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Figure 1. Visualization of the difference in ROI between a model trained with pairs of a video and action label and ones trained with
our proposed methods. We used GradCAM [46] for visualization. The video is in EGTEA dataset and shows “Open cabinet” action, in
which a person opens a cabinet with his/her left hand. The model trained with only pairs of a video and action label does not focus on the
interaction between actor and cabinet (1st row), whereas one trained with our proposed methods does (4th row).

Abstract

Improving the performance of egocentric action recog-
nition (EAR) requires accurately capturing interactions be-
tween actors and objects. In this paper, we propose two
learning methods that enable recognition models to capture
hand-object contact and object state change. We introduce
Hand-Object Contact Learning (HOCL), which enables the
model to focus on hand-object contact during actions, and
Object State Learning (OSL), which enables the model to
focus on object state changes caused by hand actions. Eval-
uation using a CNN-based model and a transformer-based

model on the EGTEA, MECCANO, and EPIC-KITCHENS
100 datasets demonstrated the effectiveness of applying
HOCL and OSL. Their application improved overall accu-
racy by up to 2.24% on EGTEA, 3.97% on MECCANO, and
1.49% on EPIC-KITCHENS 100. In addition, HOCL and
OSL improved the performance on data with small training
samples and one from unfamiliar scenes. Qualitative anal-
ysis revealed that their application enabled the models to
precisely capture the interaction between actor and object.
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1. Introduction
Egocentric action recognition (EAR) becomes a primary

task to understand human behavior since some potential
applications using first-person-view videos, e.g., worker
safety [7] and healthcare [38], have recently been devel-
oped. Breakthroughs in deep neural networks led to end-
to-end action recognition models that utilize convolutional
neural networks (CNNs) [29] and transformers [55]. These
advances are thanks to the efforts of many researchers who
have developed various large-scale datasets that contain
third-person-view videos [5,6,24,28,30,44,47,50] and first-
person-view videos [8, 9, 22, 23, 31, 43, 49].

Those models, such as SlowFast [20] and Video Swin
Transformer [37], generally learn actions using pairs of a
video and action label in the end-to-end manner. However,
training with only the pair data can often cause them to
learn spatio-temporal information irrelevant to actions. This
causes EAR models to not perform as well as they should.
The 1st row in Figure 1 shows an example using SlowFast.
The one trained with pairs of a video and action label does
not capture the action, resulting in the wrong prediction.

A principal element to learn spatio-temporal information
relevant to actions is to capture (1) the contact between the
actor’s hands and the objects relevant to the action and (2)
how the object’s state changes due to the action. As pro-
posed by Gibson’s affordance [21], when we interact with
surrounding objects, we perceive the object’s state, affect
the object with our body (mainly hands), and often change
the object’s state. For example, “Open fridge” in Figure 1
can be viewed as a hand pulling the door of a closed fridge
and the state of the fridge changing to open. If EAR models
capture those, it is expected not only to improve EAR per-
formance, but also to achieve robustness unaffected by the
number of samples per class or the diversity of the shooting
scene. This motivates us to design a method to train end-to-
end EAR models that appropriately focus on the interaction
between hand and object.

In this paper, we introduce two learning methods that
enable end-to-end recognition models to better understand
actions by capturing hand-object contact and the resulting
object state. Our proposed method consists of two types of
learning: Hand-Object Contact Learning (HOCL) and Ob-
ject State Learning (OSL). HOCL is realized by using two
models which has the same structure; one learns actions
from raw videos, and the other learns them from videos
containing only information related to hands and objects.
The two models learn actions collaboratively; as a result,
the model predicting with the raw videos acquires knowl-
edge related to hand-object contact during actions. OSL is
realized by defining a frame-by-frame object state predic-
tion task. The models simultaneously learn the interacting
object’s state in each frame of the video as well as actions
shown in the video. This helps the models to sufficiently

learn object state changes from the hand actions.
Evaluation with the SlowFast and Video Swin Trans-

former on three datasets (EGTEA [31], MECCANO [43],
and EPIC-KITCHENS 100 [9]) demonstrated that our
methods improve overall accuracy by up to 2.24% on
EGTEA, 3.97% on MECCANO, and 1.49% on EPIC-
KITCHENS 100. Qualitative analysis demonstrated that
models trained using our methods can recognize actions by
capturing hand-object contact and object state.

