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Abstract

In the life cycle of highly automated systems operating
in an open and dynamic environment, the ability to adjust
to emerging challenges is crucial. For systems integrat-
ing data-driven AI-based components, rapid responses to
deployment issues require fast access to related data for
testing and reconfiguration. In the context of automated
driving, this especially applies to road obstacles not in-
cluded in the training data, commonly referred to as out-of-
distribution (OoD) road obstacles. Given the availability of
large uncurated driving scene recordings, a pragmatic ap-
proach is to query a database to retrieve similar scenarios
featuring the same safety concerns due to OoD road obsta-
cles. In this work, we extend beyond identifying OoD road
obstacles in video streams and offer a comprehensive ap-
proach to extract sequences of OoD road obstacles using
text queries, thereby proposing a way of curating a collec-
tion of OoD data for subsequent analysis. Our proposed
method leverages the recent advances in OoD segmenta-
tion and multi-modal foundation models to identify and effi-
ciently extract safety-relevant scenes from unlabeled videos.
We present a first approach for the novel task of text-based
OoD object retrieval, which addresses the question “Have
we ever encountered this before?”.

1. Introduction

Imagine a scenario where a self-driving vehicle is in-
volved in a collision with a dog. Following the incident,
an investigation team is set up to determine the root cause
of the accident. For data-driven AI-based components, the
investigation team would prioritize acquiring sensory data,
such as videos with prior encounters with dogs, to repro-
duce the error and asses the perception system. Having an
understanding of the situation, including the vehicle’s envi-
ronmental perception leading up to the incident, can help in
refining its driving policy and prevent future incidents.
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Figure 1. Overview of Our Method: We extract specific safety-
critical driving scenes due to out-of-distribution (OoD) road obsta-
cles from unlabeled videos based on a text query, such as “dog”.
The approach leverages single-frame OoD segmentation, object
tracking, and multi-modal feature encoding of OoD images to en-
able text-to-video retrieval of OoD road obstacles.

The previous example illustrates the need to acquire tar-
geted video data in future life cycles of perception compo-
nents in self-driving cars. Promptable video synthesis using
generative models [25,55,64] could be a suitable way to ac-
quire such data. However, questions about the coverage of
the generated distribution and the extent of the domain gap
would still prevail [43, 53]. An alternative that we follow
here is to retrieve relevant data from real-world recordings.
However, existing video retrieval approaches [40,46,54] re-
quire processing up to millions of hours of recorded data,
which is highly resource-intensive and slow when applied.
This is why an efficient screening and preselection of rele-
vant scenes is key.
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In this work, we focus on safety-critical driving scenes
containing unknown road obstacles. In self-driving cars,
deep neural networks (DNNs) are employed for perception
tasks, and they are trained to identify and locate objects
within images given a predefined set of object categories
[22,39,50]. The number of these predefined classes for stan-
dard automated driving datasets ranges from 11 classes in
KITTI [35] to 19 classes in BDD100K [65] and Cityscapes
[15]. Those classes include common semantic categories
such as pedestrian, road, or sidewalk. However, the di-
versity of the real world offers a boundless set of possible
object categories, making DNNs particularly error-prone
when processing semantically unknown objects, commonly
known as out-of-distribution (OoD) objects. A particular
and safety-critical OoD subset in automated driving consists
of OoD road obstacles, which are unknown objects present
within the drivable area of a self-driving car [29, 37, 47].
Identifying those objects is a crucial prerequisite for build-
ing an OoD database for further analysis and subsequent
adjustment of the perception system [2, 18].

Our target is to enable the perception stack to efficiently
retrieve safety-relevant video sequences of OoD road ob-
stacles from prior recordings using text queries. For the re-
lated task of image retrieval, one primary challenge is align-
ing image and query features into a joint embedding space
for fast retrieval. Additionally, in the context of OoD road
obstacle retrieval, the absence of existing OoD video seg-
mentation approaches (instead of per-frame segmentation)
poses another methodological challenge of identifying the
same OoD road obstacles over multiple consecutive frames.

