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Abstract

The asymmetrical retrieval setting is a well suited so-
lution for resource constrained applications such as face
recognition and image retrieval. In this setting, a large
model is used for indexing the gallery while a lightweight
model is used for querying. The key principle in such sys-
tems is ensuring that both models share the same embed-
ding space. Most methods in this domain are based on
knowledge distillation. While useful, they suffer from sev-
eral drawbacks: they are upper-bounded by the perfor-
mance of the single best model found and cannot be ex-
tended to use an ensemble of models in a straightforward
manner. In this paper we present an approach that does not
rely on knowledge distillation, rather it utilizes embedding
transformation models. This allows the use of N indepen-
dently trained and diverse gallery models (e.g., trained on
different datasets or having a different architecture) and a
single query model. As a result, we improve the overall ac-
curacy beyond that of any single model while maintaining
a low computational budget for querying. Additionally, we
propose a gallery image rejection method that utilizes the
diversity between multiple transformed embeddings to esti-
mate the uncertainty of gallery images.

1. Introduction

Face recognition and image retrieval at scale are among
the most challenging and widely studied topics in computer
vision, having many practical applications. Modern sys-
tems are expected to provide extremely high retrieval ac-
curacy under real time performance constraints and to sup-
port a very large number of classes (identities) in the gallery
set. The majority of existing face recognition and image
retrieval methods [2, 9, 32, 37, 45, 49] utilize a symmetric
retrieval approach, i.e. the same model is used for extract-
ing feature vectors (embeddings) for the gallery and for the
query images. In a symmetric retrieval setting there is a
clear trade-off between retrieval accuracy and computing
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Figure 1. (a) Construction of an ensemble in the standard sym-
metric retrieval setting requires that each model will be used both
for computing the gallery and for querying, since the embedding
spaces of all models are incompatible. Hence, user-side querying
introduces heavy computational costs, requiring to compute em-
beddings of N models and calculate distances in N embedding
spaces. (b) We propose to construct an ensemble in an asymmet-
ric retrieval setting, where a single lightweight model is used for
querying and an ensemble of diverse independently trained mod-
els is used for computing the gallery (a one time process that oc-
curs offline). Using embedding transformation models, ϕi

g → ϕq ,
all gallery models’ embeddings are transformed to the embedding
space of the query model. Our approach benefits both from the in-
creased accuracy that is associated with ensembles and from low
computational requirements for querying.

resources. Using a larger model almost always achieves
higher accuracy. However, it may prohibit use on user-
side-devices due to limited computational and memory re-
sources. On the other hand, using a lightweight model usu-
ally results in inferior representation capability and lower
overall retrieval accuracy. Instead of compromising ac-
curacy to meet hardware requirements, an asymmetric re-
trieval setting [5, 11, 51] can be incorporated, where a large
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model is used for indexing the gallery offline, with sufficient
computational resources, and a lightweight model is used
for processing query images. The former is referred to as
the gallery model and latter as the query model. Asymmet-
ric retrieval is not straightforwardly accomplished by train-
ing both gallery and query models independently since their
embedding spaces are incompatible. This is also known as
the cross model compatibility (CMC) problem [47].

Previous asymmetric retrieval methods [5, 11, 51] use
knowledge distillation [17] based approaches in order to
restrict the query model embedding space to be compati-
ble with that of the gallery model. These methods show
significant accuracy improvements compared to methods
using only the lightweight query model both for indexing
and for querying (symmetric retrieval). However, the ac-
curacy of all these methods is also upper-bounded by the
gallery model accuracy and is usually lower than when a
large model is used for both indexing and querying. In this
work we present a new asymmetric retrieval approach that is
not based on knowledge distillation. Instead, the approach
utilizes embedding space transformations [47] which al-
lows to transform multiple embedding spaces of different
gallery models into the one of the query model. In contrast
to previous methods, the resulting accuracy is no longer
upper-bounded by that of the gallery model. We empirically
demonstrate that our approach indeed breaches this “upper-
bound”. We note that applying an ensemble of models in the
case of knowledge distillation is not straightforward. For
example, it is not possible to independently train all of the
ensemble components as they all have to rely on a common
predefined model. This means that models acquired inde-
pendently from different sources1, cannot be combined into
an ensemble under such a distillation scheme. Additionally,
distilling models with the same level of accuracy while op-
timizing for CMC was shown to reduce the accuracy of the
resulting model [36, 47].