Our contributions are summarized as follows: First, we
have designed two learning methods, HOCL and OSL, that
enable models to understand actions more precisely by
taking into account hand-object interaction. Second, we
demonstrated their effectiveness in improving the perfor-
mance of EAR in different domains and with a range of
dataset scales. Third, we showed that they are capable of
robust EAR without being affected by the number of sam-
ples per class or unfamiliar scenes.

2. Related Work
Action Recognition Models. Many methods for perform-
ing action recognition using CNNs [29] have been studied.
One approach is to utilize 2D-CNNs. Methods based on this
approach recognize actions by extracting frame-level spatial
features and aggregating them in the temporal direction us-
ing average pooling [51,56] or RNNs [13,33,61]. TSM [34]
and RubiksNet [17] were devised to efficiently capture tem-
poral features by training models while shifting the spatio-
temporal features of frames. Another prominent approach
is to use 3D-CNNs, which extend 2D-CNNs to the temporal
dimension [6,19,53]. Since 3D-CNNs have a larger number
of parameters than 2D-CNNs and thus higher training costs,
advanced methods, such as P3D [41] and R(2+1)D [54],
have been devised to reduce model complexity. Feichten-
hofer et al. proposed SlowFast [20], which has a slow path-
way for capturing spatial features at a low frame rate and a
fast pathway for capturing temporal features at a high frame
rate. It demonstrated high performance among CNN-based
methods and thus has been used in many studies.

On the other hand, transformers [55] has attracted much
attention in recent years. Unlike CNNs, which repeatedly
perform local convolution operations, transformers take
into account the global relationships of the data. Various
transformer-based models, such as BERT [11], ViT [14],
and Swin Transformer [36], have been proposed and ex-
tended to video recognition [1, 3, 16, 37, 57]. Liu et al. re-
cently reported the Video Swin Transformer [37], which
extends the Swin Transformer to video tasks. It captures
local spatio-temporal features by defining a set of spatio-
temporal directions of patches as a 3D window and com-
puting self-attention between patches in the 3D window. It
also captures global spatio-temporal features between 3D
windows by shifting the 3D window for each layer.
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Figure 2. Overview of our proposed method. In the training phase, HOCL and OSL methods are integrated into the action learning. In the
inference phase, we only use video recognition model 1, which takes a raw video as input, to classify actions (indicated by a red arrow).

Most models are expected to learn the nature of actions
in the end-to-end manner. As our visualization and a previ-
ous study has suggested [25], training with pairs of a video
and action label often lead to learning actions without fo-
cusing on actions, resulting in inadequate performance.

Egocentric Action Recognition. The use of context in-
formation, such as the motions of human body parts and
the information of active objects, is a promising approach
to EAR. Methods have been devised that utilize hand infor-
mation given that the actor’s hands provide important con-
text information [27, 52]. Some studies have approached
EAR by utilizing information about where the actor looks
during actions, i.e., eye gaze [26, 39]. Since many actions
in first-person videos involve interactions between an actor
and objects, methods have been devised that utilize infor-
mation about the active object [18, 35, 58]. Similar to our
approach, several reported methods combine more than one
type of contextual information for EAR [10,32,60]. Recent
studies on EAR primarily focused on improving accuracy
by exploiting expensive additional resources, such as de-
tailed hand/object detection results. While feature fusion
approaches is a promising way to improve recognition per-
formance, increasing the computational cost (e.g., increase
in model size), especially for inference, have been ignored.
Our methods differ in that they improve performance with-
out requiring additional cascaded processes for inference.

3. Proposed Method
3.1. Overview

Our HOCL, which helps a model to learn actions more
accurately on the basis of hand-object contact, and OSL,
which helps a model to efficiently learn actions capturing
object state changes due to actions, are integrated into the
action learning in the training phase, as shown in Figure 2.
The loss functions for optimizing learnable parameters θ1
and θ2 for the video recognition model 1 and 2 (VRM1 and
VRM2), considering hand-object contact and object state,
are defined as in Equation (1) and (2), respectively.