A parallel line of research in image retrieval explores the
construction of feature embeddings based on visual similar-
ities by utilizing DenseNet feature encodings [27] to clus-
ter OoD objects [41, 45, 57, 58]. Those approaches, how-
ever, come with limitations that constrain the application
of targeted retrieval of objects: (1) the process of cluster-
ing in the embedding space is driven by visual similarities,
wherefore distinct instances may be assigned into separate
clusters even if they belong to the same semantic category,
(2) the retrieval from already formed clusters can only be
performed content-based, which requires an image query or
manually assigned labels for clusters provided by human
annotators and (3) all current approaches only retrieve sin-
gle frames rather than complete sequences.

In this work, we propose a method for processing unla-
beled video data from commonly available in-vehicle cam-
eras and extracting driving scenes that contain OoD road
obstacles. In the first step, our approach provides detailed
information about the presence and trajectory of a singu-
lar OoD road obstacle within a video sequence, thereby
extending beyond the conventional task of identifying any
OoD object in a single frame to a set of consecutive frames.
Next, we offer a method to retrieve sequences that contain

the same or similar OoD road obstacles matching a textual
description provided by a user. The combination of the two
steps leads to a novel approach for resource-efficient and
fast text-to-video retrieval of safety-critical driving scenes
that leverages the most recent advances both in single-frame
OoD segmentation and multi-modal feature encoding.

In particular, we perform single-frame OoD segmenta-
tion first and track identified OoD road obstacles through
frames using a lightweight object tracker. The single frames
are then embedded in a multi-modal embedding space. This
use of semantically meaningful embedding space enables
the retrieval of frames containing OoD road obstacles that
match the given text query, while the tracking information
allows for the retrieval of the complete sequence of frames
where the OoD road obstacle was present. This is the first
work to leverage the recent progress in single frame OoD
segmentation [44] and the power of the recently established
multi-model foundation models [48] for combined image
and language understanding for OoD retrieval with applica-
tion in automated driving. An overview of our method is
shown in Figure 1.

We summarize our contribution as follows:

• We propose a novel modular approach for efficient
text-to-video retrieval of safety-critical driving scenes
containing OoD road obstacles. Our framework im-
plements and validates the key ideas: (1) leveraging
a multi-modal embedding space for text-to-image re-
trieval, (2) utilizing temporal information and object
persistency by making use of tracking to extend single-
frame retrieval to video data, and (3) using meta clas-
sification for segment-wise false positive removal to
refine the OoD segmentations for better accuracy.

• By using CLIP’s multi-modal embedding space [48],
we generate clusters of OoD road obstacle sequences
in low-dimensional feature space that enable proper
text-to-video retrieval based on semantic similarities
rather than visual similarities.

• Through extensive experiments, we investigate the in-
teraction of each component within our framework and
their impact on the overall retrieval performance. Our
findings underline the significance as well as the ap-
parent positive effect of each module on the OoD road
obstacle retrieval performance, which are object-level
processing, object tracking, prediction of region on in-
terest, and meta classification.

2. Related Work

OoD Segmentation: Semantic segmentation models
group pixels in an image into segments that adhere to spe-
cific predefined semantic classes. Image parts that don’t
belong to any of the predefined set of classes are referred to
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as out-of-distribution (OoD). Typically, semantic segmenta-
tion models struggle to detect OoD segments [10].

One approach to overcome this limitation is to leverage
sampling-based uncertainty estimation approaches, such as
Monte-Carlo dropout [19], ensembles [33], or variational
inference [20]. Those quantify the predictive uncertainty of
the model and use it to identify OoD objects as unknown.
However, these methods are computationally expensive and
suffer from numerous false positives in boundary regions
between objects, as these exhibit natural uncertainties [32].
A more effective approach is to include auxiliary training
data as a proxy for unknown objects to either maximize the
softmax entropy [11] or minimize the maximum logits score
[44] of unknown objects. Other methods have achieved
promising results by aggregating pixel-level uncertainty in-
formation into mask-level predictions [23,44,51]. These ap-
proaches use segmentation models that perform mask-level
segmentation to make predictions about unknown objects.
More recent techniques [61] detect road obstacles by ex-
plicitly learning a feature embedding space that models the
multi-modal appearance of road surfaces.

