity map
generation with
box prompt

—

Region selection, Box creation

Our similarity

Figure 4. Similarity map generation with a text prompt. Our approach starts with a coarse similarity map computed using CLIP-Surgery.
From this map, we select reference objects through several steps. First, we binarize the similarity map. Then, we identify the largest
connected component, likely containing the target objects. Further refinement is achieved by creating bounding boxes around sub-regions
within this component. These bounding boxes serve as prompts for SAM, resulting in a high-quality similarity map (see Fig. 3).

segment map, SAM can refine and adjust its segmentation
predictions based on the already segmented regions. This
approach enhances the efficiency and accuracy of the
segmentation process by avoiding redundant computations
and ensuring consistency across different batches.

Semantic prior. In addition to the similarity prior
and segment prior, which aid in selecting positive and
distinctive points as prompts for segmenting target objects,
we recognize that the point prompts alone may not provide
sufficient information to accurately segment these objects.
To address this limitation, we propose incorporating the
reference object feature F'r as a semantic prior, enabling
the mask decoder f,, to better identify and segment the
target objects within the image. By integrating the reference
object feature F'r, the modified mask generation process
becomes S = fia(Fr, Fr, fpe(P)) instead of S =
fmd(Fr, fp(d)), where P represents the point prompts.
Notably, the reference object feature F'p is extracted from
the well-trained image encoder f;. and does not require
any fine-tuning. By incorporating the reference object
feature Frp and modifying the mask generation process
as mentioned, the mask decoder can now focus more
attentively on the reference object feature. This inclusion
of additional contextual information through Fr greatly
assists the mask decoder in accurately distinguishing and
segmenting the target objects within the image.

By utilizing these priors, we can focus exclusively on
the target objects without segmenting unrelated entities,
resulting in improved efficiency and accuracy compared to
the vanilla method.

3.3. Text-specified mask generation

In addition to the previous approaches, we also address
the challenge of counting objects specified through text,
where the object of interest is described using textual
information rather than explicit points or bounding boxes.
To tackle this problem, we present a two-stage approach
that combines reference object selection and prior-guided
mask generation.

Reference object selection. In the first stage, we
leverage the CLIP-Surgery [9], an enhanced version
of CLIP [I5], to compute the similarity between

the image and text representations at the pixel level.
The improved architecture and feature extraction of
CLIP-Surgery enables more accurate computation of
image-text similarity. However, the initial similarity map
obtained from CLIP-Surgery may not be of high quality,
making it unsuitable for direct use in mask generation.
Therefore, we leverage the initial similarity map to select
reference objects.

To facilitate accurate identification of the target objects,
we employ Otsu’s binarization approach [14] on the initial
similarity map, resulting in a binary similarity map. This
binary map acts as a guide for selecting the region that is
most likely to contain the target objects. From the binary
similarity map, we extract the largest connected component,
which represents the primary region that encompasses the
target objects. To ensure precise localization, we further
divide the contour of the largest connected component into
multiple sub-contours. For each sub-contour, we create a
corresponding bounding box. This strategy helps us avoid
including irrelevant objects within the bounding boxes and
focuses solely on the target objects. To handle potential
overlaps among the resulting bounding boxes, we apply
the Non-Maximum Suppression (NMS). NMS enables us to
select the most appropriate and non-overlapping bounding
boxes, ensuring that we retain only the most accurate
representations of the target objects.

Prior-guided mask generation. In the second stage
of our approach, we utilize the bounding boxes obtained
from the first stage as prompts for SAM. SAM generates
masks corresponding to the reference objects identified in
the previous stage. Once we have obtained the masks of
the reference objects, we proceed to compute a similarity
map between the reference feature and the image feature
using the cosine similarity measure, as illustrated in Figure
4. This similarity map captures the resemblance between
the reference objects and the image regions. To generate
accurate masks for all target objects, we employ our
prior-guided mask generation approach, as detailed in
Section 3.2, which leverages the information from the
similarity map.
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FSC-147

Training Prompt

CARPK

MAE, RMSE| NAE| SRE| MAE|, RMSE| NAE| SRE]

GMN [13] Yes box 26.52 124.57 - -7.48 9.90 - -

FamNet+ [17] Yes box 22.08 99.54 0.44 6.45 18.19 33.66 - -
CFOCNet+ [27] Yes box 22.10 112.71 - - - - - -
BMNet+ [19] Yes box 14.62 91.83 0.25 2.74 5.76 7.83 - -
SAM No N.A. 42.48 137.50 1.14 8.13 16.97 20.57 0.70 5.30
Ours (vanilla) No box 26.29 137.89 0.38 4.38 15.67 19.44 0.67 5.06
Ours No box 19.95 132.16 0.29 3.80 10.97 14.24 0.48 3.70
Ours (vanilla) No point 25.18 137.62 0.37 4.34 15.67 19.44 0.67 5.06
Ours No point 20.10 132.83 0.30 3.87 11.01 14.34 0.51 3.89

Table 1. Effect of our approaches with point and box prompt on FSC-147. Our methods demonstrate competitive performance
compared to learning-based approaches. The bold font highlights the best counting results among training-free methods, while the
underlined font indicates the best counting results among learning-based methods. This convention is consistent throughout the tables

presented below.

