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Abstract

Video Panoptic Segmentation (VPS) aims to achieve
comprehensive pixel-level scene understanding by segment-
ing all pixels and associating objects in a video. Current
solutions can be categorized into online and near-online
approaches. Evolving over the time, each category has its
own specialized designs, making it nontrivial to adapt mod-
els between different categories. To alleviate the discrep-
ancy, in this work, we propose a unified approach for online
and near-online VPS. The meta architecture of the proposed
Video-kMaX consists of two components: within-clip seg-
menter (for clip-level segmentation) and cross-clip associ-
ater (for association beyond clips). We propose clip-kMaX
(clip k-means mask transformer) and LA-MB (location-
aware memory buffer) to instantiate the segmenter and as-
sociater, respectively. Our general formulation includes the
online scenario as a special case by adopting clip length
of one. Without bells and whistles, Video-kMaX sets a
new state-of-the-art on KITTI-STEP and VIPSeg for video
panoptic segmentation Code and models are available at
this link.

1. Introduction
Video Panoptic Segmentation (VPS) [19] aims at a holis-

tic video understanding of the scene by unifying two criti-
cal and challenging tasks: semantically segmenting images
and associating segmented regions across all frames in a
video [42]. It can benefit various real-world applications,
such as autonomous driving, robot visual control, and video
editing.

With the rapid growth of interest, there have been sev-
eral methods [19,20,24,32,43,57] proposed for VPS. They
can be categorized into online and near-online approaches,
which process the video either frame-by-frame or clip-by-
clip (a clip contains only a few consecutive video frames).
The online approaches, such as VPSNet [19] and Video K-
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Figure 1. The meta architecture of Video-kMaX consists of clip-
kMaX for clip-level segmentation and LA-MB for object associa-
tion. The former groups pixels of the same object within-clip and
the latter leverages appearance and location features (encoded by
box coordinates) for long-term association across-clips.
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Figure 2. Video-kMaX is a unified approach for online and near-
online video panoptic segmentation, showing state-of-the-art per-
formance in both scenarios (on KITTI-STEP val set). The size of
the circle reflects the model parameters.

Net [24], segment each frame sequentially via the mod-
ern image-level segmenter [13, 47, 55], and build an ad-
ditional association branch trained to enforce consistent
predictions between frames [24, 49]. On the other hand,
the near-online approaches, such as ViP-DeepLab [32]
and TubeFormer [20], extend the modern image-level seg-
menter [9, 38] to process a clip by designing extra modules
(e.g., next-frame instance segmentation [32] or latent mem-
ory [20]). The clip-level predictions are then stitched [32]
to form the final video segmentation results. The modules
designed for online or near-online approaches are not only
evolving over time, but also becoming very distinct for each
scenario. Consequently, it is infeasible to easily adapt on-
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line models to near-online (and vice versa). Particularly, the
current online methods [19,24] lack a proper clip-level seg-
menter, while the modern near-online methods [20, 32] fail
to associate objects in an online manner, suffering from the
absence of overlapping frames. The need for this scenario-
specific design results in inefficiencies, as it requires the
utilization of different frameworks for each setting. A nat-
ural question thus emerges: Is it possible to develop a uni-
fied framework for online and near-online VPS without any
scenario-specific design?

To answer the question, we carefully design Video-
kMaX, a simple yet effective approach for both online and
near-online VPS. As drawn in Fig. 1, the meta architecture
of Video-kMaX contains two components: within-clip seg-
menter and cross-clip associater, where the former compo-
nent performs clip-level segmentation and the later one as-
sociates detected objects across clips. The proposed Video-
kMaX is an instantiation of the pipeline by adopting clip-
kMaX (clip k-means mask transformer) for the within-clip
segmenter, and LA-MB (Location-Aware Memory Buffer)
for the cross-clip associater.

The proposed clip-kMaX extends the image-level k-
means mask transformer [52] to the clip-level without
adding any extra modules or loss functions. Motivated by
the k-means clustering perspective [51], we consider object
queries as cluster centers, where each query is responsible
for grouping pixels of the same object within a clip together.
Specifically, each object query, when multiplied with the
clip features [35,38,40], is learned to yield a tube prediction
(i.e., masks of the same object in a clip) [20]. This learning
can be achieved via a surprisingly simple modification in
the k-means cross-attention module [52] by concatenating
the clip-level pixel features along the spatial dimension. As
a result, clip-kMaX can be applied to both near-online and
online settings without additional complexities. We also
empirically show that k-means cross-attention is an effec-
tive mechanism for handling the extremely long sequence
of spatially and temporally flattened clip features.