The approach we consider most promising is the one pro-
posed by [44], as indicated by their results on the Segment-
MeIfYouCan road obstacle segmentation benchmark [10].
Their approach succeeds due to the use of mask classifica-
tion to preserve objectness and a scoring function that elim-
inates irrelevant sources of uncertainty. We follow the same
method for segmenting OoD road obstacles; however, we
enhance the frame-based detection module of [44] by in-
corporating segment tracking on videos to eliminate some
of the false positive detections.

Multiple Object Tracking (MOT) is the task of deter-
mining the spatial and temporal location of multiple objects
in a sequence of images. Two possible approaches for MOT
tracking are: (a) Converting existing detectors into trackers
and combining both tasks in the same framework. These
methods either use 3D convolutions on consecutive frames
to incorporate temporal information [30, 31, 60] or propa-
gate frame-level information to subsequent frames [3,5,67].
However, combining tracking and detection into one model
sacrifices the modularity of the tasks, which is desirable for
reuse and inspectability in safety-relevant applications [28,
5.4.2 c)]. (b) Tracking by detection methods, which first
utilize a pre-trained object detector to detect objects and
then track them through a sequence of frames, for example,
via data association [8, 34], visual cues [21, 63], or motion
patterns [6, 9]. [38] proposed an approach for tracking de-
veloped explicitly for use in open-world conditions. Their
method uses optical flow and an appearance-based similar-
ity score to detect and track moving objects in an open-
world setting. In this work, we use the lightweight track-
ing by detection approach proposed in [42] to track OoD
objects in a sequence of images. This tracking method is a

post-processing method based on the overlap of detections
between consecutive frames.

Retrieval Methods are generally designed to identify
and recover samples from a large database corresponding
to a given query. For image retrieval, methods can be clas-
sified into two categories: content-based image retrieval and
text-based image retrieval [12, 66].

Content-based image retrieval methods are based on a
query image. These methods aim to select images from a
database representing a similar content as the query image.
Content-based retrieval techniques analyze visual features
of images, including color, texture, or shape, to establish
similarity between the images in the database and the given
query image [13, 17]. Text-based image retrieval methods
focus on selecting images that exhibit the highest level of
relevance to a given text query. These systems utilize textual
information, such as keywords or natural language descrip-
tions, to retrieve images from a database that best aligns
with the provided text [1, 24, 26].

For the task of text-video retrieval, a rich line of research
has evolved from the global matching of features via video-
sentence alignment [40] to more fine-grained matching via
frame-word alignment [62]. These studies have demon-
strated remarkable performance and significantly outper-
formed previous models on the task of text-video retrieval.
This is mainly due to the powerful pre-aligned visual and
textual representation offered by open-source models like
CLIP [48]. In [40], the authors utilize a temporal trans-
former on top of CLIP to fuse sequential features into a
single high-dimensional representation and directly retrieve
video segments. However, for the automotive use case,
hardware constraints have to be fulfilled. Therefore, in this
work, we use a lightweight tracking module on top of CLIP
to perform text-video retrieval.

3. Methodology
This work focuses on retrieving OoD road obstacle se-

quences from unlabeled videos based on a text query. Our
method consists of three key steps. First, we identify the
occurrence of OoD road obstacles in single frames. Sec-
ond, we track the OoD road obstacles through consecu-
tive frames, creating sequences of frames where the same
road obstacle appears. Third, we enable user interaction
via text-based retrieval of sequences. Our method is set up
such that after the first and second steps, a database with
driving scenes containing OoD road obstacles can be estab-
lished. Considering that such scenes are substantially less
prevalent, this approach resolves problems with the band-
width constraints of autonomous vehicles and potential stor-
age limitations within cloud-based systems. Afterward, the
crops of each OoD road obstacle can be embedded once in a
vision-text embedding space; this embedding space allows
for retrieving sequences when a user provides a text query.
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Figure 2. OoD Road Obstacle Segmentation Overview: Our method segments OoD objects and the road, refines OoD objects using
meta classification, generates a region of interest through road mask dilation and erosion, and obtains final OoD road obstacle predictions
by combining OoD predictions and the region of interest mask.

