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Abstract

Training fingerprint recognition models using synthetic
data has recently gained increased attention in the bio-
metric community as it alleviates the dependency on sen-
sitive personal data. Existing approaches for fingerprint
generation are limited in their ability to generate diverse
impressions of the same finger, a key property for provid-
ing effective data for training recognition models. To ad-
dress this gap, we present FPGAN-Control, an identity pre-
serving image generation framework which enables control
over the fingerprint’s image appearance (e.g., fingerprint
type, acquisition device, pressure level) of generated fin-
gerprints. We introduce a novel appearance loss that en-
courages disentanglement between the fingerprint’s identity
and appearance properties. In our experiments, we used the
publicly available NIST SD302 (N2N) dataset for training
the FPGAN-Control model. We demonstrate the merits of
FPGAN-Control, both quantitatively and qualitatively, in
terms of identity preservation level, degree of appearance
control, and low synthetic-to-real domain gap. Finally,
training recognition models using only synthetic datasets
generated by FPGAN-Control lead to recognition accura-
cies that are on par or even surpass models trained using
real data. To the best of our knowledge, this is the first work
to demonstrate this.

1. Introduction
Within the past few years the biometric community has

shown an increased interest in the use of synthetic data for
recognition system development [3,6,13]. This is due to two
primary reasons. First, the state-of-the-art tools for photo-
realistic image generation have seen a significant leap in
terms of image quality [11, 23, 24, 34, 37] and the level of
control over the generated output [10,27,38,40]. While the
former reduces the synthetic-to-real domain gap, the latter
ensures biometric identity uniqueness and preservation un-
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Figure 1. Traversing the appearance space of FPGAN-
Control. We present an animation of four fingerprints generated
by FPGAN-Control with the following properties: (a) each of four
animated fingerprints belongs to a unique synthetic identity which
is preserved throughout the animation; (b) at every moment the ap-
pearance of each fingerprint is shared; and (c) the shared appear-
ance gradually changes over time. [Animated figure, please view
at alonshoshan10.github.io/fpgan_control/].

der controllable intra-class variations, enabling the use of
synthesized data for both training and evaluation. Second,
recent privacy and ethical concerns regarding the use of ex-
isting datasets [16] have encouraged researchers to consider
replacing real biometric data with synthetic data.

While several efforts have seen success in training mod-
els using synthetic data in the face recognition domain [3,
6, 32], the usage of synthetic data for training recognition
models in the fingerprints domain has started to gain atten-
tion only recently. One reason for this might be, that while
several fingerprint generators are available [4,7,30,43], they
lack the ability to generate different impressions for a newly
generated identity. To tackle this issue, PrintsGAN [13], a
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method for generating novel identities along with their iden-
tity preserving variations has been proposed recently. Al-
though very useful, PrintsGAN relies on a complex three-
step generation process focusing on a specific type of fin-
gerprint, which limits the appearance variability in a gen-
eral sense. In addition, the approach lacks the ability to
control the generated fingerprint appearance attributed to:
fingerprint type (rolled or slap), scanner type, moisture and
pressure levels etc. Finally, the PrintsGAN generator is not
publicly available and only a sample set of 35,000 identities
was released.

In this work, we propose an end-to-end GAN based
learning scheme for the task of fingerprint image genera-
tion, which we name FPGAN-Control (FingerPrint GAN-
Control). In particular, our approach enables control over
the appearance of the generated fingerprint images while
preserving the biometric identity information. We rely on
the GAN-control framework [38] developed initially for
controllable and identity-preserving face image generation.

While it is intuitive to define controllable facial charac-
teristics (e.g., expression, age, hair style) and acquisition
properties (e.g., orientation, illumination), it is less straight-
forward for the domain of biometric fingerprints. Thus, to
address possible variations in impressions of the same fin-
ger, we define a single generic “appearance” property which
encompasses many of the possible impression variations.
To this end, we propose a novel and interpretable appear-
ance loss to enforce disentanglement between the finger-
print identity and its appearance in the GAN’s latent space.
In particular, we apply a smoothing kernel and downsam-
ple the generated images in each training batch to filter out
their high-frequencies while retaining the appearance prop-
erties. Then, we encourage similarity between blurred im-
ages generated using an identical appearance latent, while
separating those generated by different appearance latents.
This way, we enable control over the appearance of the gen-
erated fingerprints. We visualize the control capabilities of
the fingerprint appearance while preserving its identity in
Figure 1.

