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Abstract

Due to the setting of shutter speeds, over-exposed blurry
images can often be seen in nighttime photography. Although
image deblurring is a classic problem in image restoration,
state-of-the-art methods often fail in nighttime cases with
saturated pixels. The primary reason is that those pixels are
out of the sensor range and thus violate the assumption of
the linear blur model. To address this issue, we propose a
new nighttime non-blind deblurring algorithm with saturated
pixel handling schemes, including a pixel stretching mask, an
image segment mask, and a saturation awareness mechanism
(SAM). Our algorithm achieves superior results by strate-
gically adjusting mask configurations, making our method
robust to various saturation levels. We formulate our task
into two new optimization problems and introduce a unified
framework based on the plug-and-play alternating direction
method of multipliers (PnP-ADMM). We also evaluate our
approach qualitatively and quantitatively to demonstrate its
effectiveness. The results show that the proposed algorithm
recovers sharp latent images with finer details and fewer
artifacts than other state-of-the-art deblurring methods.

1. Introduction
Non-blind image deblurring aims to remove blur artifacts

from given blurry images and blur kernels. Mathematically,
the general blurred degradation can be modeled as follows:

B = I ⊗K + n, (1)

where B, K, I , n, and ⊗ denote the blurry image, blur
kernel, sharp latent image, noise, and convolution operator,
respectively. It is an ill-posed problem that can be estimated
through the maximum-a-posteriori (MAP) approach. When
solved by optimization-based methods, hand-crafted gradi-
ent sparsity priors, such as the hyper-Laplacian prior [15] or
total variation priors [3, 19], are usually introduced as reg-
ularizers to ensure that the gradient of the recovered latent
image is sparse.

Incorporating a deep prior learned from datasets in the
MAP estimation problem has become popular in recent years.
For example, Zhang et al. [25, 26] replaced the denoiser sub-
problem with a learned prior; Zhang et al. [23] unfolded
every step of the iterative scheme as a neural network layer
optimized via the backpropagation algorithm. Compared to
gradient sparsity priors, deep priors retain finer image tex-
tures. Hence, a deep prior is also integrated into the proposed
algorithm.

Camera sensors in nighttime photography frequently cap-
ture blurry and over-exposed images. Due to limited dynamic
ranges of camera sensors, most existing algorithms fail in
nighttime images since saturated pixels violate the general
blurred degradation in Eq. (1). Hence, previous optimization-
based methods [5, 8, 14, 18, 21] revised the general model to
handle saturated pixels. Still, these methods often obtained
over-smoothed deblurred results because of the usage of gra-
dient sparsity priors. In the last few years, learning-based
methods [6, 10–12] tried to learn the handling schemes and
the data fidelity terms to correct the blur model from the
statistics of images. However, if the model is applied to dif-
ferent saturation levels, the learned handling schemes can
not well handle saturated pixels.

We propose a nighttime non-blind deblurring algorithm
combining a deep learned prior and a set of saturated pixel
handling schemes. The schemes include a pixel stretching
mask, an image segment mask, and a saturation awareness
mechanism (SAM). Compared to other work, our algorithm
restores blurry nighttime images with finer details and better
ringing suppression. The main contributions of this work are
summarized as follows:

1) We design a unified PnP-ADMM deblurring framework
with a deep-learned regularization term. The optimiza-
tion flow can efficiently remove blurriness in nighttime
images.

2) For highly-exposed images, we introduce an additional
optimization stage to remove artifacts commonly seen
in the non-saturated regions after deblurring. By blend-
ing this new result with the one obtained in the previous
optimization stage, our approach can yield robust re-
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(a) Blurry input (b) Cho et al. [8] (c) Hu et al. [14] (d) Whyte et al. [21] (e) Pan et al. [18] (f) Chen et al. [5]

(g) Dong et al. [10] (h) RGDN [12] (i) SVMAP [11] (j) NBDN [6] (k) Ours (l) Ground Truth

Fig. 1. Comparison of the deblurred results from the saturated dataset [14]. The results of robust optimization-based methods in (b)− (f)
generate fewer artifacts with specially designed schemes, but they cannot preserve fine structures. The results of learning-based methods in
(g)− (k) exhibit severe artifacts. On the contrary, the proposed method obtains a clear image with finer details and fewer artifacts.

sults in these challenging cases.
3) The experiment results on the synthetic datasets [6,

14, 17] and real blurry images demonstrate that our
approach is comparable to the state-of-the-art methods
in PSRN and SSIM values, and generates deblurred
results with finer details and fewer artifacts visually.