Since each crop can be associated with its respective video
sequence, fast retrieval of sequences containing OoD road
obstacles is enabled.

To accomplish this, our proposed method integrates var-
ious auxiliary tasks, including OoD segmentation, multi-
object tracking, and text-based image retrieval. These tasks
collectively constitute the overall framework. The follow-
ing sections present a detailed description of each task.

3.1. OoD Road Obstacle Segmentation

A complete overview of the OoD road obstacle segmen-
tation method is shown in Figure 2. The initial phase of
the OoD road obstacle segmentation module involves us-
ing a semantic segmentation network. In our experiments,
we use the Mask2Former model [14] initially trained on the
Cityscapes dataset [15]. Mask2former decouples localiza-
tion and classification of objects in semantic segmentation
by splitting the task into two steps. Given an H ×W sized
image, Mask2former computes N pairs {(mi,pi)}Ni=1,
where mi ∈ [0, 1]H×W are mask predictions associated
with some semantically related regions in the input image
and pi ∈ [0, 1]K+1 class probabilities classifying to which
semantic category the mask mi belongs to. Here, the masks
can be assigned to one of the K known Cityscapes classes or
to one auxiliary void class. The final semantic segmentation
inference is carried out by an ensemble-like approach over
the pairs {(mi,pi)}Ni=1 yielding pixel-wise class scores

q[h,w, k] =

N∑
i=1

pi(k) ·mi[h,w] ∈ [0, N ] (1)

for image pixel locations h = 1, . . . ,H,w = 1, . . . ,W and
classes k = 1, . . . ,K. Then, OoD detection is performed
via the anomaly score defined by

RbA[h,w] = −
K∑

k=1

ϕ(q[h,w, k]) ∈ [0,K] (2)

with ϕ being the tanh activation function. Intuitively, RbA
in Equation (2) is a measure of whether a pixel cannot be

associated to any known class, and thus “Rejected by All”
(RbA), of the K known classes. This scoring function has
been introduced in [44]. In the same work, the authors
additionally fine-tune Mask2Former for OoD detection by
training for low-class scores of the known classes on OoD
instances from COCO [36], which has shown to enhance
OoD segmentation performance further. This fine-tuned
Mask2Former serves as our method for OoD road obstacle
segmentation in this work.

Post-processing OoD Predictions: To reduce false pos-
itive predictions, meta-classification [11, 51, 52] is used
to obtain quality ratings for the OoD predictions. Meta-
classification uses hand-crafted metrics like entropy, geom-
etry, and location information of predicted instances to learn
the features of false positive predictions on the training set.
During run-time, the meta-classification model, in our case
a logistic regression, can remove false positives without any
ground truth information. We refer the reader to [11] for a
detailed description of the approach.

Post-processing Road Segmentation: By definition,
road obstacles are objects on the road. Consequently, we
can restrict our predictions exclusively to objects on the
road by establishing a region of interest (RoI) mask that en-
compasses the road area. The RoI mask can be obtained
by extracting the road predictions from the Mask2Former
semantic segmentation model combined with morphologi-
cal closing [56] to fill gaps where potential road obstacles
might be present. The final OoD road obstacle predictions
are obtained by simply masking the OoD predictions with
the region of interest.

3.2. OoD Object Tracking

Given predictions of OoD road obstacles in each frame,
as described in section 3.1, we match subsequent pre-
dictions through consecutive frames by measuring the
segment-wise intersection over union (IoU) and the geomet-
ric centers between consecutive detections.

The first step of the tracking approach assigns random
identifiers to all the predicted segments in the first frame.
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Figure 3. OoD Tracking Overview: Given subsequent frames of
OoD obstacles, we use a lightweight tracker that assigns visually
and spatially similar segments to the same tracking ID.