Finally, we use fingerprints generated with FPGAN-
Control to train recognition models. We empirically estab-
lish that training fingerprint recognition models using only
synthetic identities results in accuracy levels that are com-
parable and even surpassing those of models trained with
real data. To the best of our knowledge, our method is the
first to achieve this in the fingerprints domain. This allows
to avoid relying on sensitive personal data, addressing com-
mon privacy and security concerns, highly valued by the
biometric community. To facilitate further research, we will
release our code and pretrained models.

To summarize, our contributions include:

1. We introduce FPGAN-Control, an end-to-end training
method for controllable fingerprint image generation.

FPGAN-Control is designed with disentangled latent
space in mind to allow generation of novel fingerprint
identities along with a variety of impressions.

2. We propose an intuitive dedicated appearance loss,
operating on the fingerprint image’s low frequencies.
This loss is crucial for disentangling the generator’s
latent space.

3. We train recognition models using purely synthetic
data, generated by FPGAN-Control, reaching or sur-
passing the performance of models trained on real data.

4. Our code and models will be publicly released to fa-
cilitate privacy preserving research in the domain of
fingerprint recognition.

2. Related Work
The scarcity of publicly available fingerprint datasets has

led to increased interest in developing methods to synthe-
size fingerprints. Earlier methods relied heavily on “hand-
crafted” solutions based on the available knowledge on fin-
gerprints, e.g., they leverage the studied behavior of the fric-
tion ridge patterns comprised of interwoven ridges, valleys,
minutiae points, and pores [1, 9, 22, 45]. In more recent
years, as Generative Adversarial Networks (GANs) [19]
have proliferated into a host of photo-realistic image synthe-
sis algorithms, researchers have turned to GANs or “learn-
ing based methods” [2,4,5,15,29,33,35], to generate much
more realistic fingerprints than the older hand-crafted ap-
proaches. Although most of these methods are able to pro-
duce high-quality fingerprint images, they suffer from two
main deficiencies. First, the methods are only able to gen-
erate a single, unique image for each synthetic fingerprint
identity. Hence, they are not able to model the intra-class
variability. Second, many of these synthesize only patches
of fingerprints, rather than full-fingerprints. These limita-
tions motivated methods which introduce control over the
generated fingerprints, allowing the generation of multiple
impressions per fingerprint identity [13, 20, 31, 42, 43].

These methods usually consist of multiple stages, e.g.,
binary fingerprint generation, distortion, and a GAN to ren-
der the binary fingerprint to a realistic fingerprint impres-
sion. The need to apply many stages, adds significant
complexity to the systems and risk when adapting to new
datasets and domains. Most importantly, while all previ-
ous work agree that there’s a need for synthetic data to con-
duct research, only two [13,20] of the above methods evalu-
ate the performance of models trained using their synthetic
data. Since Grosz et al. [20] proposes a generator of spoof
images, the method closest to ours is PrintsGAN [13].

Our method consists of a single training stage based on
GAN-Control [38] with a disentangled latent space. We in-
corporate a novel appearance loss to enable the control of
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Figure 2. Overview of the proposed FPGAN-Control. In each training batch (a), both same ID pairs and same appearance pairs are
generated. Same ID pairs have the same ID latent vector while same appearance pairs have the same appearance latent vector. The color of
the inner image border corresponds to the fingerprint ID and the color of the outer border corresponds to the fingerprint appearance. Each
image in the batch is blurred and downsampled, effectively removing it’s barometric features while still obtaining many of its appearance
features. Blurred images with different appearance latents are pushed one from another (b), while blurred images with the same appearance
latent are pulled towards each other (c).

both identity and appearance details. In addition, we do not
rely on any hand-crafted image synthesizer or other propri-
etary algorithms. Our method benefits from the advantages
of previous learning-based approaches while not suffering
from their deficiencies. In particular, our approach is able to
generate multiple impressions of a single finger while pre-
serving its identity; our method consists of a single network
trained end-to-end; and training recognition models using
synthetic data generated by FPGAN-Control reaches per-
formance comparable to that of models trained on real data.