Lθ1 = LACTN1 +LHOCL1 +LOSL1 (1)
Lθ2 = LACTN2 +LHOCL2 +LOSL2 (2)

In the inference phase, we only use VRM1, which has
learnt the relationships among action, hand-object contact,
and object state change, to classify actions. In the follow-
ing sections, we describe each loss function and the learn-
ing/inference procedure in detail.

3.2. Action Learning

First, for our main purpose, we define a loss function
that minimizes the difference between the ground truth ac-
tion label and the predicted action probabilities by VRM1.
Let MA be the number of actions defined in a dataset,
X = {xi|1 ≦ i ≦ N} be the N videos in the dataset,
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and YA = {yA,i|yA,i ∈ {1, 2, ...,MA}, 1 ≦ i ≦ N} be
the ground truth action labels of X1. VRM1 minimizes
the cross-entropy loss between predicted probabilities and
ground truth labels:

LACTN1 = −
N∑
i=1

MA∑
mA=1

IA(mA, yA,i) log
(
pmA
1 (xi)

)
(3)

The probability pmA
1 (xi) for action label mA of video xi is

given by

pmA
1 (xi) =

exp
(
zmA
1

)
∑MA

m=1 exp
(
zm1

) (4)

where zmA is the logit from xi to action label mA.
IA(mA, yA,i) is an indicator function representing the
ground truth action label:

IA(mA, yA,i) =

{
1, mA = yA,i

0, mA ̸= yA,i
(5)

The loss function LACTN2 for VRM2 can be defined simi-
larly by replacing X with the masked videos X̂ = {x̂i|1 ≦
i ≦ N} generated from X using a hand object detector.

3.3. Hand-Object Contact Learning

To capture hand-object contact, we prepare VRM1,
which learns actions from the raw video, and VRM2, which
does from the masked video, and they collaboratively learn
actions in the manner of deep mutual learning [59]. The
masked video contains only the hand-object region informa-
tion extracted by a hand-object detector; thus, VRM1 cap-
tures the contact between hand the object associated with
actions by approximating its predicted action probabilities
to those of VRM2.

To realize HOCL, we propose a loss function that min-
imizes the difference between the predicted action prob-
abilies by VRM1 and the ones by VRM2. Specifically,
VRM1 minimizes the Kullback-Leibler (KL) divergence
between the predicted probabilities output by VRM1 and
VRM2:

LHOCL1 =

N∑
i=1

MA∑
mA=1

pmA
2 (x̂i) log

(
pmA
2 (x̂i)

pmA
1 (xi)

)
(6)

VRM2 likewise minimizes the KL divergence between the
predicted action probabilities by VRM2 and VRM1.

3.4. Object State Learning

To capture object state changes during actions, we de-
fine a frame-level object state prediction task. The state of
an object (e.g., a door) is generally described by adjectives

Figure 3. An example of pseudo-object state distributions.

(e.g., broken, closed). Therefore, we manually annotated
the states of an object before and after each action, i.e., the
initial and final states of an object, with adjectives. For
example, for the “Open fridge” action, the initial state is
“closed” and the final state is “open” since a closed fridge
is opened by the action. If an action does not change the
object’s state (e.g., hold spoon), the same adjective (e.g.,
grasped) is assigned to both the initial and final states. Ac-
tions that do not affect the state of an object, such as “read
recipe” and “wait”, are labeled as none. We listed all initial
and final states in the supplementary material. After that,
we automatically generate pseudo-object state distributions
corresponding to each video frame (Figure 3). VRM1 learns
the frame-by-frame distributions as well as the video-level
actions so that it captures the object state changes associated
with actions.