The proposed LA-MB is motivated by the drawbacks
of existing methods through the careful systematical stud-
ies. We observe that the modern VPS methods [19, 32]
could not handle the more challenging setting of long-term
object tracking, since they either associate objects in the
neighboring frames [19] or stitch overlapping frame predic-
tions [32], making it hard to track objects beyond the short
clip length. One promising solution is to exploit a mem-
ory buffer to propagate the tracking information across all
video clips, which has been proven successful in the recent
works [16, 45, 49, 53]. However, surprisingly, we observe
that naı̈vely adopting the memory buffer to VPS leads to mi-
nor improvements or even worse performance. The setback
enforces us to further look into its root case. We discover
that the appearance feature alone [19, 45] is not sufficient

for long-term association in VPS, when the target object is
occluded for a long time; additionally, the memory buffer
approach accumulates many detected objects, resulting in a
huge matching space (between stored and newly detected
objects) and hindering the matching accuracy. To resolve
the issues, we develop LA-MB (Location-Aware Memory
Buffer), which effectively incorporates location information
to the memory module by two means. First, when com-
paring the similarity between the stored objects in mem-
ory and the detected objects in the current frame, we con-
sider not only their appearance features (encoded by object
queries), but also their location features (encoded by nor-
malized bounding box coordinates). Specifically, if the ob-
ject of interest is not detected in the current frame but it is
stored in the memory (e.g., due to occlusion), we will “pre-
dict” its current location by assuming the object is moving
at a constant velocity. Second, we propose a hierarchical
matching scheme to effectively reduce the matching space.
We initially exploit the matching results from the Video
Stitching [32] strategy, which associates objects based on
their mask IoU in the overlapping frame between clips, ef-
fective for short-term association. We then associate the ob-
jects stored in memory with the currently detected but un-
matched objects, aiming for long-term association. Thanks
to our careful design, the LA-MB improves the long-term
association quality both in near-online and online scenarios
with low sensitivity to the hyper-parameter values.

In summary, we introduce Video-kMaX, a simple and
unified method for online and near-online VPS. Our ap-
proach, consisting of two seamless modules: clip-kMaX
and LA-MB, achieves significant performance improve-
ments on two long sequence VPS datasets: KITTI-
STEP [42] and VIPSeg [30]. In particular, as shown
in Fig. 2, our best Video-kMaX outperforms the previ-
ous state-of-the-art online model (Video K-Net [24]) and
near-online model (TubeFormer [20]) by +2.5% STQ and
+4.6% STQ, respectively, on KITTI-STEP val set.

2. Related Work
Video Panoptic Segmentation (VPS) Video Panoptic

Segmentation [19] aims to unify video semantic [12,18,31,
58] and video instance [1,17,37,49] segmentation. Numer-
ous efforts have been to transform image panoptic segmen-
tation models [8, 21, 22, 25, 26, 38, 39, 48, 50] to the video
domain. Among them, the online method VPSNet [19]
adopts task-specific prediction heads from instance segmen-
tation [13], semantic segmentation [11], and tracking [49],
and jointly trains them to obtain panoptic video results.
Similarly, the near-online method ViP-DeepLab [32] adds a
next-frame instance segmentation head on top of Panoptic-
DeepLab [9] that provides generic image panoptic segmen-
tation with dual-ASPP [5] semantic segmentation module
and dual-decoder [6] based instance segmentation. More
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Figure 3. Illustration of clip-kMaX. The proposed clip-kMaX seamlessly converts the image-level segmentation model kMaX-DeepLab
to clip-level without adding extra module. Motivated by the k-means perspective, clip-kMaX considers one object query as one cluster
center, which learns to group together pixels of the same object within a clip. Specifically, each object query, when multiplied with the
clip features, is learned to generate a tube prediction (i.e., masks of the same object in the clip). This learning can be accomplished by a
surprisingly simple change in the k-means cross-attention module by concatenating the clip-level pixel features along the spatial dimension
(i.e., treating the clip-level pixel features with shape T ×H×W ×D as one large image-level pixel feature with shape 1×TH×W ×D),
where the input video clip contains T frames with height H and width W . D is the channel dimension of pixel features, and N is number
of cluster centers.

recent works [20, 24, 57] identifies the limitations of pre-
vious methods that require multiple separate networks and
complex post-processing (e.g., NMS, fusion for tracking).
To address the issues, they design a transformer architec-
ture [3] for end-to-end video panoptic segmentation. How-
ever, all these methods have two fundamental issues. First,
they require specific designs for either online or near-online
scenario, e.g., another association module [19, 24], tem-
poral consistency loss [20, 24], or clip-segmentation mod-
ule [20,32]. Second, the models could only deal with short-
term association (i.e., either neighboring frames or a clip).
In this regard, we propose a simple unified online and near-
online video panoptic segmentation model for long-term as-
sociation without adding extra scenario-specific designs.