Worth noting are the recent efforts made towards train-
ing face recognition models using synthetic data [3, 6, 25,
26, 28, 32, 44]. For instance, in [32], DiscoFaceGAN [10]
was used to generate synthetic face identities for training,
and proposed to deploy identity mixup and domain mixup to
mitigate the domain gap between real and synthetic images.
In [3] the authors released a large-scale synthetic dataset
created by rendering 3D face models, containing 1.22M im-
ages of 110K identities and utilized it for training. While
demonstrating appealing accuracy results for face recogni-
tion, it is not trivial to adapt them to the fingerprint domain,
as they are specifically handcrafted for the face domain,
e.g., using 3D face models [3] or training GANs with do-
main specific losses [10]).

3. Proposed Approach

In this section we present our framework for training
FPGAN-Control, a fingerprint image generation model that
allows generating novel biometric identities (IDs) and con-
trolling their appearance variations while preserving the ID.
We define the appearance as the image properties that are
not related to the fingerprint ID, such as fingerprint type,
acquisition device, moisture and pressure levels, etc.

3.1. Identity-appearance disentangling

In the design of our approach we rely on the core blocks
of GAN-Control [38]. GAN-Control proposes a general
two-phase solution for training explicit controllable GANs.
In the first phase, we train a disentangled GAN using a
set of contrastive losses. As a result, the latent space of
the trained GAN is divided into subspaces, each encoding
a different image property. The second phase is responsi-
ble for enabling explicit control over the generated image
by adding property-specific encoders to each subspace of
the GAN. While an explicit control over image attributes is
useful for content creation, such fine-grained control is not
required for the purpose of data generation for recognition
model training. Thus, to train FPGAN-Control we adopt
only the first phase, resulting in a disentanglement between
identity and appearance.

We define the latent space, Z , of FPGAN-Control as a
combination of two subspaces Zid and Zapp, associated
with the generated fingerprint ID and appearance, respec-
tively (Z = Zid × Zapp). Thus, a latent z ∈ Z is the
concatenation of the sub-vectors zid and zapp, each of di-
mension 256. Instead of using a single 8-layered MLP, as
done in StyleGAN2 [24], we allocate a separate 8-layered
MLP for each subspace. Each training batch contains pairs
of same-ID latents (latent vectors with equal identity, zid,
and different appearance, zapp) and same-appearance la-
tents (equal appearance, zapp and different ID, zid), see Fig-
ure 2a. In addition to the StyleGAN2’s original adversarial
loss, all image pairs are penalized by a weighted combina-
tion of contrastive ID and appearance losses (lid and lapp):

Lc =
∑

zi,zj∈B
i ̸=j

lid(zi, zj) + wapp · lapp(zi, zj), (1)
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where B = {zi}NB
i=1 denotes all latent vectors in the training

batch of size NB . Each of the loss components, lid and lapp,
has a generic form depending on the corresponding distance
function, did and dapp:

lk(zi, zj)=


1

C+
k

max (dk(Ii, Ij)− τ+
k , 0), zki =zkj

1
C-

k
max (τ−

k − dk(Ii, Ij), 0), otherwise
(2)

where k ∈ {id, app}, τ±k are ID or appearance thresholds
associated with same and different sub-vectors and C±

k are
normalizing constants. The key part of this scheme is in the
selection of appropriate distance functions, did and dapp.
We define did as the cosine distance between two embed-
ding vectors extracted by a pre-trained fingerprint recogni-
tion model, θid. Unfortunately, there is no available iden-
tity invariant metric for computing the appearance distance,
dapp, between two images. To address this, we developed
an appearance distance focusing on the dissimilarity be-
tween a pair of images in the low-frequency domain.