For the subsequent frames, each segment is matched with
segments in the previous frames if their overlap is suffi-
ciently large and their geometric centers are close enough.
Over consecutive frames, linear regression is applied to ac-
count for misdetections and temporal occlusions. Segments
that do not match with previous detections are assigned new
identifiers, and then the process is iterated. We note that this
lightweight tracker does not apply any motion models to an-
ticipate the shifted center points of the detections. Hence,
the assumption is that the differences between consecutive
frames are minimal, leading to a substantial Intersection
over Union (IoU) across frames.

To reduce the number of false positive detections,
tracked segments in sequences of frames with a length of
less than ten frames are filtered out. The assumption is that
in the context of automated driving, informative OoD road
obstacles persist in the field of view of the vehicle for a cou-
ple of frames. The final output of the tracking module is a
sequence of cropped segments that belong to a single in-
stance of an OoD road obstacle. An overview of the OoD
tracking module is shown in Figure 3.

3.3. Retrieval of Road Obstacle Video Sequences

OoD road obstacle segmentation and tracking allows for
creating a database of video sequences, with each sequence
consisting of consecutive crops of an OoD road obstacle
from a video recording. Given a textual query, the goal
of OoD road obstacle retrieval now is to find those video
sequences that best match the query. For this, we utilize
CLIP [48] to align image and text features into a joint em-
bedding space where their similarity can be quantified. Us-
ing this approach, natural language supervision guides the
model to understand that latent representations of semanti-
cally similar contents of images should be close in the em-
bedding space.

We retrieve video sequences of OoD objects similar to
a textual query as follows: In our database, each element
comprises consecutive image crops of OoD road obstacles,
which we identify and associate during the OoD detection
and tracking steps. We then compare the embedding space
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Figure 4. OoD Road Obstacle Retrieval Overview: Given de-
tections of OoD road obstacles and a text query, both text and im-
ages are embedded in a single multi-model embedding space. Us-
ing this embedding space, all OoD road obstacles within a given
threshold τ from the text query embedding are retrieved.

representation of the given text query to the by-frame OoD
road obstacle crops. To determine the similarity between a
video sequence and the text query, we aggregate the sim-
ilarities of the sequence’s individual OoD crops. We re-
trieve and present the most similar sequences to the user.
Specifically, we use cosine similarity to measure the sim-
ilarity between the embedding representation of the query
text and the individually cropped OoD road obstacle de-
tections. For each uniquely detected object in a given se-
quence, we measure the frame-to-text similarity. The high-
est similarity score among all the crops in a sequence deter-
mines the overall similarity score for a sequence of crops of
an OoD road obstacle.

In more detail, for every cropped OoD road obstacle de-
tection xj in a detected sequence of crops Sk = {xj}nk

j=1,
the image embeddings gj are computed as

gj = Eimage(xj) ∈ Rd (3)

where Eimage is a Vision Transformer ViT-B/32 [16] image
encoder. Then given a text query t, a text embedding f is
computed as:

f = Etext(t) ∈ Rd (4)

where Etext is a Transformer text-encoder [59] with modi-
fications described in [49]. To quantify the semantic simi-
larity between an image-text pair, we measure the pairwise
cosine similarities between their embeddings. Cosine sim-
ilarity quantifies the angle between the representation vec-
tors and is a typical similarity measure for text embedding
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space; it is calculated as follows:

s(gj , f) =
gj

⊤f

∥gj∥2 ∥f∥2
∈ [−1, 1] (5)

A sequence Sk is considered a positive match to a text query
f if, for any of the frames in the sequence, the similarity
score of its embeddings exceeds a chosen similarity thresh-
old τ ∈ [−1, 1], i.e. if

∃ gj ∈ Sk : s(gj , f) ≥ τ . (6)

Note that retrieving the image with the highest similar-
ity to the text query is sufficient to retrieve the entire cor-
responding OoD road obstacle sequence as the remaining
images of the sequences are associated by tracking infor-
mation, cf . Figure 4