4. Experiments
4.1. Experimental setup

Datasets. We evaluate our approaches on two commonly
used counting datasets, namely, FSC147 [17] and CARPK
[6]. The FSC147 dataset comprises 6135 images from
147 distinct object categories. We utilize the testing set,
which includes 1190 images from 29 object categories, for
evaluation as our approach does not require training. In the
CARPK dataset, there are 1448 images with approximately
90,000 cars captured from a drone view. The testing set
consists of 459 images.

Evaluation metrics. We report the Mean Absolute
Error (MAE), Root Mean Square Error (RMSE),
Normalized Relative Error (NAE) and Squared Relative
Error (SRE) metrics given count estimates y and their
ground-truth y for n test images. In particular, MAE =

LS Iy — il RMSE = /2 7 (3 — )%, NAE =

LS i — 51l /e SRE= /0 (5 — 9002/

Implementation details. For our experiments, we
utilize the “vit_b” image encoder in SAM. To incorporate
box prompts, we use annotated reference object boxes
provided by the dataset and extract their center points as
point prompts. When using text prompts, we utilize the
template “the photo of many” followed by the specific
object class name derived from the dataset. In our vanilla
counting method (Section 3.1), setting the similarity score
threshold € to 0.5 yields the best performance across
datasets. For our prior-guided mask generation method
(Section 3.2), we use a regular grid of ¢ x ¢ points as prompts
for SAM. The default value of ¢ in the original SAM paper
is 32, but we observed that a larger ¢ is more effective
when counting small objects. Thus, we propose setting
t dynamically as t=(32 || Osize + 1) * 32, where Oy,
represents the minimum size of reference objects obtained
from their masks, and || denotes exact division.

4.2. Counting with point and box prompts

Baseline methods. In this experiment, we evaluate our
counting approach utilizing both point and box prompts.
To assess its effectiveness, we compare it against four
other learning-based class-agnostic counting approaches
that employ diverse methods for learning high-quality
similarity maps. The compared approaches include GMN
[13], FamNet+ [17], CFOCNet+ [27], and BMNet+ [19].
It is important to note that these learning-based approaches
are specifically designed to accept only boxes as prompts.
In addition to the aforementioned comparisons, we also
report the counting results obtained through automatic map
generation with SAM, denoted as SAM. This allows us
to evaluate the performance of SAM’s default behavior in
counting objects without any further processing.

Results. As shown in Table 1, direct counting using
SAM vyields the poorest performance due to the lack of
class information in the mask generated by SAM. This
leads to the inclusion of numerous non-target objects
during counting. However, by utilizing the similarity map
for target object selection, our vanilla method improves
performance significantly. For instance, on the FSC-147
dataset with box prompts, MAE decreases from 42.48 to
26.29. Furthermore, our method incorporates three priors
to enhance differentiation between target and non-target
objects during segmentation, resulting in a further reduction
of MAE from 26.29 to 19.95. When compared to four
learning-based methods, our approach outperforms three
of them. The best learning-based method, BMNet+ [19],
achieves a mere 5.33 reduction in MAE and a 0.04 reduction
in NAE on the FSC-147 dataset, as well as a 5.21 reduction
in MAE on the CARPK dataset, despite using thousands
of training data and complex model design and training
procedures. Our methods still retain their advantages
when using point prompts. These results demonstrate the
promising nature of our training-free method.

Fig. 5a demonstrates the effectiveness of our methods
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- FSC-147
Training

MAE| RMSE| NAE| SRE]

Xuetal. [24] Yes 22.09 115.17 0.34 3.74

SAM No 42.48 137.50 1.14 8.13

Ours (vanilla) No 32.86 142.89 0.44 5.12

Ours No 24.79 137.15 0.37 4.52
Table 2. Effect of our approaches with text prompt on
FSC-147. Our methods yield competitive counting results

compared to the learning-based method.

through success and failure results. Our approach
consistently achieves accurate counting, even in challenging
scenes with sparse small objects or dense large objects
(first row). However, in extreme scenes where individual
objects are too tiny to be distinguishable or objects blend
with the background (last row), our approach encounters
difficulties. These scenarios present ongoing challenges in
counting tasks.