Memory Module for Long-Term Tracking Object
queries from the Transformer decoder [3] have been used to
track objects in multi-object tracking [2,29,34,53,56], video
instance segmentation [7,15–17,44–46], and video panoptic
segmentation [20, 24, 57]. Some of them exploit queries for
the short-term association [29, 34], while the others for the
long-term association by additionally exploiting the mem-
ory buffer [45, 53]. Particularly, MOTR [53] proposes a set
of track queries to model the tracked objects in the entire
video. MeMOT [2] develops a spatio-temporal memory that
stores a long range states of all tracked objects. MaskTrack
R-CNN [49] employs a memory module to track detected
objects. To make the association robust to challenging sce-
narios, such as heavy occlusion, IDOL [45] proposes a tem-
porally weighted softmax score for object matching. Along
the same direction, we specialize the memory buffer ap-
proach for both online and near-online video panoptic seg-

mentation models, and additionally develop an efficient hi-
erarchical matching scheme.

3. Method
The meta architecture of Video-kMaX contains two

components: clip-kMaX (clip k-means mask transformer)
for within-clip segmentation (Sec. 3.1) and LA-MB
(location-aware memory buffer) for cross-clip association
(Sec. 3.2). We detail them below, starting from the near-
online framework. Our general formulation includes the
online scenario by using clip length one (Sec. 3.3).

3.1. Within-Clip Segmenter: clip-kMaX

We first present the general formulation for image
and video panoptic segmentation, before introducing our
within-clip segmenter clip-kMaX, which performs clip-
level segmentation with a short length T (e.g., T = 2).

General Formulation for Image and Video Re-
cently, image panoptic segmentation has been reformulated
as a simple set prediction powered by Transformer [36].
From the pioneering works (e.g., DETR [3] and MaX-
DeepLab [38]) to the recent state-of-the-art methods (e.g.,
kMaX-DeepLab [52]), panoptic predictions are designed to
match the ground truth masks by segmenting image I ∈
RH×W×3 into a fixed-size set of N class-labeled masks:

{ŷi}Ni=1 = {(m̂i, p̂i(c))}Ni=1, (1)

where m̂i ∈ [0, 1]
H×W and p̂i(c) denote predicted mask

and semantic class probability for the corresponding mask,
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respectively. Motivated by this, TubeFormer [20] extends
this formulation into set prediction of class-labeled tubes:
{ŷi}Ni=1 = {(m̂i, p̂i(c))}Ni=1, where m̂i ∈ [0, 1]

T×H×W .
In this setting, N object queries attend to the T ×H ×W
clip features, and predict N tubes. The prediction gener-
alizes well for different values of T , since the positional
embedding is only performed in the frame level, providing
a useful structural prior that the same object in neighbor-
ing frames (assuming slow motion) will still be assigned by
the same object query. Given the generalizability, we are
able to absorb the T -axis into the H-axis before feeding the
clip features to transformer decoder. Specifically, we pro-
pose to relax Eq. (1) into a more general form: {ŷi}Ni=1 =

{(m̂i, p̂i(c))}Ni=1, where m̂i ∈ [0, 1]
S×W , S=TH , and

T ≥1 (i.e., S can change according to the different num-
ber of frames T ). By doing so, it allows us to easily extend
an image panoptic segmentation model to the video domain
(clip-level), as detailed below.

clip-kMax The state-of-the-art image segmentation
model kMaX-DeepLab [52] replaces the cross-attention in
a typical transformer decoder [36] with k-means cross-
attention by taking a cluster-wise argmax as below:

Ĉ = C + argmax
N

(Qc × (Kp)T )× V p, (2)

where C ∈ RN×D refers to N object queries with D chan-
nels. We use superscripts p and c to indicate the feature
projected from the pixel features and object queries, respec-
tively. Qc ∈ RN×D,Kp ∈ RHW×D, V p ∈ RHW×D stand
for the linearly projected features for query, key, and value,
respectively. In this k-means perspective, one object query
is regarded as a cluster center, which learns to group pix-
els of the same object together. Given our previous general
formulation, we can seamlessly extend kMaX-DeepLab to
video clip, forming our clip-kMaX, by simply reshaping the
key and value into Kp ∈ RSW×D and V p ∈ RSW×D

(S = TH and T≥1). The reshaping merges the T -frame
feature to a single-frame feature with large height TH (i.e.,
reshape T × H × W to 1 × TH × W ), which then be-
comes compatible with the image model kMaX-DeepLab.
This is equivalent to performing the k-means clustering for
a video clip with length T , where one query is now learning
to group pixels of the same object in the clip together. We
illustrate clip-kMaX in Fig. 3. Note that kMaX-DeepLab
then becomes a special case of clip-kMaX with T = 1.