3.2. Appearance distance

Intuitively, given a fingerprint scan, most of the ID-
related biometric features are contained in the image’s high
frequency components while the appearance-related infor-
mation is contained in its low frequency components. We
use this observation in the design of our appearance dis-
tance function, dapp. Given two fingerprint images Ii and
Ij , we downsample and blur each image using a Gaussian
smoothing filter:

Ĩ = resize(I) ∗ h(σ, n), (3)

where resize(·) is a bi-linear downsampling operation, h
is a Gaussian kernel with variance σ and kernel size n.
The purpose of the blur filter is to remove as much of the
ID-dependent biometric features as possible from the fin-
gerprint, while preserving the most important appearance-
related information. To measure the appearance distance
between Ii and Ij we compute the pixelwise Mean Squared
Error (MSE) between their processed versions:

dapp(Ii, Ij) = MSE(Ĩi, Ĩj). (4)

In each training batch we use dapp to penalize images with
different appearance latents but having similar appearance
(Figure 2b) and images sharing the same appearance latent
but diverging in appearance (Figure 2c). In Section 4 we
demonstrate that this intuitive approach is effective in train-
ing identity-preserving fingerprint generators with control-
lable appearance.

3.3. Removing the first sub-sampling layer of fin-
gerprint recognition models

Throughout our experimental work, we observed that
training fingerprint recognition models using common off-

R18 R34 R50 R101 M050 M100 Eff-s

w/ 82.6 80.3 82.2 83.0 90.8 90.2 90.6
w/o 90.5 89.7 92.0 93.7 93.7 94.2 93.7

Table 1. Effect of first sub-sampling layer. TAR@FAR=0.1%
results for recognition models trained with and without (w/, w/o)
the first backbone’s sub-sampling layer. The following backbones
where evaluated: ResNet (R), MobileNetV2 (M) and Efficient-
NetV2 (Eff).

the-shelf architectures (i.e., ResNet, MobileNet, and Effi-
cientNet) lead to unstable and poor results. We hypothe-
sized that the initial sub-sampling layer of these networks
may eliminate valuable fine-grained fingerprint details that
are crucial for achieving high discriminative power. There-
fore, we removed the initial sub-sampling mechanism from
all networks. Specifically, we omitted the first max-pooling
layer from ResNet models, and we reduced the stride size
of the initial convolutional layer from 2 to 1 in MobileNet
and EfficientNet architectures. With this modification, we
achieved increased training stability and a significant im-
provement in test accuracy. We implemented this architec-
tural change in all of the recognition models that were ex-
perimented with in the paper.

Table 2 presents the results obtained by models trained
both with and without the initial sub-sampling layer. As can
be seen, training recognition models without the initial sub-
sampling layer improves the test accuracy by a large margin
for all the tested architectures.

4. Experiments
We first present quantitative and qualitative evaluations

of FPGAN-Control, demonstrating its high quality genera-
tion, identity preservation and appearance control capabil-
ities. Second, we focus on the ability to train fingerprint
recognition models on purely synthetic datasets generated
by FPGAN-Control, which is our main goal. We show that,
given the multitude of identities and appearance variations
that FPGAN-Control can generate, we are able to produce
recognition models with higher accuracy even compared to
models that were trained with real data.

In our experiments, we used the publicly available NIST
N2N dataset (NIST SD 302 [17]). The N2N dataset con-
tains 2,000 unique fingers (of 200 people) with 8 to 15
different impressions per finger. Each finger represents a
unique identity. We divided the dataset to 1,600 identi-
ties (160 people) for training and 400 (40 people) for test-
ing. The N2N dataset is challenging for the task of training
recognition models due to its diverse range of fingerprint
images, captured using both traditional and newly devel-
oped methods.

We experimented with the following backbones:
ResNet18, ResNet34, ResNet50, ResNet101 [21],
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(c) wapp = 5.
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(d) wapp = 20.