2. Related Work

Due to the saturated pixels caused by long exposure time,
the linear blur model often fails when applied to nighttime
images, resulting in some severe ringing artifacts. Hence,
several algorithms were proposed to solve this problem.

2.1. Optimization-based Methods

To better handle saturated pixels, Cho et al. [8] proposed
an Expectation-Maximization (EM) framework that classi-
fied observed pixel intensities into inliers and outliers by
discarding pixels that violate the assumption of the general
blur model. As the analysis presented by Whyte et al. [21],
the erroneous estimation of saturated pixels would generate
ringing artifacts propagating throughout the image. Hence,
Whyte et al. used an approximation function [4] to model
saturated pixels and proposed a modified Richardson-Lucy
(RL) framework that decouples saturated pixels from the
whole image to reduce ringing. Hu et al. [14] integrated the
methods of Cho et al. and Whyte et al. into an EM-based RL
deconvolution algorithm to handle various types of outliers.
They also decomposed an image into non-saturated and satu-
rated regions to suppress ringing. Pan et al. [18] designed a
hand-crafted function to mitigate the effect of outliers. How-
ever, the above methods needed heuristic parameter settings
for the revised blur model. Therefore, Chen et al. [5] pro-
posed a blur model without any heuristic settings to keep the

blurry image within the range of camera sensors as follows:

B = M ◦ (I ⊗K)

s.t. Mi =

{
1 (I ⊗K)i ≤ 1
1

(I⊗K)i
Otherwise ,

(2)

where i, I , K, M , and ◦ denote the pixel index, the sharp la-
tent image, the blur kernel, the mask, and Hadamard product.
M serves as a clipping function [21] to keep the blurry im-
age within the range of camera sensors. Meanwhile, several
studies [5, 7, 14, 18, 21] used the hyper-Laplacian prior [15]
to address ill-posed issues. However, such methods often
resulted in over-smooth recovered images and severe blocky
effects due to gradient sparsity priors.

2.2. Learning-based Methods

In recent years, Zhang et al. [25,26] designed a deep prior
and integrated it into a MAP-based framework, and Gong et
al. [12] proposed a universal gradient descent optimizer for
image deconvolution. These methods preserved good image
details but did not effectively handle saturated pixels, result-
ing in severe artifacts in saturation regions. Hence, recent
work tried to train the data term to handle outliers during
deconvolution. For instance, Dong et al. [10] proposed to
learn the shrinkage function for the data term to handle se-
vere outliers; Chen et al. [6] built a confidence estimation
unit to correct the saturated pixels violating the blur model.
In comparison, the model from Dong et al. [11] learned
both spatially variant data and regularization terms in an
end-to-end manner. However, learning-based saturated pixel
handling schemes seemed not robust in datasets with differ-
ent synthetic manners and even generated severe artifacts in
over-exposed images.
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3. Proposed Method
The robust optimization-based methods are good at han-

dling saturated pixels, and the learning-based methods
are great at retaining image textures during deconvolution.
Hence, the proposed method leverages the merits of both
types mentioned above. We propose a set of saturation han-
dling schemes to alleviate the influence of saturated pixels.
Besides, we use a deep learned prior as a regularization term
to preserve more details during deconvolution. In the fol-
lowing, we elaborate on the proposed saturated handling
schemes and then go through the PnP-ADMM framework.