4. Experiments
This section presents our experimental findings and

setup. Since this specific task has not been addressed in
previous literature, there are no standard baselines available
to compare against. Therefore, we present two main exper-
iments: (1) an investigation into the importance of object-
level processing instead of direct image-level processing for
retrieval and (2) an ablation study of the individual com-
ponents of our proposed method. The investigation into
object-level processing compares the approach of segment-
ing, tracking, and retrieving based on cut-outs of OoD road
obstacles against direct retrieval on entire images. Addi-
tionally, the effects of tracking are evaluated. The ablation
study consists of three experiments. In the first experiment,
we evaluate the efficacy of our proposed method for the task
of OoD retrieval. We report the results of our proposed
method for segmentation, tracking, and retrieving OoD road
obstacles using two different OoD segmentation networks.
Additionally, we compare the retrieval performance against
the same approach but using perfect detections. The second
and third experiments evaluate the effects of the RoI seg-
mentation and meta-classification on the detection, track-
ing, and retrieval performance, respectively.

Datasets: We perform experiments on the publicly
available Street Obstacle Sequences (SOS), Carla-WildLife
(CWL), and Wuppertal Obstacle Sequences (WOS) [41].
The SOS dataset contains 20 real-world video sequences
with 13 different OoD objects. The CWL dataset contains
26 synthetic video sequences with 18 different OoD objects.
WOS contains 44 real-world video sequences with seven
different OoD objects. In all the above, we consider OoD
objects as objects not included in Cityscapes labels. We tar-
get retrieving all occurrences of the different OoD objects
from the three datasets.

OoD Segmentation Evaluation: We follow the stan-
dard evaluation protocol for the pixel-level performance

measures adopted from [7, 47]. Namely, these are the Area
Under Precision-Recall Curve (AUPRC) and the False Pos-
itive Rate at 95% of True Positive Rate (FPR95). From a
practitioner’s perspective, it is often sufficient only to rec-
ognize a fraction of the pixels of an OoD object to detect
and localize them. For evaluating the component-level per-
formance of the OoD segmentation model, the averaged
component-wise score F 1 [10] serves as our main evalu-
ation metric. The threshold for considering true positive
and false positive is set to be the threshold that optimizes
the pixel-wise F1 score. We note that the standard eval-
uation protocol for OoD segmentation only evaluates pre-
dictions that fall into a labeled region of interest [10, 47].
Since expensive ground truth segmentation labels cannot be
assumed to be available for large-scale OoD analysis, this
assumption must be relaxed for applications that utilize the
OoD predictions for downstream tasks. We report the F 1

score on the predicted road regions instead of ground truth
regions of interest.

Tracking Evaluation: We evaluate the object tracker
performance using the common multiple object tracking
(MOT) metrics [4]. These metrics quantify the algorithm’s
ability to accurately detect the number of objects present
and determine the position of each object. The Multiple Ob-
ject Tracking Accuracy (MOTA) is a metric that evaluates
the tracking algorithm’s performance in detecting objects
and maintaining their trajectories, regardless of the preci-
sion with which the object positions are estimated. On the
other hand, the Multiple Object Tracking Precision (MOTP)
assesses the tracker’s ability to accurately estimate the po-
sitions of objects, irrespective of its detection capabilities.

Retrieval Evaluation: To evaluate our retrieval perfor-
mance, we provide a textual query, in our case, the name
of the ground truth classes from the OoD datasets, and we
evaluate how well our method succeeds in retrieving the
matching OoD road obstacle. We use instance-based pre-
cision and recall as metrics. A retrieved instance (such as
an image crop supposed to contain an OoD road obstacle
object) is called true positive if the majority of the pixels
within the corresponding image bounding box semantically
belong to the query. Consequently, precision is the frac-
tion of retrieved instances that match the query, and recall
is the fraction of all instances in the dataset according to the
query, which are correctly retrieved. As the retrieval per-
formance depends on a similarity threshold, we report the
Precision-Recall Curve for all queries in each dataset.