The symmetric setting implicitly assumes that using an
ensemble of models for computing the gallery will in-
crease the computational cost of user-side querying (since
the same ensemble has to be used for querying). It is not
straightforward how to reduce the computational cost of the
querying part since the model embedding spaces are incom-
patible, see Fig. 1. Attempts to remediate the incompatibil-
ity issue lead to asymmetric knowledge distillation meth-
ods, which, as described above, are sub-optimal for creating
ensembles.

In addition to improving asymmetric retrieval accuracy,
we introduce an uncertainty based gallery image rejection
method. By leveraging the diversity between the multiple
transformed embeddings of the same gallery image, we can
estimate the uncertainty of the final transformed embed-

1For example, if the models were trained on different datasets that may
no longer be available.

ding. For both the face recognition and product retrieval
domain, we show that excluding embeddings with high un-
certainty significantly improves the overall accuracy. For
example, by rejecting only 10% of the gallery embeddings
we reduce the face recognition error by 17.4%. This rejec-
tion approach is only possible because our method allows
multiple models to project the same image into a common
embedding space, which is not possible in a symmetric set-
ting.

Our approach is also suitable in the compatible model
update setting [7,19,36,47,57]. In this setting, when a better
model becomes available (by improved training data, model
architectures, or training regimes), we are tasked to update
the retrieval system using the new model without perform-
ing backfilling. Backfilling is the common naı̈ve process of
replacing the embeddings in the gallery set that have been
generated by the old model with embeddings from the new
model. This method is computationally expensive and in
some practical cases not even possible since the gallery im-
ages might not be retained by the system.

We summarize our contributions as following:

1. We present a novel embedding transformation based
ensemble for asymmetric image retrieval, which sig-
nificantly improves accuracy without the need for
additional computation when performing user-side
querying.

2. We introduce a gallery image rejection method that
leverages the diversity between multiple transformed
embeddings. This method can prevent “hard to match”
gallery images from registering, thus further improv-
ing accuracy.

3. We demonstrate that our approach can achieve high ac-
curacy even in a challenging compatible model update
setting.

2. Related work
2.1. Image retrieval

Modern image retrieval methods [1, 33, 46, 52, 56], rely
on deep learning models that encode images to a low di-
mensional embedding space. Embedding vectors represent-
ing similar classes are mapped close to each other, while
dissimilar ones are mapped far apart. Such an embedding
space can be created by using a classification loss as a proxy
[9,42,44,48,49] or by using metric learning techniques such
as triplet loss or contrastive loss [4,8,14,18,35,41]. We note
that all these approaches focus on the symmetrical retrieval
setting.

2.2. Cross model compatibility

In recent years, increased attention has been given to
the cross model compatibility (CMC) [47] problem. The
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aim of this field is to ensure embeddings encoded by dif-
ferent models are compatible, a condition that is usually
not possible when models are trained independently. Com-
patibility between models is critical for asymmetric re-
trieval settings where the query and gallery models are dif-
ferent. In a resource constrained scenario recent meth-
ods [5, 11, 51] propose a large model for indexing and
a lightweight model for user-side querying. Compatible
model update [7, 31, 36, 47, 54] is another asymmetric re-
trieval scenario where a new query model replaces an older
one and backfilling is to be avoided (due to high computa-
tional cost or unavailability of gallery images). The query
model is usually better than the gallery model in this sce-
nario since it was trained later with improved architecture,
an improved training scheme or more training data. Knowl-
edge distillation based methods [5, 11, 31, 36, 51, 54] use a
compatibility loss term during training, enforcing the query
model’s embedding space to reside in the same space as the
gallery model’s. Chen et al. [7] propose R3AN that com-
bines reconstruction, representation and regression tech-
niques to transform embeddings from one model to another.
Wang et al. [47] propose to learn transformations from the
embedding spaces of both trained models to a unified em-
bedding space while enforcing compatibility. In this work
we demonstrate that our transformation based ensemble ap-
proach is applicable for both asymmetric retrieval scenarios.

2.3. Using Ensembles

Ensembles of models have been extensively used in ma-
chine learning to boost accuracy [10, 24, 26, 28, 34, 39, 55].
Diversity among the ensemble components is important for
ensuring a performance gain compared to relying on each
component individually [15, 25]. A straightforward way to
achieve such diversity is by introducing variations in train-
ing data [3] or initialization conditions [22].