3.1. Saturated Pixel Handling Schemes

There are three parts to the proposed handling schemes.
First, the pixel stretching mask M serves as a clipping func-
tion to make the value of the blurred image within the sensor
range. Second, the image segment mask MU excludes the sat-
urated pixels to reduce ringing during deconvolution. Third,
the saturation awareness mechanism decides when to enable
the image segment mask MU.
Pixel Stretching Mask. The original linear blur model
comes with severe artifacts in Fig. 2 (a), while the revised
blur model using Eq. (2) better removes blur artifacts in Fig.
2 (b). Therefore, following the paradigm in [5], our basic
blur model is formulated similarly to Eq. (2). In this work,
we refer M as the pixel stretching mask generated through
the function ΨM , so that it can be distinguished from the
two image segment masks introduced later. Each element
in the mask M = ΨM (I,K) will be updated by the newly
obtained I and K following Eq. (2) in each iteration.
Image Segment Mask. As suggested by [21], the ringing
effect emerges from attempting to estimate the values of
saturated pixels. Therefore, we propose to conduct a segmen-
tation process in each iteration to decouple saturated pixels
from the whole image. Based on the hard threshold ϕ, pixels
are classified into two classes, a non-saturation region U and
a saturation region S. During deconvolution, the saturated
pixels might also affect non-saturated pixels near the satu-
ration region. Therefore, image dilation is adopted for the
saturation region S to reduce impacts on boundaries. Differ-
ent from [21], the proposed segmentation process considers
the cross-channel consistency and the initial information
from the observed blurred image B. For the cross-channel
consistency, we use bitwise AND operations across masks of
RGB channels to avoid color artifacts during deconvolution,
and the segmentation process can be described as:

S =
⋂

c∈{R,G,B}

{i | (Ii)c ≥ ϕ} ⊕D ⊕DK ,

U = {i | Ii} \ S,
(3)

where (Ii)c, c ∈ {R,G,B} denotes the separate RGB chan-
nels of the sharp latent image, ⊕ denotes the operator of

(a) w/o M and MU (b) w/ M

(c) w/ MU (d) w/ M and MU

Fig. 2. Comparison results of different mask configurations. (a)
Linear blur model without both masks. (b) Corrected blur model
with M . (c) Separating saturated pixels during deconvolution with
MU. (d) With both masks M and MU.

image dilation, D denotes the structuring element of dila-
tion, DK denotes the structuring element of the blur kernel
shape, i denotes pixel index and ϕ denotes the hard threshold.

Then, we respectively define MS and MU as the binary
masks corresponding to S and U:

MS = ΨMS(I,K) =

{
1 {i | Ii} ∈ S
0 Otherwise ,

MU = ΨMU(I,K) =

{
1 {i | Ii} ∈ U
0 Otherwise .

(4)

Since the image segment mask MS of the observed blurred
image B encloses the largest possible saturation region, we
also use it as the boundary mask M

(0)
S = ΨMS(B,K) to

reject sudden changes of pixel values in the non-saturation
region. As shown in Fig. 2 (a) and (c), ringing near the
saturation region can be reduced by separating saturated
pixels during deconvolution. Through the masks M and MU,
the deblurred result with fewer artifacts can be obtained in
Fig. 2 (d).
Saturation Awareness Mechanism. Based on the observa-
tion of the degree of saturation, we propose the saturation
awareness mechanism (SAM) for deblurring. Following the
scheme proposed in [14] to synthesize the images, we demon-
strate how the scale factor s, indicating the pixel range is
changed from [0,1] to [0,s] before final clipping, can affect
the observed blurred image B and the results of deblurring.
As illustrated in blurry images of Fig. 3 (a), the larger the
dynamic range before clipping is, the more obvious light
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(a) B (b) w/o MU (c) w/ MU

Fig. 3. Comparison of the deblurred results with different scale
factors s. (a) Blurred image B, (b) Deblurred results I without the
image segment mask MU, (c) Deblurred results I with the image
segment mask MU.

streaks can be observed. Although the scale factor is not
available for real-world images, we can borrow the concept
and record the maximum pixel value s̃ during optimization:

s̃ = max(I), (5)

where I denotes the recovered latent image. The larger s̃
would indicate the image has a wider dynamic range, i.e.
a higher degree of saturation. For images with large s̃, we
call them highly-exposed images. As shown in the following
paragraphs, we can apply the mask MU to further remove
artifacts in these challenging cases.