Figure 3. Generation results of FPGAN-Control trained using different wapp. For a specific FPGAN-Control model, each column
represents images generated with the same ID latent vector input and each row represents images generated with the same appearance
latent vector input. For visualization of the appearance loss, the small images in green borders show the blurred representation of the
fingerprint image used by the loss.

MobileNetV2-050, MobileNetV2-100 [36] and
EfficientNetV2-s [39]. As discussed in the previous
section, we removed the first sub-sampling operation from
all backbones to enhance training stability and improve
accuracy. All recognition models were trained using the
CosFace loss [41]. During training, we applied random
affine transformations.

4.1. Synthetic fingerprint generation

In order to provide a recognition model for FPGAN-
Control’s identity loss, we first had trained a ResNet18-
based model on the 1,600 identities of the training set.
We used the same ResNet18 model for training all of our

FPGAN-Control models. Note that all our GANs were
trained using only the 1,600 identities of the training set, the
test set was never used in any form of training. In the fol-
lowing sections, we will provide qualitative and quantitative
results that demonstrate the capabilities of FPGAN-Conrol.

4.1.1 Qualitative results

Figure 3 shows qualitative results of four FPGAN-Control
versions, each trained with a different appearance loss
weight, wapp (0, 1, 5, 20, where 0 means no appearance
loss). Figure 3a demonstrates that without the appearance
loss, the appearance variation between images of the same
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wapp ID distance App. distance

0 0.063±0.06 0.026±0.04

0.25 0.074±0.07 0.027±0.04

0.5 0.076±0.07 0.033±0.04

1 0.122±0.08 0.043±0.04

5 0.229±0.11 0.051±0.05

20 0.283±0.11 0.057±0.05

Real data 0.375±0.19 0.058±0.05

Table 2. Intra class statistic. ID distance and App distance corre-
spond to the average recognition distance and the mean appearance
distance between two images of the same ID, respectively.

wapp 0 0.25 0.5 1 5 20

Dist↓ 0.053
±0.04

0.044
±0.04

0.038
±0.03

0.025
±0.02

0.009
±0.01

0.002
±0.00

Table 3. Appearance control precision vs. appearance loss
weight, wapp. For each FPGAN-Control model, we measured the
average appearance distance between pairs of images sharing the
same appearance latent, but having a diffrent ID latent.

ID is small and mostly manifests changes in ridge pattern
brightness. Additionally, when wapp = 0, the generation
exhibits no control over the appearance, having images gen-
erated with the same appearance latent look completely dif-
ferent. Figures 3b, 3c, 3d demonstrate the gradual appear-
ance control improvement when the wapp is increased: from
having small similarities when wapp = 1 (e.g., some corre-
lation between images in the second row of Figure 3b) to
having almost identical appearances when wapp = 20 (e.g.,
note the similar white triangle on the right corner of each
image in the second row of Figure 3d). Furthermore, Fig-
ure 3 shows that setting higher wapp values increases the
appearance variability for the same identity. As an exam-
ple, for wapp = 1, ID3 has a similar appearance for all
three appearance latent, while for every ID of wapp = 5 and
wapp = 20 the appearances changes drastically for different
appearance latent vectors.

4.1.2 Intra-class distribution of generated images

Next, we demonstrate the impact of wapp on the intra-class
variability of fingerprints generated by FPGAN-Control.
To measure the intra-class distribution, for each FPGAN-
Control version, we randomly generated 1,000 synthetic
identities. Each identity consists of two images generated
using different appearance latents. For each pair of images,
we measured two distances: cosine distance between the
embedding vectors of the two images (using a ResNet18
recognition model) and their appearance distance computed
by equation 4. Table 2 summarizes the results and ver-
ifies the trends observed in the qualitative evaluation. As

Figure 4. Minutiae matching quality. Examples of minutiae
matching on genuine pairs (same identity per row) of our synthetic
fingerprints when wapp = 20. The locations of minutiae points
are annotated by circles and the orientations are indicated by the
tails appended to each circle. The minutiae matcher then aims to
find as many corresponding minutiae points as possible across the
pairs. We note that even after placing heavy weight on our appear-
ance loss, the minutiae defined identities are maintained across the
image pairs as indicated by a large number of correspondences es-
tablished.

the wapp increases the appearance distance calculated be-
tween images of the same identity grows, implying that the
variance in appearance of same identity fingerprints is in-
creasing.