An important aspect is designing the fusion scheme used
to aggregate the ensemble component outputs [13]. Such
fusion may be performed in different stages of the ensem-
ble. For example, in a closed-set scenario the fusion is done
by combining the softmax class posteriors, leveraging the
common representation between models [16, 38, 43]. Other
approaches delay the fusion to an even later stage of com-
bining final model predictions by performing weighted av-
eraging or majority voting, etc. [21]. In this work we pro-
pose to use feature based fusion for image retrieval, combin-
ing embeddings of different models. This approach is non-
trivial since embedding spaces of different models are typi-
cally incompatible. Despite the fact that ensembles improve
accuracy significantly, they are often ignored due to their
high resource requirements. In the asymmetric retrieval set-
tings this limitation is entirely avoided, thus making ensem-
bles a well suited approach.

3. Proposed approach

3.1. Image retrieval and cross model compatibility

In a typical image retrieval system a set of gallery im-
ages, Ig , are associated with C classes (or identities), Yg =
{yi}Ci=1. A gallery model, ϕg , maps each image ig ∈ Ig
to the gallery embedding space, G ⊆ Rn. By applying ϕg

to the entire gallery, we obtain the set of gallery embedding
vectors Eg . At test time, we are presented with a query im-
age, iq , belonging to some class, yq (not necessarily in Yg).
The query image is then consumed by a query model, ϕq ,
to produce a query embedding, eq . Assuming a symmetric
setting (ϕg = ϕq), we associate eq with the class Yg of the
closest gallery embedding vector based on some distance
metric d(·, ·). If eq has no sufficiently close match in Eg ,
the query image is rejected. The CMC problem becomes
relevant in an asymmetric setting (ϕg ̸= ϕq), where both
models are trained independently. In this case, ϕq maps
images into a query embedding space, Q ⊆ Rm, that is
incompatible with the gallery embedding space, G.

3.2. Embedding transformation

3.2.1 Unified embedding space

To address the CMC problem, Wang et al. [47] suggest
to train embedding transformation models, Tg and Tq , to
transform both ϕg and ϕq embedding spaces into a unified
embedding space. In the unified space, embedding vectors
transformed from ϕg and ϕq are compatible with one an-
other. To implement the transformation models, the authors
propose using four consecutive Residual Bottleneck Trans-
formation (RBT) modules [47], and a compatibility con-
straining training scheme. The general training scheme is as
follows: all training images are encoded using ϕg and ϕq to
produce training embedding sets Fg and Fq . During train-
ing, corresponding embeddings from Fg and Fq are trans-
formed by Tg and Tq , respectively, to the unified space. To
enforce compatibility in the unified space, a combination of
three loss terms are applied: a similarity-, a KL-divergence-
and a dual-classification-loss. The first two terms enforce
similarity between embeddings, while the third term en-
forces the embedding spaces to be discriminative by iden-
tity. Furthermore, by using a shared classification head, the
embedding spaces are constrained to be aligned.

3.2.2 Model-to-model transformation

In this work we modify the unified embedding approach so
that only one embedding space is transformed. Specifically,
the gallery’s embedding space is transformed to the query’s.
This is achieved by following the same training scheme ex-
cept that we set Tq to be an identity mapping, i.e., we learn
a model to model transformation (M2M). Since the embed-
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ding space used for querying does not undergo a transfor-
mation, we gain the following practical benefits:

1. Multiple transformations from different embedding
models’ spaces to the same query embedding space
can be learned using the same M2M training scheme.

2. No additional parameters are added to the user side
querying system, preserving its computational re-
source efficiency.