Fig. 3 (b) shows saturated pixels in the higher-scale-factor
case come with more severe ringing artifacts. As shown in
Fig. 3 (c), using the proposed segment mask MU, ringing
can be suppressed in the red bounding box, and the same
results of the non-saturation region can be preserved in the
green one. The segment mask efficiently reduces ringing,
but blur artifacts cannot be removed entirely due to the loss
of information near saturated pixels. For the trade-off be-
tween ringing suppression and deblurring performance, the
segment mask is activated for only highly-exposed images
with severe ringing. For different degrees of saturation, the
proposed SAM adopts proper mask configurations, making
our method robust to different degrees of saturation.

3.2. Nighttime Non-blind Deblurring Algorithm

As shown in Fig. 3, we can suppress ringing artifacts by
separating saturated pixels from the non-saturation region
with the image segment mask MU. Hence, we formulate two
optimization problems: one for image deblurring in both
saturation and non-saturation regions, and the other for refin-
ing the non-saturation regions suffering severe ringing. Our
variational model consists of two optimization problems in
the proposed framework. If SAM identifies images that are

highly-exposed, we blend the recovered latent images of two
optimization problems. We summarize the proposed frame-
work in Algorithm 1 and then define the energy function of
two separable optimization problems.

Algorithm 1 Proposed Variational Model

for each iteration do
solve for I using Equation (7)
if highly-exposed then

solve for IU using Equation (8)
I ← Blending(I, IU)

end if
end for

An optimization problem for deblurring both the satu-
rated and non-saturated pixels:

argmin
I
P(M ◦ (I ⊗K), B) + λR(I), (6)

where M is the pixel stretching mask in Eq. (2). The first
term is a Poisson data term that enforces the similarity be-
tween (i) the Hadamard product of the pixel stretching mask
and the convolution operation to the sharp latent image with
the blur kernel and (ii) the blurred image, while the second
term is a deep learned prior. To ease the computation burden,
Eq. (6) can be modeled as follows:

argmin
I
P(I ⊗K,

1

M
◦B) + λR(I), (7)

where each element of 1
M is a reciprocal of the correspond-

ing element of M in Eq. (6). With this modification, a
closed-form solution can be obtained by [22]. Since solv-
ing I within the Hadamard product in the original Eq. (6)
requires a slower iterative approach, e.g., the conjugate-
gradient method [7], the proposed model has advantages
in computing time.
An optimization problem addressing the refinement of
non-saturated pixels:

argmin
IU
P(MU ◦ (IU⊗K),MU ◦B)+λR(IU)+ IR+(IU),

(8)
where MU is an image segment mask proposed in Eq. (4).
The first is also a Poisson data term that focuses on the sim-
ilarity of the non-saturation region between (i) the blurred
image and (ii) the convolution result of the blur kernel and
sharp latent image. The last two terms are a deep learned
prior and the non-negativity constraint. Different from Eq.
(7), we add a non-negative constraint because MU is a bi-
nary mask. That is to say, as MU goes 0, the solution to IU
should stay positive. Therefore, we add a hard constraint to
ensure the pixel value in R+. In the following paragraphs,
we describe each term in the proposed model.
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Poisson data term. Same with [5, 21], we assume the pho-
ton shot noise is modeled by the Poisson distribution and
formulate the data fidelity term with a maximum likelihood
estimator (MLE) as follows:

P(k, λ) = −log
∑
i

Poisson(ki, λi)

= 1Tλ− kT log(λ) + 1T log(k!),

(9)

where k and λ are in the vectorized form.
Deep learned prior. Traditional gradient sparsity priors such
as hyper-Laplacian [15] and total variation [3, 19] often lead
to over-smooth results and even severe blocky effects. On
the contrary, deep learned priors [25, 27] enforce desired
natural image textures to mitigate ill-posed issues in the
MAP estimation. Hence, we include the prior learned from
the embedded statistics of images.
Indicator function. For the image quality, a non-negative
constraint is incorporated to keep pixel values within the
feasible domain as follows:

IR+(x) =

{
inf, x /∈ R+

0, x ∈ R+

. (10)