Discussion The design of clip-kMaX may look sim-
ple on the surface. However, we made strenuous efforts in
enhancing the conventional cross-attention module for clip-
level mask predictions during its development. When deal-
ing with the extremely large sequence length of spatially
and temporally flattened clip features in a video clip, the
standard cross-attention module is susceptible to learning.
This phenomenon was evident in the poor performance of

the original cross-attention, motivating the prior art Tube-
Former [20] to further employ an additional latent memory
module. To address this challenge, we propose using the
k-means cross-attention [52] approach, which is capable of
handling flattened clip features of any size by performing a
cluster-wise argmax on N cluster centers.

Video Stitching (VS) In practice, given the limited
memory, we are only able to perform clip-level inference
(i.e., segmenting a short clip with length T ). To ob-
tain the video-level segmentation, some heuristic designs
are required. One popular approach is Video Stitching
(VS) [20, 32], which propagates object identities between
clips by matching the mask IoU scores in the overlapping
frames. In our framework, we adopt the same video stitch-
ing strategy for our near-online Video-kMaX, but addition-
ally explore memory buffer for long-term association.

3.2. Cross-Clip Associater: LA-MB
Our LA-MB basically consists of two phases: Encoding

Phase to store the previous object features, and Decoding
Phase to associate current objects with the objects stored in
the memory buffer. We detail the process below.

Encoding Phase The memory buffer is initially
empty, when a new testing video comes. It encodes features
from all detected objects, while processing frames sequen-
tially. Regarding the object features to be stored, we exploit
the appearance and location properties of each object.

For the appearance feature of object i observed at frame
t, we utilize the query embedding qti ∈ RD (i.e., object
queries from the mask transformer decoder [52]). The
memory buffer encodes appearance feature q̂ti as follows:

q̂ti =


(1− λ)q̂t−1

i + λqti , if i both in memory and frame t,

qti , else if i only in frame t,

q̂t−1
i , else if i only in memory,

(3)
where λ is the moving average weight between the stored
appearance feature in memory q̂t−1

i and current appearance
feature qti . We set λ to 0.8 as the default value.

Unlike other works [19, 45], we additionally exploit
the location feature of object i observed at frame t, us-
ing its normalized bounding box (inferred from the pre-
dicted mask): bti=[x

tl
i /w, y

tl
i /h, x

br
i /w, ybri /h]∈ R4, where

(xtl, ytl) and (xbr, ybr) are the x-y coordinates of top-left
and bottom-right corners, and w and h denote the bounding
box width and height, respectively. The memory buffer then
encodes the location features as follows:

b̂ti =

{
bti, if i in frame t,

b̂t−1
i + (b̂t−1

i − b̂t−2
i ), else if i only in memory.

(4)
As shown in the equations, if an object is detected, the mem-
ory buffer will use its latest normalized bounding box infor-
mation. If the object i is not detected but it is stored in the

232



frame t=1 frame t=2

clip #1

frame t=2 frame t=3

clip #2

Location-Aware Memory Buffer
(LA-MB)

118 111112113 108 1101) memory encoding with clip #1 

2) video stitching (frame t=2)

3) no unmatched objects
then, no memory decoding for clip #2

location feature (𝑥, 𝑦, 𝑤, ℎ)
appearance feature (query)

frame t=3 frame t=4

clip #3

4) video stitching (frame t=3) - currently detected object 119 is unmatched

continue for
next clip

5) memory decoding

a clip of length two with one overlapping frame

for each object

- object 113 in memory is unmatched after stitching
- obtain f  in Eq. (5) by comparing them

ID reassignment
if  f  is higher than 𝛼,
object 119 is reassigned to object 113 

- compare f  with threshold 𝛼

New object 119 detected

118 111112113 108 110

(LA-MB)

Figure 4. Step-by-step overview of Location-Aware Memory Buffer (LA-MB). The LA-MB approach consists of two phases: Encoding
and Decoding. In the Encoding Phase, appearance and location features of detected objects are stored in the memory buffer. In the Decoding
Phase, LA-MB performs hierarchical matching, beginning with video stitching for short-term association in overlapping frames between
clips, followed by long-term association between unmatched objects in the current clip (i.e., object 119 in figure) and objects stored in
memory (i.e., object 113 in figure).

memory (e.g., due to occlusion), we will ”predict” its cur-
rent location by assuming the object’s moving velocity is
constant, i.e., its location is shifted by (b̂t−1

i − b̂t−2
i ) from

its previous stored location b̂t−1
i .