3.3. Cross model compatible ensembles

Leveraging the above benefits and taking into account
that gallery indexing is performed offline, we propose to
register an image with multiple gallery models (Fig. 1b).
We train a set of N gallery models, {ϕi

g}Ni=1, and a cor-
responding set of transformation models {T i

g}Ni=1. During
indexing, each gallery image is processed by all gallery
models {ϕi

g}Ni=1, producing a set of embeddings {eig}Ni=1

for each image2. We then apply {T i
g}Ni=1 to transform all

embeddings to the embedding space of ϕq . Subsequently,
we produce a single gallery embedding in ϕq’s embedding
space by averaging the transformed embeddings of each im-
age:

êq =
1

N

N∑
i=1

Ti(e
i
g). (1)

where êq is the final embedding of a single gallery im-
age. We emphasize that this proposition does not increase
the test-time latency, query model size and the number of
comparisons during the querying process. Alternative ap-
proaches for combining multiple embedding spaces were
considered. In this section we presented the best perform-
ing approach. Experiments of alternative approaches are
presented in Section 4.4.

4. Experiments
We report experiments in two domains of image re-

trieval, i.e., face recognition and product retrieval. We use
face recognition as a particular case of image retrieval to
evaluate and compare our method in various scenarios. We
then report results of the most interesting experiments on
the product retrieval task.

4.1. Face recognition experimental setup

We use three common network architectures used in the
face recognition domain: ResNet18, ResNet100 [16] and
MobileFaceNet (MBF) [7]. Each architecture was trained
ten times on the VggFace2 dataset [6], creating a total of 30

2In the compatible model update scenario, the gallery images can be
discarded at this point.
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Figure 2. 1:N search for increasing ensemble sizes. Since the
symmetric retrieval setting and Unified use only one gallery model
they are visualized as lines.

1:N TAR 1:1 TAR
@FAR=1% @FAR=0.01%

Symmetric retrieval 79.843±0.50 88.064±0.27

Unified [47] 80.647±0.32 88.439±0.14

M2M 80.476±0.29 88.368±0.12

Ensemble of 2 81.417 89.068
Ensemble of 4 81.932 89.139
Ensemble of 9 82.241 89.344

Table 1. 1:N search and 1:1 verification TAR (in percentage) at
fixed FAR values. Symmetric retrieval, ϕg = ϕq , was evaluated
on ten ResNet18 models. Unified and M2M were evaluated on ten
different ϕg ResNet18 models and the same ϕq ResNet18 model
in each evaluation. Symmetric retrieval, unified and M2M TARs
are shown as mean and std values of ten evaluations. Our method
was evaluated using the same ϕq model as Unified and M2M and
ensemble sizes of 2, 4 and 9 for comupting the gallery.

models. For evaluation, we follow Shen et al. [36] and uti-
lize the widely used IJB-C benchmark [29]. We adopt the
two standard testing protocols for face recognition, namely,
1:1 verification and 1:N open-set search. In 1:1 face veri-
fication the algorithm decides whether a pair of templates
belongs to the same person, where a template contains one
or multiple images of a single person. In 1:N open-set
search, each query template is compared to a gallery of tem-
plates. The algorithm then decides if and which gallery
template matches the query template. For both tasks, the
evaluation metric is true acceptance rate (TAR) at a specific
false acceptance rate (FAR). For 1:1 verification we present
TAR@FAR=0.01% results, and for 1:N search we present
TAR@FAR=1%.
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Figure 3. 1:1 verification and 1:N search accuracy vs. increasing ensemble sizes for models based on ResNet100 and MobileFaceNet.

4.2. Accuracy gains by ensemble size

Fig. 2 and Table 1 provide results of our approach and
the methods it builds upon. We first present results for the
symmetric retrieval setting (ϕg = ϕq), i.e., the standard use
case. We then present results for the unified embedding
space approach [47] (Unified) and the M2M approach de-
scribed in 3.2.2. Note that M2M corresponds to an ensem-
ble of size one. The results suggest that there is no signifi-
cant difference between the two approaches, indicating that
the M2M approach is a valid variant of the Unified approach
for us to build upon. Finally we combine multiple M2M
models and show the significant accuracy gains achieved
by the ensemble approach. The ensembles of variable sizes
were created incrementally by adding a single model each
time. I.e., ensemble of size M+1 contains exactly the same
set of M2M models as for the ensemble of size M with the
addition of one new M2M model. Note that knowledge dis-
tillation based approaches [5,11,36,51], are upper-bounded
by the performance of the stronger model (out of ϕg and
ϕq) which in Table 1 corresponds to the result of symmet-
ric retrieval. Fig. 3 shows that the trend of improved accu-
racy as a function of increased ensemble size is preserved
across different architectures. Interestingly, in some cases
the asymmetric transformation based approaches that do not
use ensembles (Unified, M2M) receive a slightly better ac-
curacy than the symmetric counterpart. This phenomenon
was also reported by Wang et al. [47] and might happen be-
cause of the additional transformation model parameters or
by implicit regularization.