4.3. Counting with text prompt

Baseline methods. In this experiment, we evaluate
our counting approach using text prompts. To assess its
effectiveness, we compare it against the learning-based
method proposed by Xu et al. [24], which also utilizes text
to specify the target objects. We again report the counting
results obtained from SAM alone for comparison.

Results. Table 2 presents the results. Our vanilla
method significantly improves performance by utilizing the
similarity map obtained with Clip-Surgery to select target
objects compared to direct counting with SAM alone. For
instance, on the FSC-147 dataset, the MAE decreases from
4248 to 32.86. To further enhance the quality of the
similarity map obtained through Clip-Surgery, we introduce
our reference object selection algorithm. Combining
this with our prior-guided mask generation method yields
outstanding counting results, reducing MAE from 32.86 to
24.79. Notably, the learning-based approach proposed by
Xu et al. [24] only slightly outperforms our method, with a
difference of 2.7 in MAE and a marginal 0.03 in NAE.

Fig. 5b illustrates the effectiveness of our methods
through success and failure results. Our approach
demonstrates accurate counting of target objects, even in the
presence of complex backgrounds (first row). However, it
may encounter double counting by segmenting each similar
component. For instance, in the second row, our approach
might count each lens of a pair of sunglasses as separate
objects rather than recognizing them as a single entity.
Additionally, counting extremely dense objects poses a
challenge for our method.

4.4. Ablation study and analysis

Prior-guided mask generation. Our enhanced mask
generation method, guided by prior information, integrates

Three types of priors FSC-147

Similarity Segment S tic MAE| RMSE| NAE| SRE|

42.48 137.59 1.14 8.13

v 21.36 134.07 0.27 4.29

v 26.14 134.98 0.51 4.84

v 37.17 134.86 1.12 8.19

v v 20.38 134.32 0.31 3.89

v v 20.83 133.16 0.38 5.29

v v v 19.95 132.16 0.29 3.80

Table 3. Effect of three priors of our prior-guided mask
generation method on FSC-147 with box prompt. Each prior
matters for improving the counting performance.

three types of priors into SAM’s segmentation process,
thereby boosting the counting performance. This study
aims to evaluate the significance of each prior. Table 3
presents the results of our experiment on the FSC-147
dataset. It is evident that each prior plays a crucial role in
improving the counting performance compared to relying
solely on SAM for direct counting. Moreover, when we
combine the similarity prior with either the segment prior
or the semantic prior, we observe additional improvements.
The best counting outcomes are obtained when all three
priors are integrated.

Reference object selection. We aim to evaluate the
significance of our reference object selection algorithm
in enhancing text-specified counting. We compare our
algorithm to a baseline method that does not utilize the
algorithm to enhance the quality of the similarity map
obtained through Clip-Surgery. Essentially, the baseline
method directly employs the similarity map obtained from
Clip-Surgery for prior-guided mask generation. The results,
as shown in Table 4, clearly demonstrate the improved
counting performance achieved by our approach.

Reference object selection MAE| RMSE| NAE| SRE|
39.97 147.58 0.47 5.52
v 24.79 137.15 0.37 4.52

Table 4. The effect of our reference object selection algorithm
on FSC-147 with text prompt. Our algorithm is crucial in
improving counting accuracy.

Speed analysis. Finally, we analyze the speed of our
method. All tests are conducted on a machine equipped
with an Nvidia RTX A5000 GPU. In GPU mode, our
method achieves a processing time of 2.1 seconds per
image. This speed surpasses both the 4.7 seconds of our
vanilla method and the 3.4 seconds of SAM.

5. Conclusions and future work

This paper addresses the problem of object counting in
images by introducing a training-free counter that leverages
the segmentation foundation model, SAM. We propose
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Figure 5. Success and failure results with box prompts (Row 1 and 2) and with text prompts (Row 3 and 4). When objects are
individually visible, our approaches can count them accurately. Further improvements are required in extreme scenes where individual
objects are hard to distinguish, or where objects blend with the background.

a new prior-guided mask generation method to enhance
the segmentation process in SAM by incorporating three
types of priors including similarity prior, segment prior,
and semantic prior. Through extensive ablation studies,
we demonstrate the significant impact of each prior and
their combined effect on improving counting efficiency
and accuracy. Moreover, we address the problem of
counting objects specified through text by presenting a
two-stage approach. This approach combines reference
object selection and prior-guided mask generation. We
have shown that reference object selection plays a crucial
role in refining the similarity maps, enabling accurate
object counting based on textual descriptions. Extensive
experiments performed on standard datasets demonstrate
the competitive performance of our training-free object

counter when compared to learning-based approaches.

In our future work, we aim to enhance our methods
for counting occluded and tiny objects. This will involve
developing more advanced adaptive thresholding methods
or fine-tuning SAM using a few annotated data.
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