4.1. Object-level vs Image-level Processing

In the first experiment, we present a comprehensive eval-
uation of our proposed method for object retrieval. We com-
pare our approach of segmenting, tracking, and embedding
cut-outs of OoD road obstacles against the conventional ap-
proach of retrieving directly on embeddings of the full im-
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Figure 5. Precision-Recall curve for each dataset: Each curve
illustrates the trade-off between precision and recall for varying
thresholds. Dashed curves represent the baseline approach of re-
trieving based on full-scale driving scenes. Solid curves repre-
sent our method of retrieving based only on a cut-out of the OoD
road obstacle with tracking information, and dotted curves repre-
sent our method but without tracking information.

age. Our approach is rooted in our observation that object-
level information is necessary for retrieving OoD road ob-
stacles in complex driving scenes where OoD road obstacles
make up the minority of the full driving scene. Furthermore,
we examine the impact of tracking on retrieval performance.
For this experiment, we assume optimal conditions where
all OoD road obstacles were detected and tracked correctly.

The results for the precision-recall curve for each of the
methods and datasets are shown in Figure 5. The results
demonstrate our method’s significant advantage in perfor-
mance over the baseline approach. This is primarily at-
tributed to the fact that OoD road obstacles typically only
occupy a minor portion of the overall driving scene. There-
fore, relying solely on full-frame retrieval leads to inferior
performance. The results also show that tracking plays a
role in improving the retrieval results. This is because far-
away detections are more challenging to retrieve than closer
ones. Therefore, creating a link between detections closer
to the camera and far away detections via tracking improves
the retrieval performance.

4.2. Ablation Study

We conduct an ablation study to understand the contri-
bution and significance of the individual components of our
method. In the first experiment, we evaluate the efficacy
of our proposed method for the task of OoD road obstacle
retrieval. Figure 6 shows our retrieval performance mea-
sured by the area under the precision-recall curve for the
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Figure 6. Average precision-recall curve for each dataset: The
area under the curve (AUPRC) provides a comprehensive measure
of the retrieval performance for each dataset. Solid curves repre-
sent our method, where we segment and track the video streams,
and dashed curves represent the retrieval performance on ground
truth detections and tracking.

“Dog”:

n = 152, s = 0.26 n = 288, s = 0.24 n = 48, s = 0.22

“Ball”:

n = 80, s = 0.33 n = 160, s = 0.33 n = 25, s = 0.25

Figure 7. Examples of retrieved video sequences with the cor-
responding query, sequence length (n), and similarity score (s).
From left to right, the images correspond to the first and last frame
of the sequence.

different datasets compared to the setting with perfect OoD
detections. We note that the tracking performance of the
proposed lightweight algorithm is almost perfect when eval-
uated on ground truth detection. Therefore, to achieve bet-
ter tracking performance, we require either a more robust
tracking method that can compensate for the errors in de-
tection or enhance the segmentation model to reduce false
positives. We found that, although the performance is rea-
sonable when we assume that all OoD road obstacles are
detected, there is still room for improvement. Regarding
our OoD segmentation method, despite utilizing a state-of-
the-art network, it falls short of capturing all instances of
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Segmentation Tracking Retrieval
Dataset Method AUPRC ↑ FPR95 ↓ F 1 ↑ MOTA ↑ MOTP ↓ AUPRC ↑

SOS Entropy max 85.20 1.30 50.40 0.32 12.45 37.53
RbA 89.47 0.33 53.58 0.36 5.93 52.44

WOS Entropy max 94.92 0.59 30.13 0.13 51.17 26.03
RbA 93.76 0.81 48.52 0.23 16.88 58.83

CWL Entropy max 79.54 1.38 47.64 0.48 18.91 26.33
RbA 86.93 0.59 60.17 0.52 7.01 37.48

Table 1. OoD object segmentation, tracking, and retrieval results.

Segmentation Tracking Retrieval
Dataset F 1 ↑ MOTA ↑ MOTP ↓ AUPRC ↑

SOS 68.94 (+15.36) 0.68 (+0.32) 3.17 (-2.76) 65.01 (+12.57)
WOS 73.85 (+25.33) 0.46 (+0.23) 7.40 (-9.48) 64.59 (+5.76)
CWL 63.89 (+3.72) 0.58 (+0.06) 6.62 (-0.39) 40.87 (+3.39)

Table 2. OoD object segmentation, tracking, and retrieval results
under perfect region of interest, with comparative performance
gains in comparison to RbA in Table 1.