Finally, the memory buffer stores both the appearance
and location features (q̂i, b̂i) for all M objects detected un-
til the current frame. In practice, we adopt the memory
refreshing strategy [45], where the old objects, whose last
appeared frame is τ frame behind the current frame, are re-
moved from the memory buffer. We empirically choose the
optimal value for τ in our experiments.

Decoding Phase To specialize the memory buffer ap-
proach in our framework, we initially conduct the Video
Stitching (VS) for short-term association between clips. Af-
terwards, we associate the objects stored in memory with
the currently detected but unmatched objects, aiming for
long-term association. This hierarchical matching mecha-
nism forms our proposed Location-Aware Memory Buffer
(LA-MB). Specifically, we compute the similarity function
f(i, j) between the currently unmatched object i (after VS)
and the encoded object j in the memory as follows:

f(i, j) = e−∥bi−b̂j∥2/T · cos(qi, q̂j). (5)

We compute the negative L2 distance between two normal-
ized bounding boxes, weighted by a temperature T for scal-
ing the values between location and appearance similarity.
The appearance similarity is measured by the cosine dis-
tance. Then, we obtain a similarity matrix S ∈ RM×N

between M objects in memory and N detected objects in

the current frame. To find the association, we perform Hun-
garian matching [23] on S. Additionally, to filter out false
associations, we only consider the matching with similarity
value larger than a confidence threshold α. The unmatched
objects in current frame are considered as new objects. The
proposed LA-MB is illustrated in Fig. 4.

Discussion Our proposed LA-MB is partially inspired
by the success of IDOL [45] in video instance segmenta-
tion, and memory buffer has been proven effective in sev-
eral recent works [2,49,53]. However, there are two critical
issues, if one naı̈vely applies their memory buffer approach
to our framework (we name this method as naı̈ve Memory
Buffer (naı̈ve-MB) for our baseline). First, the location fea-
ture is not exploited, but only the appearance feature. In a
dynamic scene, object location plays an important role. The
appearance feature becomes less reliable if the target object
has been occluded for a long time. Second, the memory size
M keeps growing as time goes by. Even though this issue
is slightly alleviated by the memory refreshing strategy, it
still results in a large matching space between the stored M
objects in the memory and the currently detected N objects,
which subsequently makes the one-to-one matching harder.
To overcome the issues, our LA-MB proposes a novel for-
mulation to incorporate the location features (Eq. (4) and
Eq. (5)), and additionally augments the matching accuracy
by performing the Video Stitching (VS) in the beginning
of decoding phase, which effectively further reduces the
matching space and improves the matching accuracy.
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method backbone SQ AQ STQ
online methods
Video K-Net [24] ResNet50 71.0 70.0 71.0
Video K-Net [24] Swin-L 75.0 73.0 74.0
Video-kMaX (online) ResNet50 75.0 72.0 73.5
Video-kMaX (online) ConvNeXt-L 77.2 75.7 76.5
near-online methods
Motion-DeepLab [42] ResNet50 67.0 51.0 58.0
TubeFormer [20] Axial-ResNet50-B1 78.1 68.6 73.2
TubeFormer [20] Axial-ResNet50-B3 78.3 70.0 74.3
Video-kMaX (near-online) ResNet50 74.2 74.2 74.2
Video-kMaX (near-online) Axial-ResNet50-B1 75.8 76.3 76.0
Video-kMaX (near-online) ConvNeXt-L 79.0 78.8 78.9

(a) KITTI-STEP val set.
method SQ AQ STQ
Motion-DeepLab [42] 59.8 45.6 52.2
Video K-Net [24] 65.0 60.0 63.0
TubeFormer [20] 70.3 60.6 65.3
UW IPL/ETRI AIRL [54]† 64.0 71.3 67.6
Video-kMaX (near-online) 69.8 67.2 68.5

(b) KITTI-STEP test set. †: ICCV 2021 challenge winning entry.

Table 1. [VPS] KITTI-STEP val and test set results.

3.3. Online Video Panoptic Segmentation
The meta architecture of Video-kMaX enables a gen-

eral framework for both online and near-online VPS. When
processing a clip of length one, our model performs online
VPS. Specifically, the model is trained frame-by-frame and
evaluated sequentially with the assistance of clip-kMaX’s
general formulation. Unlike the near-online setting, we skip
the Video Stitching, which becomes infeasible in the online
framework. Afterwards, we apply our LA-MB without any
further modification.

4. Experimental Results
We conduct experiments on two long sequences Video

Panoptic Segmentation datasets: KITTI-STEP [42] and
VIPSeg [30].