4.3. Diversity of ensemble components

In this section we provide insights on how the diversity
of the ensemble components impacts accuracy. We consider
three levels of component diversity:

1. Diversity of transformation models (D-T): We use a
single gallery model ϕg and train different transforma-
tion models mapping embedding vectors computed by
ϕg to the query model’s embedding space.

2. D-T + diversity of gallery models (D-TG): We use
N different gallery models {ϕi

g}Ni=1 and train one

transformation model per gallery model. Hence, both
gallery models and transformation models are diverse.

3. D-TG + diversity of gallery model architectures (D-
TGA): We further increase the diversity by allowing
the gallery models to have different architectures.

Fig. 4 shows the accuracy for various ensembles with
different levels of component diversity. In all configurations
the same ResNet18-based query model is used. The results
imply that component diversity plays an important role in
the ensemble’s performance. Ensembles with high diver-
sity consistently produce higher accuracy rates for the same
number of transformation models than their less diverse
counterparts. Even when the ensemble is comprised of only
three gallery models with different architectures (1xRes-
Net18, 1xResNet100 and 1xMBF), we observe better re-
sults than using an ensemble of eight gallery models with
the same ResNet18 architecture. This result suggests that
striving towards diverse ensembles is more beneficial than
increasing the number of models in the ensemble. We pro-
vide the following hypotheses to explain this phenomenon:
(1) each gallery model learns a different representation of
the observed data [23, 30, 50] by focusing on slightly dif-
ferent features, (2) increased diversity in the gallery models
results in more diverse representations, and (3) combining
diverse representations of the data leads to better generaliza-
tion that is translated to better performance. In other words,
our method allows to capture more aspects of the data and
combine them effectively.

4.4. Comparison to other ensemble alternatives

To further validate our ensemble design choices, we
present alternative approaches to our proposed method of
using independently trained transformation models, one for
each gallery model, and averaging the transformed em-
beddings. Instead of the above, we learn a single com-
bined transformation model that takes embeddings from all
gallery models as inputs, and outputs a transformed embed-
ding in the query model’s embedding space. Since creating
a single combined transformation model is not straightfor-
ward, we propose several variants:
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Figure 4. Diversity of ensemble components. Dotted, dashed and solid lines correspond to D-T, D-TG and D-TGA results, respectively.
For D-TGA the number of gallery models trained with each architecture is the same for each ensemble size, e.g., res18+res100 of ensemble
size 6 means three ResNet18 models and three ResNet100 models. (a) Shows the TAR for each ensemble type. (b) Shows the TAR for each
diversity level by averaging the results of all ensemble types with the same diversity level and same ensemble size. The res18+res100+mbf
D-TGA version was not used during averaging since this version ensemble sizes do not match the other D-TGA versions.

Ensemble version 1:N TAR@FAR=1%

End-to-end averaging 81.195%
Weighted end-to-end averaging 81.268%
Concatenation 81.410%
Ours 81.932%

Table 2. Comparison to ensemble alternatives. 1:N search
TAR@FAR=1% results for each of the alternative ensemble vari-
ants. All experiments were conducted using the same query and
same four gallery models. All models are based on ResNet18.
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Figure 5. Same-distance vs. variance. Each bar in the plot repre-
sents a range of variance levels (x-axis). The y-axis corresponds to
the mean same-distance (i.e., the distance between the query em-
bedding to a matching gallery embedding) of all matches inside the
range. The bars’ width is 0.248 corresponding to 20 bins spanning
from the lowest variance to the highest variance observed.

1. End-to-end averaging: We train a transformation
model from each gallery model to the query embed-
ding space simultaneously. Specifically, instead of
training each transformation model independently, we
train all transformation models together and perform
the averaging during training.

2. Weighted end-to-end averaging: In a similar manner,
we jointly train all transformation models except that

we use weighted averaging instead of simple averag-
ing. Each transformation model outputs a single scalar
value, in addition to the embedding output, that is used
for weighted averaging.

3. Concatenation: All gallery embeddings are first con-
catenated and inserted into a linear layer that reduces
the dimensions. The output of the linear layer is then
transformed by a single transformation model to the
embedding space of the query model.