4.1.3 Appearance control

We quantify the ability to control the appearance of
FPGAN-Control. For each FPGAN-Control version, we
randomly sampled 1,000 pairs of images generated with
shared appearance latent and different identity latent. We
computed the appearance distances, dapp, between all the
pairs and report the results in Table 3. As expected,
FPGAN-Control models trained with larger wapp exhibit
better control over appearance. These results support the
qualitative results presented in Figure 3, demonstrating
the high level of appearance control achieved by FPGAN-
Conrtol, where two images with different identity have
nearly identical appearances.

4.1.4 Minutiae-points statistic

Since the early days when fingerprints first began to be stud-
ied, minutiae-points (Figure 4) have been a primary feature
used to distinguish one fingerprint from another [18]. It is
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Training dataset Res18 Res34 Res50 Res101 Mob-050 Mob-100 Eff-s

Real data 90.54 89.72 92.00 93.69 93.74 94.22 93.69

StyleGAN2 23.54 6.085 6.47 8.87 30.70 32.37 5.59
PrintsGAN* 69.61 63.09 71.65 72.26 73.99 79.09 67.83
FPGC-0 87.53 87.25 87.01 87.60 88.72 90.13 83.87
FPGC-0.25 86.13 85.83 87.74 89.01 88.13 90.75 80.40
FPGC-0.5 88.00 87.24 86.71 87.26 88.20 90.50 80.72
FPGC-1 89.42 87.70 88.60 89.51 90.63 91.14 85.20
FPGC-5 87.48 86.97 87.81 90.15 88.72 89.68 82.82
FPGC-20 89.57 89.72 90.19 91.08 89.99 90.88 88.55

FPGC-0.25 + FPGC-20 91.60 91.59 91.99 90.70 92.53 93.22 88.96
FPGC-0.5 + FPGC-20 92.15 92.24 92.47 91.36 92.62 92.78 90.60
FPGC-1 + FPGC-20 91.86 91.88 92.58 87.33 91.98 93.23 89.88
FPGC-5 + FPGC-20 91.22 91.06 91.88 91.69 91.51 92.21 89.76

Table 4. Recognition results for 50K synthetic identities. TAR@FAR=0.1% results obtained by recognition models with various back-
bones trained using different synthetic datasets for the case of 50K synthetic identities. The datasets that were generated by FPGAN-control
are denoted by FPGC-wapp where wapp corresponds to the weight of the appearance loss. We use an underline to denote models that sur-
pass or are equal to the performance of models trained on real data.

0 2 4 6 8
Minutiae similarity score

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Real data
FPGAN-Control wapp = 0
FPGAN-Control wapp = 0.5
FPGAN-Control wapp = 1
FPGAN-Control wapp = 20

Figure 5. Minutiae similarity score distributions.

only in recent years that deep networks have been used to
extract discriminative embeddings from fingerprints [12].
There are several benefits of using deep networks instead of
minutiae matching approaches: (1) they allow faster match-
ing1 [12], (2) enable matching in the encrypted domain [14]
and (3) can still perform successful matches when the fin-
gerprint quality is very low [12]. To further show our ability
to control the identity of fingerprints (as defined by minu-
tiae points) in the presence of various impression styles (ap-
pearances), we computed the minutiae similarity score dis-
tributions of our synthetic fingerprints. We used the open
source minutiae matcher from [8]. Figure 5 shows that as
our appearance loss weight wapp increases from wapp = 0

1Minutiae matching approaches require expensive graph matching
techniques.

to wapp = 20, the minutiae similarity score distributions
shift towards the distribution of minutiae scores computed
from real fingerprints. This lends additional strong evidence
to our ability to maintain the identity of fingerprints as we
modulate through different appearances.