3.3. Numerical Algorithm with ADMM Solver

Next, we briefly summarize the solution-finding process
of the proposed model. Both Eq. (7) and Eq. (8) are op-
timization problems with non-convex regularizers. Hence,
we resort to ADMM algorithm [1] as the solver. The in-
tuitive idea behind ADMM is to divide the problem into
several subproblems, solving auxiliary variables of subprob-
lems through proximal operators for different priors. Prox
refers to the proximal operator [20], which is defined as:

ProxF,ρ(V ) = argmin
Z

F (Z) +
ρ

2
||Z − V ||22, (11)

where F (Z) denotes the regularization term, and ρ denotes
the penalty parameter of the auxiliary variable in the vec-
torized form. In the following paragraphs, we describe each
proximal operator adopted in the proposed model, and deriva-
tion details can be found in the supplemental material.
Proximal operator for the Poisson data term. As demon-
strated in [20], we can obtain the solution for the proximal
operator for the MLE of the Poisson distribution as:

ProxP,ρ(V ,B) = −
(
1− ρV

2ρ

)
+

√(
1− ρV

2ρ

)2

+
B

ρ
.

(12)
Proximal operator for the deep learned prior. Based on
the plug-and-play trick [2, 26], we can take V as the noisy
observation and Z as the noise-free image in Eq. (11), and
the proximal operator can been seen as a Gaussian denoiser:

ProxλR,ρ(V ) = Denoiser(V ,

√
λ

ρ
). (13)

In this work, we use a pre-trained DRUNet [25], a specially
designed CNN denoiser, for a plug-and-play framework. The
physical meaning of

√
λ
ρ is the denoiser strength, so we can

adjust the denoiser strength based on the noise level in the
observed blurred image.
Proximal operator for indicator function. The proximal
operator of the indicator function can defined as:

ProxIR+
(V ) = max(Vi, 0), (14)

where ProxIR+
is a projection operator onto the convex set

R+ and Vi denotes individual element in V . With this proxi-
mal operator, we can enforce the non-negative constraint.

3.4. Optimizing Image I in Eq. (7)

Based on Eq. (9), we reformulate Eq. (7) as follows:

argmin
I

1T (KI)− (
1

M
◦B)T log (KI) + λR(I), (15)

where I , B, M are in the vectorized form of I,B,M and
K is the Toeplitz matrix of K. By following the method
of ADMM [1] and introducing auxiliary variables Z1,Z2

and the multiplier U , the solution to Eq. (15) can be seen
as the solutions to the subproblems, Z1, Z2, U and I .
The solution to Z1-subproblem is the proximal operator
for the Poisson data term in Eq. (12); the solution to Z2-
subproblem is the pre-trained DRUNet denoiser (13); the
solution to U -subproblem is the update of multiplier; the
solution to I-subproblem is a closed-form solution which
can be derived via Fourier transforms as well as element-
wise multiplications and divisions with the circular boundary
conditions [22]. After solving the above subproblems, we
incorporate the mask update function ΨM to the ADMM
flow. Derivation details and the summarized algorithm can
be found in the supplemental material.

3.5. Optimizing Image IU in Eq. (8)

Based on Eq. (9), we formulate Eq. (8) as:

argmin
IU

1T (MU ◦KIU)− (MU ◦B)T log (MU ◦KIU)

+λR(IU) + IR+
(IU),

(16)
where IU, B, MU are in the vectorized form of IU, B,MU
and K is the Toeplitz matrix of K. Besides Z2 used in
Section 3.4, we introduce auxiliary variables Z3, Z4 and the
multiplier UU using ADMM [1]. Then, we separately solve
the subproblems of Z2, Z3, Z4, UU and IU. The solution to
Z2-subproblem is the pre-trained DRUNet denoiser (13); the
solution to Z3-subproblem is the proximal operator of the
Poisson data term in Eq. (12); the solution to Z4-subproblem
is a projection operator in Eq. (14); UU-subproblem is the
update of multiplier. Because Toeplitz matrix K is coupled
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with a Hadamard product with MU, we use the conjugate-
gradient method [7] to solve the IU-subproblem instead of
the fast closed-form method [22]. After solving these sub-
problems, we integrate Eq. (4) of the mask update function
ΨMU in ADMM flow. Derivation details and the summarized
algorithm can be found in the supplemental material.