4.1. Datasets
KITTI-STEP [42] is a Video Panoptic Segmentation

(VPS) dataset that contains long video sequences with av-
erage track length 51 frames and maximum 643 frames,
presenting a challenging scenario for long-term association.
It contains 19 semantic classes, similar to Cityscapes [10],
while only two classes (‘pedestrians’ and ‘cars’) come with
tracking IDs. We adopt the Segmentation and Tracking
Quality (STQ) as a metric for evaluation.

VIPSeg [30] is a new large-scale Video Panoptic Seg-
mentation (VPS) benchmark providing in-the-wild real-
world scenarios with 232 scenes and 124 classes, Among
them, 58 classes are annotated with tracking IDs. The aver-
age sequence length is 24 frames per video. We adopt the
STQ and VPQ [19] metric for evaluation.

4.2. Implementation Details
The proposed Video-kMaX is a unified approach for on-

line and near-online VPS. For the near-online setting, we

method backbone SQ AQ STQ VPQ
online methods
VPSNet-FuseTrack [19] ResNet50 - - 20.8 17.0
VPSNet-SiamTrack [43] ResNet50 - - 21.1 17.2
Video K-Net [24] (arXiv version) ResNet50 - - 33.1 26.1
Video K-Net [24] (arXiv version) Swin-base - - 46.3 39.8
Video-kMaX (online) ResNet50 46.3 32.4 38.7 36.8
Video-kMaX (online) ConvNeXt-L 60.7 40.2 49.4 49.4
near-online methods
ViP-DeepLab [32] ResNet50 - - 22.0 16.0
Clip-PanoFCN [30] ResNet50 - - 31.5 22.9
TubeFormer [20] (arXiv version) Axial-ResNet50-B1 50.3 31.6 39.8 29.2
TubeFormer [20] (arXiv version) Axial-ResNet50-B3 53.0 32.5 41.5 31.2
Video-kMaX (near-online) ResNet50 45.1 35.3 39.9 38.2
Video-kMaX (near-online) Axial-ResNet50-B1 55.6 37.8 45.8 46.7
Video-kMaX (near-online) ConvNeXt-L 61.4 43.5 51.7 51.9

(a) VIPSeg val set.
method STQ VPQ
Clip-PanoFCN [30] 25.0 22.9
TubeFormer [20] (arXiv version) 38.6 26.8
Video-kMaX (near-online) 47.1 45.0

(b) VIPSeg test set in the latest test server.

Table 2. [VPS] VIPSeg val and test set results.

employ a clip length of two with one overlapping frame be-
tween clips. For the online setting, we set clip length to one
and remove the video stitching strategy in the pipeline.

We employ two common backbones for both online and
near-online settings: ResNet50 [14] and ConvNeXt-L [28].
We also experiment with Axial-ResNet50-B1 [39] back-
bone to fairly compare with TubeFormer [20]. Our Video-
kMaX is built with the official code-base [41]. Closely fol-
lowing the prior works [20, 42], both the near-online and
online models employ a specific pre-training protocol for
KITTI-STEP and VIPSeg. They all commonly require Im-
ageNet [33] pretrained checkpoint. VIPSeg further requires
pre-training models on COCO [27]. For KITTI-STEP,
Cityscapes [10] is additionally adopted as a pre-training
dataset since they share a similar driving scene and class
category. We note that our best backbone ConvNeXt-L [28]
in KITTI-STEP uses both COCO [27] and Cityscapes [10]
for pre-training model.

4.3. Main Results
KITTI-STEP Tab. 1 summarizes our performance

on the KITTI-STEP val and test sets. On the validation
set (Tab. 1 (a)), we compare methods in the two cate-
gories: online and near-online methods. In the online set-
ting, when using the standard ResNet50 [14], our Video-
kMaX (online) outperforms Video K-Net [24] by +2.5%
STQ. To further push the envelope, our model, equipped
with the modern backbone ConvNeXt-L [28], achieves the
new state-of-the-art with 76.5% STQ. In the near-online set-
ting, when using ResNet50, our Video-kMaX (near-online)
significantly surpasses Motion-DeepLab [42] by +16.2%
STQ. When employing Axial-ResNet50-B1 [39] back-
bone, Video-kMaX (near-online) also outperforms Tube-
Former [20] by +2.8% STQ. Finally, Video-kMaX (near-
online) with ConvNeXt-L further sets a new state-of-the-art
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performance with 78.9% STQ, significantly outperforming
current best result (TubeFormer with Axial-ResNet50-B3)
by +4.6% STQ. We observe the same trend on the test set
(Tab. 1 (b)), where our model reaches 68.5% STQ, signifi-
cantly outperforming the prior arts TubeFormer [20], Video
K-Net [24], and Motion-DeepLab [42] by +3.2%, +5.5%,
and +16.3% STQ, respectively. Remarkably, our extremely
simple model even outperforms the ICCV 2021 Challenge
winning entry, UW IPL/ETRI AIRL [54] by +0.9% STQ,
which exploits pseudo labels [4, 59] and adopts an exceed-
ingly complicated system that not only consists of separate
tracking, detection, and segmentation modules, but also re-
quires 3D object and depth information.