In this experiment, for all variants, and for our method, we
used the same five pre-trained ResNet18 models. One for
the query model, and four for the gallery models.

Table 2 presents the comparison between our ensemble
approach and the combined transformation variants. The
results indicate that our approach performers considerably
better then the other variants. Furthermore, this implies that
explicitly optimizing the ensemble performs worse than av-
eraging independently trained models.

4.5. Uncertainty

It was previously observed that ensembles of models
can be used to evaluate the uncertainty of model predic-
tions3 [27]. Typically, uncertainty is evaluated by calcu-
lating the variance between the predictions of the differ-
ent models in the ensemble. Thus, if the predictions of the
different models are inconsistent, the uncertainty rises, and
the models’ predictions are considered less reliable. In this
section, we analyze whether the ensemble proposed in our
approach can be used to reliably measure uncertainty. To
evaluate the model uncertainty for a given gallery image,
we measure the variance of the transformed embeddings of
the gallery models in the query embedding space. The vari-
ance is calculated by measuring the mean distance between
every pair of embeddings.

3This type of uncertainty is typically known as epistemic uncertainty or
model uncertainty.
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Figure 6. Risk-coverage curve. We show the accuracy increase (risk) gained by filtering out (coverage) gallery embeddings using two
protocols for both the IJC-B (a) and the SOP (b) datasets. Random: removing random embeddings (as a naı̈ve baseline). Ours: rejecting
embeddings whose variance is above a gradually decreasing threshold. Note that, for Recall@1, smaller gallery sets are easier for matching,
therefore, Random shows improvement, but not to the same extent as ours.

When querying, we consider the gallery embedding as
easy to retrieve if the distance between the gallery embed-
ding to the query embedding of the same class is low (same-
distance). Fig. 5 suggests that the same-distance and the
measured variance between the transformed gallery embed-
dings are indeed correlated. This result further implies that,
upon registering a new gallery image, the variance can be
used as a quality-score for accepting new gallery images,
i.e., if the variance is larger than some threshold the im-
age will be rejected. In other words, if the gallery models’
embeddings are far from one another, then the gallery em-
bedding might not be easy to retrieve, thus we may choose
to re-register with a new gallery image.

We follow Geifman et al. [12] and measure the quality of
uncertainty estimation by reporting the risk-coverage curve.
The curve represents the accuracy we can achieve (risk) as a
function of the percent of gallery images we register (cover-
age). The curve is constructed as following: as we decrease
the threshold for uncertainty, more images are rejected. For
every point on the curve we provide the accuracy of the sys-
tem given an uncertainty threshold. The risk-coverage curve
is presented in Fig. 6a, and demonstrates that even rejecting
as few as 10% of the gallery embeddings, reduces the error
by 17.4%, while a 20% rejecting rate leads to a 27.2% error
reduction. Fig. 6a shows that our filtering method is consis-
tently better than naı̈vely removing gallery images, meaning
that the improved accuracy is not the sheer result of reduc-
tion in the number of gallery images, rather in reduction of
images that are prone to error. This suggest that the vari-
ance of gallery embeddings could be used as an embedding
quality metric. In the supplementary, we provide examples
for gallery images with varying uncertainty levels.

4.6. Compatible query model update

In this section we evaluate the scenario where an im-
proved query model was developed, replacing an older one
and backfilling is not possible. This simulates a system that

does not retain data (except of training data). We simulate
the scenario as follows:

1. Before update: The system is composed of N gallery
models and one query model. All models were trained
on 50% of the VggFace2 dataset, that represents the
available training dataset at some point during the
lifespan of the system. At this stage the gallery set is
mapped to the embedding spaces of all gallery models
({ϕ50%

g,i }Ni=1) and the gallery images are discarded. We
transform the embeddings from the embedding spaces
of {ϕ50%

g,i }Ni=1 to the embedding space of the query
model (ϕ50%

q ), using our ensemble approach.

2. After update: At some point additional training data
was made available4 and was used to train an im-
proved query model. We simulate this by training a
new query model on 100% of the VggFace2 dataset
(ϕ100%

q ). This time the corresponding embedding
spaces of {ϕ50%

g,i }Ni=1 are transformed to the embed-
ding space of ϕ100%

q using new transformation models.