4.2. Training with synthetic data

In this section we report the accuracy results obtained
by recognition models trained using synthetic images that
were generated by FPGAN-Control. We evaluated the per-
formance of the trained recognition models on the test sub-
set of the N2N dataset (real data). For training, we assumed
that the real training dataset is no longer available and only
synthetic identities were involved in the training process.
To generate a synthetic identity, we have randomly sampled
one common ID latent vector, zid, and 11 different appear-
ance latent vectors, {zappi }11i=1. We then concatenated the
ID latent vector to each one of the appearance latent vec-
tors, i.e. [zid, zappi ]. Finally, we provide the concatenated
vectors as input to FPGAN-Control, generating 11 finger-
print images of the same identity, each having a different
appearance. A synthetic dataset is constructed by generat-
ing multiple such synthetic identities.

In Table 4, we present the accuracy results (measured by
TAR@FAR=0.1%) of various recognition models trained
on different synthetic datasets using different network ar-
chitectures. Specifically, we compare the results obtained
by our FPGAN-Control to two baseline synthetic datasets.
In the first, a regular StyleGAN2 [24] model was used to
generate a multitude of synthetic fingerprint images. Then,
each individual image was duplicated 11 times to define a
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Figure 6. Accuracy vs. number of synthetic identities used during training. Real data corresponds to training the model with the entire
1,600 identities real dataset only, while the rest of the models were trained purely on synthetic identities. Note that PrintsGAN published
only 35K identities, all of which were used in this evaluation.

unique identity. The second baseline is the publicly avail-
able dataset created by the PrintsGAN approach [13]. Mul-
tiple datasets were generated by the FPGAN-Control ap-
proach, each of which was named after the weight of its
appearance loss. For example, FPGC-5 dataset was gener-
ated by setting wapp = 5 during the training of FPGAN-
Control. We also combined images generated by multiple
FPGAN-Control models to increase the diversity of the syn-
thetic dataset.

From Table 4, we first observe a significant improvement
of the proposed FPGAN-Control approach compared to the
baseline datasets generated by the StyleGAN2 model and
the PrintsGAN approach. Specifically, models trained using
StyleGAN2’s data struggled to converge, and training with
PrintsGAN’s data yielded poor recognition results. The sig-
nificant leap in recognition accuracy obtained by FPGAN-
Control demonstrates the effectiveness of the proposed ap-
proach in generating reliable fingerprint images that are use-
ful for the task of training recognition models.

Secondly, in most cases, setting higher weight for the
appearance loss of the FPGAN-Control model results in
higher accuracy. For example, training with FPGC-20 is
superior for the ResNet backbone family. In some cases,
training a model using FPGC-20 can even achieve simi-
lar results compared to training with the original real data
(e.g. training with 50K synthetic identities using ResNet-
34 backbone). This shows the importance of the disentan-
glement between identity and appearance information that
enables an increase in the variability of the fingerprint im-
ages generated by the FPGAN-control model.

In Figure 6 we present the TAR@FAR=0.1% and
TAR@FAR=0.01% while gradually increasing the number
of synthetic identities used during the training of the recog-
nition model from 5K to 80K. We show that, as we increase

the number of identities, the performance increases until
it either plateaus or begins to deteriorate. We also report
the results obtained by recognition models trained using
PrintsGAN. The recognition accuracies obtained by mod-
els trained on data generated with PrintsGAN are inferior
compared to any of the recognition models trained on data
generated with FPGAN-Control. This might be partially
due to the lack of sufficient appearance variation generated
by PrintsGAN. Note that, for PrintsGAN, we evaluate the
models using up to 30K synthetic identities, which consti-
tute all the publicly available data released by the authors.

By combining multiple datasets generated by differ-
ent FPGAN-Control models we obtain significant improve-
ment of the recognition accuracy. For example, when us-
ing 80K synthetic identities, ResNet18 is able to achieve
TAR@FAR=0.1% = 92.43%, an improvement of 1.61%
compared to model trained by the real data. Incorporating
images generated by various FPGAN-Control models fur-
ther increases the variability of the images used for training,
which in turn leads to better accuracy results.