To realize OSL, we propose a loss function that mini-
mizes the difference between the ground truth object state
values and the predicted object state values by VRM1.
Let MS be the number of adjectival labels defined in the
dataset, and let YS = {yS,i = (yI,i, yL,i)|yI,i, yL,i ∈
{1, 2, ...,MS}, 1 ≦ i ≦ N} be pairs of the initial state yI
and last state yL of an object corresponding to the ground
truth action labels YA. VRM1 minimizes the KL divergence
between the predicted distributions and pseudo-object state
distributions:

LOSL1 =
γ

|Fi|

N∑
i=1

Fi∑
f

MS∑
mS=1

IS(mS ,yS,i, f, Li) log

(
IS(mS ,yS,i, f, Li)

pmS

1,f (xi)

)
(7)

where Li is the frame length of video xi, Fi = {fi|fi ∈
{1, ..., Li}, 1 ≦ i ≦ N} is the set of frames for which ob-
ject state prediction is performed, γ is a hyperparameter that
determines the effect of object state prediction in the learn-
ing process. The value pmS

1,f (xi) for the adjective label mS

in the f -th frame of the video data xi is calculated using

pmS

1,f (xi) =
exp
(
zmS

1,f

)
∑MS

m=1 exp
(
zm1,f

) (8)
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Algorithm 1 Training Procedure

Input: Train set X , label set YA, YS , learning rate η
Initialize: Initialize θ1 and θ2 to the same conditions

1: repeat
2: Randomly sample x from X and generate x̂.
3: Compute predictions of VRMs by (4) and (8).
4: Compute stochastic gradient and update θ1:

θ1 ← θ1 + η
∂ Lθ1

∂θ1
.

5: Update predictions of VRM1 by (4) and (8)
6: Compute stochastic gradient and update θ2:

θ2 ← θ2 + η
∂ Lθ2

∂θ2
.

7: Update predictions of VRM2 by (4) and (8)
8: until convergence

where zmS

1,f is the logit from the f -th frame in xi to adjective
label mS . IS(mS ,yS,i, f, Li) is an indicator function that
represents the pseudo-object state distribution, as shown in
Equation (9).

IS(mS ,yS,i, f, Li)

=


1, mS = yI,i and yI,i = yL,i

1−
(

f−1
Li−1

)
, mS = yI,i and yI,i ̸= yL,i

f−1
Li−1 , mS = yL,i and yI,i ̸= yL,i

0, otherwise

(9)

Figure 3 shows an example of pseudo-object state distri-
butions for “Open fridge.” Using equation (9), we can de-
termine the value for “closed” (the initial state yI ) to be 1
and the one for “open” (the last state yL) to be 0 for the
first frame (f = 1) of the video, whose length (L) is 9.
The values for the other object states (e.g., cut) are per-
manently 0. As the video continues (the frame number f
increases), the values for “closed” and “open” are linearly
switched. VRM2 likewise minimizes the KL divergence
between the predicted distributions and pseudo-object state
distributions.

3.5. Training and Inference Procedure

In the training phase, VRM1 and VRM2 are optimized
collaboratively in the manner of mini-batch learning. We
prepare a mini-batch of videos for VRM1 and then generate
masked videos by using a hand-object detector for VRM2.
VRM1 and VRM2 then compute their predictions; the θ1
and θ2 are updated in turn at each iteration. This proce-
dure is iteratively performed until convergence. Algorithm
1 summarizes the training procedure.

In the inference phase, we only calculate Equation (4)
using VRM1, which has learnt the relationships among ac-
tion, hand-object contact, and object state. In other words,
models trained with HOCL and OSL can predict action la-
bels from only raw video, just as models trained with pairs
of a video and action label in the end-to-end manner.