OoD objects (as indicated by dashed curves not reaching a
recall value of one). Table 1 summarizes our evaluation re-
sults for OoD segmentation, tracking, and retrieval across
three video datasets using different segmentation networks.
The table shows a strong correlation between the object-
level OoD segmentation network performance (F 1 score)
and the tracking and retrieval performance. This signifies
the importance of OoD segmentation for retrieval. Figure 7
shows qualitative examples of retrieved video sequences.

Perfect Regions of Interest: The segmentation model
predicts the road as well as OoD obstacles. All OoD obsta-
cles in the non-drivable area are excluded from the final pre-
dictions using the predicted road area as the RoI. However,
after analyzing our method, we identified a pattern of multi-
ple false positives occurring on the sidewalk. This observa-
tion can be attributed to the fact that parts of the sidewalk are
often incorrectly predicted as road, resulting in an inaccu-
rate RoI. Therefore, we evaluate our proposed method under
perfect RoI masks obtained from the ground truth road and
OoD road obstacle segmentation masks. We evaluate the
performance gain in segmentation, tracking, and retrieval.
Table 2 shows the results of this experiment and highlights
the potential additive performance gains.

We note that the improvement is due to the decrease in
the number of false positive predictions, which leads to bet-
ter tracking and, therefore, better retrieval scores. Since
the tasks of tracking and retrieval depend on the threshold-
selected segmentation of OoD road obstacles, we exclude
the threshold-independent pixel-wise OoD scores evalua-
tion metrics (AUPRC and FPR95) from the remainder of
the evaluations.

Meta Classification [11, 52] poses an additional but
negligible computational overhead to the OoD prediction
pipeline that significantly reduces false positives. We eval-
uate the impact of omitting meta-classification from our
pipeline. Table 3 presents our findings on the impact of

Segmentation Tracking Retrieval
Dataset F 1 ↑ MOTA ↑ MOTP ↓ AUPRC ↑

SOS 19.68 (-33.90) -1.57 (-1.93) 30.41 (+24.48) 24.29 (-28.15)
WOS 28.31 (-20.21) -0.99 (-1.22) 16.66 (+0.22) 32.55 (-26.28)
CWL 22.98 (-37.19) -0.69 (-1.21) 14.21 (+7.20) 35.95 (-1.53)

Table 3. OoD object segmentation, tracking, and retrieval results
without meta classification, with comparative performance loss
compared to the RbA method in Table 1.

meta-classification on segmentation, tracking, and retrieval
performance. As expected, removing meta-classification re-
duces the (F 1 score) due to an increased number of false
positives, resulting in a considerable drop in tracking and
retrieval performance.

5. Conclusion
This work presents a first approach for the novel task of

text-to-video OoD road obstacle retrieval. Our primary aim
is to address the question of “Have we ever encountered
this before?”, a critical question arising during the life
cycle of AI components in real-world automated driving
scenarios. Addressing this question helps advance the
development of automated driving systems by enabling
them to adapt their driving policies in constantly changing
environments. By leveraging single-frame OoD segmen-
tation, object tracking, and multi-modal embedding of
OoD road obstacles, our method provides an effective
and efficient solution to retrieve relevant video data in
response to practical deployment issues. The empirical
results showcase the clear advantages of our object-level
processing approach over the baseline that relies solely on
complete image information. By exploring the retrieval
task’s dependence on segmentation and tracking, we
uncover valuable insights into enhancing performance.
Specifically, we note the need for better post-segmentation
methods to eliminate false-positive predictions, i.e. the
prediction of the drivable area as a region of interest for
OoD road obstacles and meta-classification for automated
segment-wise false-positive removal. We believe this
work lays the groundwork for further research into the
issue of OoD road obstacle retrieval for a fast response to
AI-related safety concerns during deployment. In doing
so, our contribution targets resolving real-world challenges
arising in the life cycle of data-driven AI components in
automated driving perception systems.
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