3.6. Overall Algorithm

After we separately solve the two optimization problems,
we can unify the solutions to Eq. (7) and Eq. (8) as well as
the SAM into an integrated framework shown in Algorithm 1.
As shown in Fig. 3, highly saturated pixels come with more
severe artifacts. Hence, the SAM decides whether to use the
image segment mask to prevent artifacts from highly-exposed
images based on two criteria: whether the maximum pixel
value is larger than the hard threshold β and whether the time
step t is in the first half of whole optimization process. Then,
we blend I and IU with alpha blending as proposed in [21].
Besides, the regularization weight is adaptively adjusted
based on the degree of saturation as follows:

λ(t+1) = λ(0) · S̃(t)

where S̃(t) = min(2s̃
(t)

, α).
(17)

The adaptive weight S̃(t) controls the regularization weight
based on the maximum pixel value s̃ at the tth iteration. The
hard constraint α is designed to avoid over-large regular-
ization weight. An early stopping mechanism is adopted to
reduce the number of iterations by monitoring the relative
residue of primal and dual variables. Implementation details
can be found in the supplemental material.

4. Experiments
4.1. Parameter Setting and Runtime

In all experiments, the parameters are fixed to λ = 2 ×
10−5, ρ = 0.1, α = 100, T = 100, β = 5.0 and ϕ = 0.9.
The proposed algorithm is implemented in Pytorch 1.10.0.
Executed on a computer with Intel Core i7-9700K CPU @
3.60GHz and NVIDIA GeForce RTX 3080 Ti, obtaining
a recovered image from a blurred image of 692×1048×3
pixels takes 18.26 seconds if the high-exposed mode is not
activated. With the highly-exposed mode, restoring an image
with blur artifacts takes 20.26 seconds. Sensitivity analysis
of hyper-parameters and run-time comparison are reported
in the supplemental material.

4.2. Comparisons with State-of-the-Arts

In this section, we compare deblurred results with robust
optimization-based methods [5,8,14,18,21] and state-of-the-
art learning-based methods [6, 10–12, 25,26]. We only use
the non-blind deblurring steps of the blind deblurring algo-
rithms [5,14,18]. For a fair comparison, all the experimental

Table 1. Evaluations on the saturated dataset [14], low-illumination
dataset [17] and nighttime dataset [6].

Saturated [14] Low [17] Night [6]
Methods PSNR SSIM PSNR SSIM PSNR SSIM
Cho [8] 27.95 0.9398 28.52 0.9498 29.43 0.9763
Hu∗ [14] 27.98 0.9380 25.30 0.9010 24.42 0.9246
Whyte [21] 26.13 0.8865 24.93 0.8908 24.86 0.9300
Pan∗ [18] 27.81 0.9471 27.00 0.9362 27.73 0.9647
Chen∗ [5] 27.57 0.9341 25.00 0.8968 24.70 0.9301
Dong [10] 25.39 0.9174 24.32 0.8981 26.31 0.9471
IRCNN [26] 20.89 0.8502 21.44 0.8508 25.32 0.9487
DPIR [25] 21.74 0.8618 21.83 0.8554 25.01 0.9392
RGDN [12] 24.36 0.8366 24.17 0.7293 30.23 0.9616
NBDN [6] 24.90 0.9237 22.82 0.8823 30.38 0.9815
SVMAP [11] 23.62 0.8800 25.45 0.9150 31.81 0.9810
Ours 29.98 0.9548 28.58 0.9366 32.50 0.9832

∗ :The non-blind deblurring step in the blind deblurring algorithm is used.