4. Evaluation

4.1. Datasets and Settings

Datasets and Evaluation Metrics. We evaluated the per-
formance of our proposed methods on two domain datasets:
EGTEA [31] and MECCANO [43]. We also evaluated it
on a large-scale dataset, EPIC-KITCHENS 100 (EPIC-100)
[9]. EGTEA contains 10,321 segments of 106 actions in the
kitchen environment (e.g., open fridge). It defines three 8:2
data splits for the train and test sets. In our experiments, we
randomly selected 1,000 videos from the action segments in
the original train set and defined three 7:1:2 data splits for
the train, validation, and test sets. We manually annotated
the initial and final states for the 106 actions. The total num-
ber of adjectives was 20. We calculated the overall accuracy
and mean class accuracy averaged across all three splits.
MECCANO contains 8,839 action segments of 61 types of
industrial-like domain actions (e.g., plug rod). We used the
train, validation, and test sets as defined. We manually an-
notated the initial and final states for the 61 actions. The
total number of adjectives was 13. We calculated the top-
{1,5} accuracy and macro-averaged precision, recall, and
f1 score. In a resulting table, they are denoted as Acc@1,
Acc@5, P, R, and F1, respectively. EPIC-100 contains ac-
tion segments labeled with a combination of 97 verbs (e.g.,
open) and 300 nouns (e.g., fridge). In our experiments, we
used segments P01 to P27 in the original train set as a train
set (55,191 segments) and the remaining segments as a val-
idation set (12,026 segments). We used the segments in the
original validation set as a test set (9,668 segments). We
manually annotated the initial and final states for all verb-
noun pairs in the train and validation sets. The total number
of adjectives was 94. Since each action is a combination of
a verb and noun, we predicted both labels using two heads
per video recognition model and set the top-scoring verb
and noun pair as the action label. We calculated the top-1
verb, noun, and action accuracy for “overall,” “unseen par-
ticipants,” and “tail classes” settings.
Video Recognition Models. We conducted our experi-
ments with two video recognition models pre-trained on the
Kinetics dataset [6]: SlowFast (SlowFast 8×8 ResNet-50,
α = 4, β = 1/8) [20], a CNN-based state-of-the-art model,
and Video Swin Transformer (Swin-B) [37], a state-of-the-
art transformer-based model.
Hand Object Detector. For hand-object detection, we
used the Faster-RCNN [45] trained on 100DOH + Egocen-
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Table 1. Results for each model w/ and w/o HOCL and OSL on EGTEA dataset [31]. Bolded scores indicate best ones in each model.

Model HOCL OSL Overall acc. Mean class acc.
Split1 Split2 Split3 Average Split1 Split2 Split3 Average

Sl
ow

Fa
st ✗ ✗ 64.29 63.20 64.57 64.02 56.48 55.07 55.89 55.81

✓ ✗ 69.78 65.68 63.98 66.48 61.43 56.35 55.20 57.66
✗ ✓ 67.66 65.73 64.03 65.81 59.43 55.85 55.65 56.97
✓ ✓ 69.09 65.68 65.81 66.86 59.36 57.39 57.66 58.14

Sw
in

-B

✗ ✗ 65.83 64.44 62.00 64.09 59.62 55.58 56.21 57.14
✓ ✗ 67.16 64.99 62.15 64.77 60.96 55.55 55.77 57.43
✗ ✓ 68.25 64.94 64.23 65.81 62.19 56.75 57.88 58.94
✓ ✓ 67.80 66.47 63.68 65.98 61.77 58.64 57.41 59.27

Table 2. Results for each model w/ and w/o HOCL and OSL on
MECCANO dataset [43]. Bolded scores indicate best ones in each
model.

Model HOCL OSL Acc@1 Acc@5 P R F1

Sl
ow

Fa
st ✗ ✗ 38.08 70.63 0.178 0.151 0.141

✓ ✗ 42.05 70.99 0.169 0.156 0.150
✗ ✓ 41.37 74.25 0.146 0.139 0.133
✓ ✓ 40.70 73.33 0.198 0.160 0.151

Sw
in

-B

✗ ✗ 44.03 76.76 0.206 0.163 0.166
✓ ✗ 42.01 75.77 0.239 0.154 0.161
✗ ✓ 44.00 75.59 0.231 0.184 0.185
✓ ✓ 44.81 77.01 0.201 0.163 0.167

tric data [48] [8] [31] [49]. For EGTEA and MECCANO,
we extracted hand-object bounding box (bbox) coordinates
from the videos. For EPIC-100, we used pre-extracted bbox
coordinates published by the authors of EPIC-100.