5. Conclusions
We presented FPGAN-Control, a novel framework for

training fingerprint generation models which can synthe-
size multiple images of the same novel fingerprint identity
while controlling its appearance. We introduced a novel
appearance loss for disentangling FPGAN-Control’s latent
space enabling control over generated fingerprint appear-
ance while preserving their identity. Finally, the datasets
generated by FPGAN-Control were used to train recogni-
tion models relying solely on synthetic identities and we
showed that we are able to reach comparable and even
higher accuracies than models trained using real data only.

6074



References
[1] Afzalul Haque Ansari. Generation and storage of large syn-

thetic fingerprint database. ME Thesis, Jul, 2011. 2
[2] Mohamed Attia, MennattAllah H Attia, Julie Iskander,

Khaled Saleh, Darius Nahavandi, Ahmed Abobakr, Mo-
hammed Hossny, and Saeid Nahavandi. Fingerprint synthe-
sis via latent space representation. In 2019 IEEE Interna-
tional Conference on Systems, Man and Cybernetics (SMC),
pages 1855–1861. IEEE, 2019. 2

[3] Gwangbin Bae, Martin de La Gorce, Tadas Baltrušaitis,
Charlie Hewitt, Dong Chen, Julien Valentin, Roberto
Cipolla, and Jingjing Shen. Digiface-1m: 1 million digi-
tal face images for face recognition. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 3526–3535, 2023. 1, 3

[4] Keivan Bahmani, Richard Plesh, Peter Johnson, Stephanie
Schuckers, and Timothy Swyka. High fidelity fingerprint
generation: Quality, uniqueness, and privacy. In 2021 IEEE
International Conference on Image Processing (ICIP), pages
3018–3022. IEEE, 2021. 1, 2

[5] Philip Bontrager, Aditi Roy, Julian Togelius, Nasir Memon,
and Arun Ross. Deepmasterprints: Generating masterprints
for dictionary attacks via latent variable evolution. In 2018
IEEE 9th International Conference on Biometrics Theory,
Applications and Systems (BTAS), pages 1–9. IEEE, 2018.
2

[6] Fadi Boutros, Marco Huber, Patrick Siebke, Tim Rieber, and
Naser Damer. Sface: Privacy-friendly and accurate face
recognition using synthetic data. In 2022 IEEE International
Joint Conference on Biometrics (IJCB), pages 1–11. IEEE,
2022. 1, 3

[7] Kai Cao and Anil Jain. Fingerprint synthesis: Evaluating
fingerprint search at scale. In 2018 International Conference
on Biometrics (ICB), pages 31–38. IEEE, 2018. 1

[8] Kai Cao, Dinh-Luan Nguyen, Cori Tymoszek, and Anil K
Jain. End-to-end latent fingerprint search. IEEE Transac-
tions on Information Forensics and Security, 15:880–894,
2019. 7

[9] Raffaele Cappelli, Dario Maio, and Davide Maltoni. Syn-
thetic fingerprint-database generation. In 2002 International
Conference on Pattern Recognition, volume 3, pages 744–
747. IEEE, 2002. 2

[10] Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin
Tong. Disentangled and controllable face image genera-
tion via 3d imitative-contrastive learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 5154–5163, 2020. 1, 3

[11] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems, 34:8780–8794, 2021. 1

[12] Joshua James Engelsma, Kai Cao, and Anil K Jain. Learning
a fixed-length fingerprint representation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2019. 7

[13] Joshua James Engelsma, Steven Grosz, and Anil K Jain.
Printsgan: Synthetic fingerprint generator. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
45(5):6111–6124, 2022. 1, 2, 8

[14] Joshua J. Engelsma, Anil K. Jain, and Vishnu Naresh Bod-
deti. Hers: Homomorphically encrypted representation
search. IEEE Transactions on Biometrics, Behavior, and
Identity Science, 2022. 7

[15] Masud An-Nur Islam Fahim and Ho Yub Jung. A lightweight
gan network for large scale fingerprint generation. IEEE Ac-
cess, 8:92918–92928, 2020. 2

[16] César Augusto Fontanillo López and Abdullah Elbi. On syn-
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