results are generated by publicly available code provided by
the authors. To verify the robustness of all algorithms, we
use three datasets [6,14,17] with different synthetic schemes,
image scenes, and blur kernels as benchmarks. Besides, we
also compare the deblurred results of real blurry images.
Saturated Dataset from Hu et al. [14] First, we use the
dataset in [14] where noticeable light streaks of blurry im-
ages suggest the scenes are in the high degrees of saturation.
As shown in Table 1, our method significantly outperforms
the competing methods, improving 2dB in average PSNR.
The deblurred results of this dataset are presented in Fig. 1.
Optimization-based methods [5, 8, 14, 18, 21] generate fewer
artifacts with specially designed saturated pixel handling
schemes, but they often result in losses of image textures.
For example, [8] and [18] have some false color artifacts
around the saturation region. On the other hand, state-of-
the-art learning-based methods [6,10–12] can preserve more
details but generate severe artifacts in both saturation and
non-saturation region. Although [6] specially designed the
confidence estimation unit and [11] was trained on images
with saturated pixels, they still cannot handle saturated pix-
els with high-intensity values. That is to say, learning-based
methods cannot well handle highly-exposed images so far.
In comparison, our method not only preserves image details
with the deep learned prior but also generates fewer artifacts
due to the proposed saturated pixel handling schemes.
Low-illumination Dataset from Pan et al. [17] To eval-
uate the performance in low-illumination images, we test
all algorithms using the dataset of [17] where the scale fac-
tor is 2.2. Our proposed algorithm achieves the competitive
average PSNR values in Table 1, and the deblurred results
are illustrated in Fig. 4. For instance, the optimization-based
methods [8, 18] generate less ringing artifacts but more false
color artifacts in the saturation region; the learning-based
methods [10, 11] result in severe artifacts inside/near the
saturation region. On the contrary, the proposed method gen-
erates fewer artifacts and finer details.
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(a) Blurry input (b) Cho et al. [8] (c) Pan et al. [18] (d) Dong et al. [10] (e) SVMAP [11] (f) Ours

Fig. 4. Comparison of the deblurred results from the low-illumination dataset.

(a) Blurry input (b) Hu et al. [14] (c) Chen et al. [5] (d) NBDN [6] (e) SVMAP [11] (f) Ours

Fig. 5. Comparison of the deblurred results from the night dataset.

Night Dataset from Chen et al. [6] To further analyze the
deblurring performance in night images, we also test all algo-
rithms with the dataset in [6]. Unlike the dataset in [14, 17],
the dataset contains diverse night scenes from skyscraper
night views to shop signs with text patterns. Besides, the
scale factor of the dataset is 1.2, and it is not as high as
datasets in [14, 17]. The deblurred results are illustrated in
Fig. 5 and our method outperforms all the methods evalu-
ated in terms of PSNR and SSIM in Table 1. In this dataset,
learning-based methods [10–12] perform better and preserve
more details than the optimization-based methods via learned
data and prior terms from embedded statistics of images. As
shown in Fig. 5, deblurred results by [5,14] exhibit common
staircase patterns due to the gradient sparsity prior, and [11]
come with undesirable ringing artifacts in the saturation re-
gion. Although [6] generates deblurred results without obvi-
ous artifacts, the proposed algorithm better restores concrete
structures, e.g., the text patterns in the green bounding box.
Real blurry images. For the analysis in real-world blurry
images with saturation and noise, Fig. 6 shows deblurred
results of a real blurry image from [16] with the kernel es-
timated by [18]. The methods [5, 6, 14, 26] cannot restore
blurry artifacts in the saturation region. Besides, [6,26] come
with severe ringing in the saturation region, and the recov-
ered images of [5, 14] suffer blocky effects. On the contrary,
our method better restores blur artifacts with saturated pixels.

4.3. Analysis of Mask Configurations

Table 2 shows the quantitative results in the dataset of
[6, 14, 17], and Fig. 2 demonstrates the qualitative results
of mask configurations. Fig. 2 (a) shows severe artifacts if

Table 2. Comparison on the saturated dataset [14], low-illumination
dataset [17] and nighttime dataset [6] w.r.t. different mask settings.