4.2. Implementation Details

We used the PyTorch [40] and PyTorchVideo [15] for
implementation and the default settings for all parameters
except those explicitly mentioned. To train the SlowFast
model, we used stochastic gradient descent [4] with mo-
mentum 0.5, learning rate 5e-3, and weight decay 1e-4 to
optimize the parameters for 60 epochs on EGTEA and 40
epochs on MECCANO. The mini-batch size was set to 16.
For SlowFast on EPIC-100, we used the settings proposed
by the EPIC-100 authors [9] except for the mini-batch size,
which we set to 16. We used a temporal stride of 2, or its
horizontal flip, with the length of the shorter side randomly
sampled from 256 to 320 pixels, to randomly clip 224×224
pixels from 64 successive frames in each video. For infer-
ence, we scaled the shorter spatial side to 256 pixels and
took 256× 256 pixels from a 32-frame clip uniformly sam-
pled from the entire video. To train the Swin-B model, we
used the AdamW [12] with learning rate 3e-5 to optimize
the parameters for 50 epochs on EGTEA and 40 epochs on
MECCANO. For Swin-B on EPIC-100, we used the set-
tings for the Kinetics dataset proposed by the Swin-B au-

thors [37]. The mini-batch size was set to 64. We randomly
cropped 224×224 pixels from 64 successive frames in each
video using a temporal stride of 2 or its horizontal flip. For
inference, we scaled the shorter spatial side to 224 pixels
and took 224 × 224 pixels from a 32-frame clip uniformly
sampled from the entire video. For all model variants, the
dimensions of the video feature and masked video feature
were set to 1024. Parameter γ, which adjusts the effect of
OSL, was set to 0.5. Object state prediction was conducted
using the slow pathway frames for SlowFast and using eight
uniformly sampled frames for Swin-B, meaning that |Fi|
equaled 8 in the loss function.

4.3. Main Results

First, we compare the overall performance on the three
datasets. The results on the EGTEA are shown in Table 1.
For both the SlowFast and Swin-B, training with HOCL and
OSL improved the overall accuracy across all data splits and
the average scores. In particular, training with both HOCL
and OSL improved the overall accuracy of SlowFast and
Swin-B by 2.84% and 1.89%, respectively. Table 2 presents
the results on the MECCANO, which contains actions in an
industrial-like domain. As with EGTEA, performance gains
on top-{1,5} accuracy were observed for both SlowFast and
Swin-B. Table 3 presents the results for each model on the
EPIC-100. The overall accuracy of SlowFast improved by
1.49% and the one of Swin-B is comparable to the baseline.
These results demonstrate that the use of HOCL and OSL
is mostly effective in different domains and with a range of
dataset scales.

We also verify the performance in terms of a metric that
evaluates data with small training samples and unseen data.
Since mean class accuracy on EGTEA and F1-score on
MECCANO treat performance for each class equally, they
are influenced by performance for classes with fewer sam-
ples compared to overall accuracy. In the “tail classes” set-
ting on EPIC-100, each model is evaluated only on the mi-
nor classes, which comprised 20% of the training instances.
Note that the majority of verb and noun labels in the EPIC-
100, specifically 86 out of 97 verb labels and 228 out of
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Table 3. Results for each model w/ and w/o HOCL and OSL on EPIC-100 dataset [9]. Bolded scores indicate best ones in each model.

Model HOCL OSL Overall Unseen participants Tail classes
Verb Noun Action Verb Noun Action Verb Noun Action

Sl
ow

Fa
st ✗ ✗ 57.28 44.01 32.14 45.26 34.65 23.00 37.26 25.31 12.40

✓ ✗ 59.70 45.16 33.63 50.89 36.15 26.29 38.13 25.28 12.21
✗ ✓ 56.35 38.50 27.96 48.36 32.86 22.72 34.43 19.23 8.18
✓ ✓ 56.81 42.16 31.53 46.67 33.80 24.51 35.97 21.22 10.21

Sw
in

-B

✗ ✗ 54.81 52.58 34.39 46.85 44.69 26.95 39.61 33.01 15.97
✓ ✗ 52.13 52.63 32.72 44.32 43.76 24.88 37.36 33.72 15.43
✗ ✓ 54.33 51.15 33.41 47.51 43.47 27.32 40.48 32.40 15.91
✓ ✓ 53.32 52.17 33.52 46.85 44.60 26.85 39.94 33.70 17.10

Table 4. Results for each model w/ and w/o HOCL and OSL on EGTEA dataset [31] using models pretrained on EPIC-100 dataset [9].
Bolded scores indicate best ones in each model.