VIPSeg Tab. 2 (a) summarizes the results on the
VIPSeg val set. In the online setting, our Video-kMaX
(online) with ResNet50 attains 38.7% STQ / 36.8% VPQ,
significantly outperforming the prior art Video K-Net by
+5.6% STQ / +10.7% VPQ. Using the ConvNeXt-L back-
bone, our model advances the new state-of-the-art to 49.4%
STQ / 49.4% VPQ. In the near-online setting, when using
ResNet50, our Video-kMaX (near-online) surpasses Clip-
PanoFCN [30] by +8.4% STQ / +15.3% VPQ. When us-
ing Axial-ResNet50-B1, Video-kMaX (near-online) outper-
forms TubeFormer [20] by +6.0% STQ / +17.5% VPQ.
Our best setting with ConvNeXt-L backbone further ad-
vances the state-of-the-art to 51.7% STQ / 51.9% VPQ,
outperforming TubeFormer with Axial-ResNet50-B3 by
+10.2% STQ / +20.7% VPQ. We also show the effec-
tiveness of Video-kMaX (near-online) on VIPSeg test set
in Tab. 2 (b), where Video-kMaX also sets a new state-of-
the-art, outperforming TubeFormer [20] by +8.5% STQ /
+18.2% VPQ.

4.4. Ablation Studies
Association Modules Our proposed LA-MB exploits

(1) Video Stitching (VS), (2) appearance feature, and (3) lo-
cation feature, to perform the object association. In Tab. 3,
we carefully study the effect of each feature in LA-MB un-
der both near-online and online settings . In the near-online
setting (Tab. 3 (a)), when using these three features indi-
vidually, we discover that both VS and location feature are
equally more effective than appearance feature. We note
that when using only the appearance, the method becomes
the naı̈ve-MB approach, used by other works [16,45]. Com-
bining all of them leads to our best final setting, while taking
out the location feature will degrade the AQ performance
most. This study demonstrates that our proposed location
feature is the most effective feature among them. In the
online setting, since the VS strategy becomes infeasible,
we only experiment with the appearance and location fea-
tures. As shown in Tab. 3 (b), the pure image-based model,
which does not exploit any association feature, attains the
worst performance. Interestingly, we notice that the appear-

association features
method video-stitching appearance location AQ

✓ 72.3
✓ 71.4

✓ 72.3
Video-kMaX ✓ ✓ 73.8
(near-online) ✓ ✓ 72.1

✓ ✓ 73.6
✓ ✓ ✓ 74.2

(a) Near-online setting using clip-based trained models.

association features
method backbone appearance location AQ

ResNet50

10.0
✓ 33.8

✓ 72.0
Video-kMaX ✓ ✓ 66.4
(online)

ConvNeXt-L

10.4
✓ 61.6

✓ 74.0
✓ ✓ 75.7

(b) Online setting using image-based trained models.

Table 3. Ablation study on different association features, includ-
ing the Video Stitching strategy, appearance feature, and location
feature, on KITTI-STEP val set. We note that employing different
association features will only affect the association quality (AQ).
Our final LA-MB setting is labeled with brown color, while video-
stitching and naı̈ve-MB baselines are denoted in blue and red, re-
spectively.

ance feature learned by the ResNet50 [14] is less effective
than ConvNeXt-L [28]. When the appearance feature is
less effective (e.g., when using ResNet50), it is better to
just use the location feature for association. On the other
hand, when the appearance feature is sufficiently informa-
tive (e.g., when using ConvNeXt-L), the best performance
is obtained by using both appearance and location features.

Memory-related Hyper-parameters Our proposed
memory module LA-MB contains two hyper-parameters:
τ (for refreshing old objects in the memory buffer) and α
(confidence threshold for matching). In Tab. 4, we ablate
their effects on our LA-MB and the baseline naı̈ve-MB. As
shown in the table, our LA-MB not only performs better,
but also is more robust to the hyper-parameter values than
naı̈ve-MB. More concretely, when computing the mean and
standard deviation (std) for the obtained AQ w.r.t. differ-
ent τ and α, our LA-MB achieves a mean of 73.4 and a std
of 0.4, while the baseline naı̈ve-MB attains a lower mean
of 61.5 and a higher std of 5.8. We think the robustness
of LA-MB could be attributed to its efficient hierarchical
matching scheme, which avoids the ambiguity caused by
the large matching space.