Saturated [14] Low [17] Night [6]
Mask settings PSNR SSIM PSNR SSIM PSNR SSIM
w/o both masks 26.51 0.9404 24.44 0.8883 31.31 0.9774
w/ M 27.55 0.9027 28.58 0.9366 32.50 0.9832
w/ MU 25.20 0.9269 24.25 0.9086 28.05 0.9683
w/ M and MU 29.98 0.9548 ¯∗ ¯∗ ¯∗ ¯∗

∗ denotes the highly-exposed mode is not enabled by SAM.

neither of the masks is adopted. Fig. 2 (b) suggests we can
ameliorate artifacts inside the saturation region with M , and
a better PSNR can be obtained. However, with only M , the
SSIM of the saturated dataset [14] in Table 2 is even lower
than the SSIM with no masks owing to the ringing from
the obvious light streak. Meanwhile, Fig. 2 (c) reveals we
can suppress artifacts near the saturation region using only
MU. However, blur artifacts in/near the saturation region can
not be thoroughly removed, degrading the performance in
Table 2. Hence, M and MU are adopted to remove ringing
artifacts inside/near the saturation region for highly-exposed
images. Fig. 2 (d) shows the best visual quality when using
both masks.

4.4. Analysis of Regularization Terms

In Section 3.2, we include a deep learned prior as a reg-
ularization term during deconvolution. Fig. 7 depicts the
deblurred results using different regularization terms, e.g.
hyper-Laplacian [15], total variation [3], guided filter [13],
BM3D [9], SCUNet [24], FFDNet [27] and DRUNet [25].

Distinct from gradient sparsity priors [3, 15], DRUNet
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(a) Blurry input (b) Hu et al. [14] (c) Chen et al. [5] (d) IRCNN [26] (e) NBDN [6] (f) Ours

Fig. 6. Deblurred results of real world blurred image with saturated pixels.

Table 3. Comparison on the saturated dataset [14], low-illumination
dataset [17] and nighttime dataset [6] w.r.t. different regularizers.

Saturated [14] Low [17] Night [6]
Priors PSNR SSIM PSNR SSIM PSNR SSIM
HL† [15] 27.77 0.9076 28.49 0.9287 33.12 0.9858
TV† [3] 28.73 0.9310 28.60 0.9258 33.32 0.9838
BM3D [9] 29.38 0.9491 26.23 0.9130 25.19 0.9338
GF† [13] 28.91 0.9409 26.49 0.9151 25.44 0.9264
SCUNet [24] 21.85 0.7887 22.17 0.8440 28.48 0.9695
FFDNet [27] 23.25 0.8429 23.50 0.8734 28.54 0.9697
DRUNet [25] 29.98 0.9548 28.58 0.9366 32.50 0.9832

† HL:hyper-Laplacian, TV:Total Variation, GF:Guided Filter

[25] is good at preserving textures and has a less blocky
effect. As shown in Fig. 7, the apple and the leaves can be
retained with the pre-trained DRUNet. However, not all the
learned priors are stable to saturated pixels. For example, the
learned priors SCUNet [24] and FFDNet [27] generate color
artifacts in the saturation region. BM3D [9] and the guided
filter [13] retain sharper edges than gradient sparsity priors
but generate artifacts in the saturation region. In addition to
qualitative analyses, Table 3 shows the model with DRUNet
as a regularizer comes with the competitive PSNR and SSIM
in [6, 14, 17]. The performance of the proposed handling
scheme is still competitive against state-of-the-art methods
in Table. 1 even if the classical TV prior is used. Besides,
although the PSNR and SSIM of gradient sparsity priors
[3,15] outperform the DRUNet in the low-scale factor dataset
[6], gradient sparsity priors with the large regularization
weight have worse quantitative performance and the severe
blocky effect in the high-scale factor dataset [14, 17] as
shown in Fig. 7.

5. Conclusion
In this work, we propose a deep plug-and-play method

for nighttime non-blind deblurring. Our handling schemes
can effectively handle saturated pixels with different scale
factors via a pixel stretching mask, an image segment mask,
and a saturation awareness mechanism. Additionally, we
develop a unified PnP-ADMM framework, together with the
proposed handling scheme and the learned prior, to alleviate
the impacts of saturated pixels and avoid the blocky effect ef-

(a) Blurry input (b) hyper-Laplacian (c) Total Variation

(d) Guided Filter (e) BM3D (f) SCUNet

(g) FFDNet (h) DRUNet (i) Ground truth

Fig. 7. Comparison of deblurred results using different regularizers.

ficiently. Finally, the comparisons with state-of-the-art meth-
ods demonstrate the superiority of our proposed algorithm
on three benchmark datasets and real blurry images.
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