Model HOCL OSL Overall acc. Mean class acc.
Split1 Split2 Split3 Average Split1 Split2 Split3 Average

Sl
ow

Fa
st ✗ ✗ 70.28 67.56 68.73 68.86 61.90 57.87 59.36 59.71

✓ ✗ 71.36 67.46 69.12 69.31 63.70 58.15 61.09 60.98
✗ ✓ 69.24 64.23 65.36 66.28 61.73 55.80 57.57 58.37
✓ ✓ 69.83 67.36 67.74 68.31 61.33 57.32 57.14 58.60

Sw
in

-B

✗ ✗ 71.76 68.99 66.01 68.92 66.05 61.12 60.05 62.41
✓ ✗ 69.04 69.14 65.66 67.95 62.87 61.13 58.12 60.71
✗ ✓ 71.32 70.67 66.95 69.65 65.89 63.96 59.69 63.18
✓ ✓ 71.46 69.34 66.95 69.25 65.70 61.53 60.83 62.69

300 noun labels, belong to the tail classes. In the “unseen
participants” setting on the EPIC-100, each model is eval-
uated on participant data not presented in the train set; in
other words, it predicts actions in unseen scenes. The tables
show that training with our proposed methods improved the
performance for minor classes and for unfamiliar scenes. In
particular, training with both HOCL and OSL improved the
mean class accuracy of the SlowFast and Swin-B by 2.33%
and 2.13% on the EGTEA dataset, respectively. On the
MECCANO, the use of HOCL and/or OSL increased F1-
scores to 1.0pt and 1.9pt for SlowFast and Swin-B. In the
“tail classes” and “unseen participants” settings on EPIC-
100, SlowFast and Swin-B with our proposed method are
equal or better performance. These results indicate that
HOCL and OSL make EAR models robust for minor classes
and unfamiliar scenes.

The results for all datasets shows that HOCL tends
to contribute more for SlowFast whereas OSL contributes
more for Swin-B. We attribute this to the architectural dif-
ferences between SlowFast and Swin-B. SlowFast repeats
convolutional operations internally and is able to learn lo-
cal spatio-temporal features. It thus tends to have higher
affinity with HOCL, which is a constraint that focuses on
contact between hands and objects during actions, i.e., lo-

cal spatio-temporal information. On the other hand, Swin-
B captures the relationship between patches and between
windows and thus can learn global spatio-temporal features.
Therefore, it tends to have higher affinity with OSL, which
is a constraint that focuses on object state changes due to
actions, i.e., global spatio-temporal information. Further
analysis of these affinities in line with previous studies is
required [2, 42].

4.4. Results on First-Person Video Pretraining

We also evaluated the effectiveness of our methods for
models pretrained on a large dataset from the same view-
point and domain. We used models pretrained on the Kinet-
ics dataset for all the experiments discussed above. How-
ever, the type of dataset used in the pretraining phase greatly
affects the performance of recognition models. EGTEA
and EPIC-100 contain various actions in the kitchen envi-
ronment; therefore, we pretrained the SlowFast and Swin-B
models on all the train and validation data in EPIC-100 and
then compared the performance of each model on EGTEA.
To pretrain SlowFast and Swin-B, we followed the settings
proposed by the EPIC-100 authors and the settings for Ki-
netics proposed by the Swin-B authors. The results with
pretraining on EPIC-100 are shown in Table 4. They show

6547



Table 5. Performance comparison with other methods on EGTEA
dataset. We report the scores on split1 in line with them.

Method Modality Overall Mean class

Yifei et al. [26] RGB+flow+gaze - 62.6
Min and Corso [39] RGB+flow+gaze 69.5 62.8

SlowFast (ours, best) RGB 69.7 61.4
Swin-B (ours, best) RGB 68.2 62.1

Table 6. Performance comparison with an other method on EPIC-
100 dataset. We report the overall scores in line with it.