Feature-related Hyper-parameter We adopt a tem-
perature T to scale the values between the location and ap-
pearance features (see Eq. (5)). As shown in Tab. 5, our
model is robust to the different values of T . We thus de-
fault its value to 1 for simplicity. Additionally, as shown
in Tab. 6, our model is also robust to the different values of
λ, which balances the weight between the stored appearance
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hyper-parameter set [τ / α] row-wise
AQ (%) [1 / 0.6] [3 / 0.6] [10 / 0.6] [20 / 0.6] (mean / std)
naı̈ve-MB 69.5 67.1 54.3 47.4 59.6 / 10.5
LA-MB 72.7 73.0 73.9 73.7 73.3 / 0.6

[1 / 0.7] [3 / 0.7] [10 / 0.7] [20 / 0.7]
naı̈ve-MB 69.9 68.8 57.4 50.7 61.7 / 9.3
LA-MB 72.8 73.4 74.2 74.2 73.6 / 0.7

[1 / 0.8] [3 / 0.8] [10 / 0.8] [20 / 0.8]
naı̈ve-MB 71.4 71.3 64.9 59.5 66.8 / 5.7
LA-MB 72.6 73.2 73.6 73.6 73.3 / 0.5

69.7 / 1.0 68.0 / 2.1 55.8 / 5.5 49.1 / 6.3 61.5 / 5.8column-wise
(mean / std) 72.7 / 0.1 73.2 / 0.2 74.1 / 0.3 74.0 / 0.3 73.4 / 0.4

VS naı̈ve-MB LA-MB

55

60

65

70

Table 4. Ablation study on stability of Video-kMaX using different memory-related hyper-parameter sets (τ for memory-
refreshing and α for confidence threshold) on KITTI-STEP val set. We vary τ ∈ {1, 3, 10, 20} (different columns in the table) and
α ∈ {0.6, 0.7, 0.8} (different rows in the table). We compute the mean and standard deviation column-wise (fixed τ and varied α), row-
wise (varied τ and fixed α), and table-wise (varied τ and α). We plot the mean and standard deviation for the whole table on the right. The
proposed LA-MB is more robust to the hyper-parameter values than the naı̈ve-MB approach. Our final LA-MB setting and the naı̈ve-MB
baseline are labeled with brown and red color, respectively.

(a) TubeFormer (b) clip-kMaX (c) clip-kMaX + different memory buffer scheme

naive-MB

LA-MB

Figure 5. Visualization results on KITTI-STEP val set. The proposed within-clip segmenter, clip-kMaX, segments objects in a clip
better than the state-of-art TubeFormer ((a) vs. (b)). In (c), the proposed cross-clip associater, LA-MB (Location-Aware Memory Buffer),
associates occluded objects better than the baseline naı̈ve-MB, which exploits only appearance features.

method T AQ STQ

Video-kMaX (near-online)
0.5 73.95 74.10
1.0 74.22 74.23
1.5 74.30 74.27

Table 5. Ablation study on temperature T , which scales the val-
ues between location and appearance features. Our final setting is
labeled with gray color. In this table, we show results up to two
decimal points to more clearly see the robustness to T .

method λ AQ STQ

Video-kMaX (near-online)

0.0 73.34 73.80
0.5 74.19 74.21
0.7 74.22 74.23
0.8 74.22 74.23
0.9 74.22 74.23
1.0 74.18 74.21

Table 6. Additional analysis on moving average weight λ, which
balances the stored appearance feature in the memory and current
appearance feature. Our final setting is labeled with gray color.
In this table, we show results up to two decimal points to more
clearly see the robustness to λ.

feature in memory and the current one (see Eq. (3)).
Visualization Analysis We visualize results in Fig. 5

for KITTI-STEP. clip-kMaX performs better than the state-
of-the-art TubeFormer [20] for consistent segmentation be-
tween frames in a clip. The proposed LA-MB enables long-
term association, successfully re-identifying the occluded
car object (ID 214), while the baseline naı̈ve-MB fails, since
it only exploits the appearance feature.

5. Conclusion
In this work, we proposed Video-kMaX, a unified frame-

work for online and near-online Video Panoptic Segmenta-
tion (VPS) model with two modules: clip-kMaX and LA-
MB. The clip-kMaX utilizes object queries as cluster cen-
ters to group pixels of the same object within a clip, while
the LA-MB is a novel and robust memory module for both
short- and long-term association with a hierarchical match-
ing scheme. The effectiveness of our approach is demon-
strated on the KITTI-STEP and VIPSeg datasets.
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