The above scenario represents an extreme case, where
the performance gap between the old models and the newer
one (trained on 50% and 100% of the data respectively) is
significant. This can be seen in Table 3 where the 1:N search
TAR@FAR=1% of ϕ50%

q is 71.01% vs. 79.93% of ϕ100%
q .

Table 3 demonstrates the performance gain of updating
the query model. Interestingly, the performance increases
drastically compared to the gap before the update (for en-
semble size of four, the 1:N search TAR@FAR=1% in-
creases from 73.98% to 78.96%), despite using only low-
accuracy-models for gallery indexing. Furthermore, Ta-
ble 3 shows that a larger ensemble size corresponds with
improved performance even when the query model is much
stronger than the gallery models used for indexing.

4Additional training data can be acquired by conducting a dedicated
data collection effort for example.
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1:N TAR 1:1 TAR

Independent models in the symmetric setting

Gallery models: {ϕ50%
g,i }4i=1 71.96±0.3 83.24±0.17

Query model: ϕ50%
q 71.01 83.00

Query model: ϕ100%
q † 79.93 88.28

Ensemble of size 2 ({ϕ50%
g,i }2i=1)

Before update (ϕ50%
q ) 72.90 83.78

After update (ϕ100%
q ) 78.21 86.94

Ensemble of size 4 ({ϕ50%
g,i }4i=1)

Before update (ϕ50%
q ) 73.98 84.62

After update (ϕ100%
q ) 78.96 87.39

Table 3. Compatible query model update. First three rows show
the accuracy of the standard symmetric setting of all models used
in the experiment (the accuracy of the gallery models is presented
as the average of four models). “Before update”, shows the results
where querying is done by the old query model, ϕ50%

q . “After up-
date”, shows the results for using the updated query model, ϕ100%

q ,
for querying. In both, before and after update, the same gallery
models are used for indexing. †: Note that in the no-backfilling
scenario using ϕ100%

q in a symmetric setting is not possible.

1 2 3 4 5 6 7 8 9
Ensemble Size
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res101+res152
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Symmetric retrieval

Figure 7. Recall@1 vs. ensemble size. “Symmetric retrieval”
denotes the accuracy of the ResNet18 query model.

4.7. Product retrieval experiments

To further demonstrate the generality of our approach
we conducted experiments on the Stanford online products
(SOP) dataset [40]. The dataset contains 22.6K classes
with 120K product images, where 11.3K classes (59.5K im-
ages) are used for training and the remaining 11.3K classes
(60.5K images) are used for testing. We followed the
generic protocol proposed by [53] for training query and
gallery models. We used the Recall@1 [20] metric for eval-
uating the retrieval performance. In all the experiments we
used the same ResNet18 model for querying. Fig. 7 shows
that the benefits from using an ensemble generalize to the
domain of product retrieval. Additionally, Fig. 7 repeats

(a) 50 images with the lowest uncertainty.

(b) 50 images with the highest uncertainty.

Figure 8. Examples of SOP gallery images. (a) and (b) show
the images with the lowest and highest variance values respec-
tively. Note the various factors resulting in high ambiguity within
the ensemble: extreme zoom, partial views, multiple objects, non-
natural images (e.g., sketched, rendered). [can be zoomed-in].

the previously observed trend where diverse ensembles are
generally preferable. Fig. 6b demonstrates the benefit of fil-
tering out gallery embeddings with high uncertainty in this
domain. To conform with the previous settings for which
we calculated the risk-coverage curve, for each test label,
we used a single image as query and a single image for the
gallery set. Fig. 8 shows the images with lowest and highest
variance in the gallery set. Low variance images generally
include a single identifiable object, while high variance im-
ages suffer from multiple ambiguity factors.

5. Conclusions
We propose a novel embedding transformation based

ensemble framework for asymmetric image retrieval. We
show that embedding transformations can be leveraged for
creating a non-trivial ensemble of diverse gallery models,
significantly increasing the retrieval accuracy without in-
creasing the computational cost of querying. We compared
several methods for combining multiple embedding spaces
and found that training the transformation models indepen-
dently lead to the best performance. Additionally, we utilize
the diversity between multiple transformed embeddings to
estimate the uncertainty of gallery images. We propose to
reject gallery images based on their uncertainty to further
improve our system’s accuracy.
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