Method Modality Action Verb Noun

Wang et al. [58] RGB+flow+obj 28.8 60.4 37.4

SlowFast (ours, best) RGB 33.6 59.7 45.1
Swin-B (ours, best) RGB 33.5 53.3 52.1

that our proposed methods are effective even when the mod-
els are pretrained on a large dataset in the same domain.
This indicates that HOCL and OSL can help EAR models
to focus on the appropriate spatio-temporal information and
thereby achieve more accurate recognition even when abun-
dant training resources are available.

4.5. Comparison with other methods utilizing hu-
man body motions and active objects

Models trained with our proposed methods predict ac-
tions with only RGB of a video for inference. Therefore, it
is appropriate to consider the latest end-to-end EAR models,
such as SlowFast and Swin-B, as the baseline models for
comparison. On the other hand, we also compare with ex-
isting methods utilizing not only RGB but also human body
motions and active objects. Table 5 and 6 show performance
comparison with them. The results show that SlowFast and
Swin-B with our proposed methods are comparable or bet-
ter performance even though (1) the existing methods uti-
lize the information of human body motions and active ob-
jects for inference and (2) they are trained on more training
samples. Note that the experimental setting for compared
methods is slightly different. Specifically, we extracted a
validation set from the train set as mentioned in section 4.1;
thus, our models trained fewer training samples.

4.6. Qualitative Analysis

We qualitatively evaluated the two proposed methods to
better understand their behaviors by visualizing where is
focused upon to recognize actions by models trained on
each method. Example visualizations of the ROI for the
slow pathway of SlowFast are shown in Figure 1. We used
the GradCAM [46] to visualize the ROI with the SlowFast
model for each combination of HOCL and OSL and for nei-
ther one. SlowFast with only action learning incorrectly
recognized the action as “Close cabinet,” whereas SlowFast

trained on the two proposed methods correctly recognized
“Open cabinet.” The model trained with only action learn-
ing (1st row) reacted strongly to the closed cabinet in the
second frame and thus recognized incorrectly. This shows
that the SlowFast model cannot adequately capture infor-
mation relevant to the action in the training phase. On the
other hand, when SlowFast was trained on both HOCL and
OSL, it recognized the action by strongly responding to the
region where the left hand contacted the cabinet and where
the cabinet state changed from open to closed during the ac-
tion. This analysis suggests that our proposed methods en-
able EAR models to learn actions considering hand-object
interactions. We have confirmed this trend in multiple cases
across domains; however, due to page limits, other example
visualizations are presented in the supplementary material.

5. Limitations
Our proposed methods require annotation of an ad-

ditional adjective label for the datasets. Our proposed
methods require annotation of an additional adjective label
for the datasets. Annotation cost for OSL is proportional
to the number of action labels defined in a dataset, not the
number of videos or frames; thus, it is unlikely to be a
barrier to incorporating this idea into other tasks/datasets.
However, additional manual annotation is unavoidable. It is
necessary to design a method that works in an unsupervised
or self-supervised manner.

Neither an untrained model nor one trained on the
proposed methods can prioritize the actions to be recog-
nized on the current datasets. We often perform multiple
actions simultaneously. For example, we might lift a loaf of
bread with our left hand and simultaneously grasp a knife
with our right hand to slice it. In this situation, the video
shows both “Take bread” and “Take eating utensil”; there-
fore, there are two ground truth actions. However, recogni-
tion models cannot determine which action is salient. We
discuss this point in detail with a visualization example in
the supplementary material.

6. Conclusion
Our proposed methods, HOCL and OSL, help EAR

models to classify actions more accurately by focusing
on hand-object contact and object state change. Exper-
iments demonstrated that the two proposed methods im-
proved recognition performance in different domains on
datasets of various scales. This improved recognition per-
formance, especially for classes with a few instances in the
train set and for unseen data. We also showed that our pro-
posed methods incorporated the relationships among action,
hand-object contact, and object state change into EAR mod-
els through visualization.
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