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Abstract

Cross-view matching techniques for image geo-
localization attempt to match features in ground-level
query images against a collection of satellite images to
determine their positions of origin. We present ArcGeo,
a novel cross-view image matching approach which
introduces a batch-all angular margin loss and several
train-time strategies including large-scale pretraining and
FoV-based data augmentation. This allows our model
to perform well even in challenging cases with limited
field-of-view (FoV). Further, we evaluate multiple model
architectures, data augmentation approaches and optimiza-
tion strategies to train a deep cross-view matching network,
specifically optimized for limited FoV cases. In low FoV
experiments (FoV = 90°) our method improves top-1 image
recall rate on the CVUSA dataset from 30.12% to 43.08%.
We also demonstrate improved performance over the state-
of-the-art techniques for panoramic cross-view retrieval,
improving top-1 recall from 95.43% to 96.06% on the
CVUSA dataset and from 64.52% to 79.88% on the CVACT
test dataset. Lastly, we evaluate the role of large-scale
pretraining for improved robustness. With appropriate
pretraining on external data, our model improves top-1
recall dramatically to 66.83% for the FoV = 90° test case
on CVUSA, an increase of over twice what is reported by
existing approaches.

1. Introduction
Image geolocation techniques look to identify the loca-

tions of images by correlating features between a query im-
age and set of reference images. These methods have sev-
eral applications including autonomous driving, and meta-
data enrichment for indexing and retrieval. Recently, cross-
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view matching approaches have shown success matching
features between aerial and ground images using datasets of
paired images [1–10]. The reference aerial images are usu-
ally obtained using the Google Maps API [11] or Bing Maps
API [12] which provide high resolution imagery spanning
the entire planet. However, there is a significant domain
gap between aerial and ground images including an extreme
shift in perspective and variation in transient attributes (e.g.,
season, weather and lighting).

Prior research addresses these challenges using a combi-
nation of strategies including polar transformation of aerial
images [2, 4] and attention mechanisms for cross-view fea-
ture correlation [6, 7]. However, most existing approaches
use features from 360° ground view panoramas which in-
clude a full perspective of matchable features [6, 7, 10].
In many real-world applications, panoramic imagery is not
available. For example, the FoV in typical cell phone cam-
eras ranges from ∼130 degrees (0.5x magnification) to ∼20
degrees (3x magnification). Existing research in cross-view
matching for restricted FoV is limited and shows a signif-
icant gap in performance between panoramic and limited-
FoV test cases [8]. The technique providing state-of-the-art
performance for 90° FoV only obtains 30.12% top-1 recall,
a third of the 94.08% it reports for 360° FoV [7].

DSM [4] accounts for limited FoV and reports improved
results, but due to the co-dependence between the aerial
and ground embeddings it uses to estimate view direction,
the model does not use batch-all triplet loss, and is instead
trained with individual triplet loss. More recent approaches
using batch-all loss nearly double its performance [7].

We introduce ArcGeo loss, which further improves
model performance. By replacing batch-all triplet loss
with ArcGeo, our model’s r@1 improved from 28.59% to
44.18% (see Table 4). ArcGeo loss addresses the shortcom-
ings of triplet loss in performing local optimization of the
embedding space by replacing triplet approximation with
true SoftMax, thereby enabling global embedding space op-
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timization. ArcGeo loss is motivated by Arcface [13], an
additive margin Softmax loss function that uses an angu-
lar penalty to improve class separation. ArcGeo adapts this
concept to cross-view matching by using model predictions
instead of centroids to approximate the global embedding
space, as centroids may not synchronize well in use cases
where there are few images per class, such as in cross-view
matching, where each location only has one ground-aerial
image pair. ArcGeo loss provides new SOTA both for FoV
of 360° as well as limited FoV and unknown view direction.
The improvement is especially pronounced under condi-
tions far from the model performance saturation, e.g., large
evaluation sets (see Table 6), and low FoV (Table 4).

Additionally, we observe that many popular cross-view
matching datasets do not contain sufficient diversity for low
FoV matching due to their limited size. Specifically, the
full CVUSA dataset contains ∼1.2M image pairs, how-
ever [1–10] use only a small subset of ∼35k image pairs for
training and ∼9k for validation. We show that proper pre-
training on larger datasets yields significant performance
improvements.

The main contributions of this work are:

• We introduce a novel ArcGeo loss function for robust
cross-view matching. It outperforms triplet and Arc-
face loss in a variety of tests including different FoVs
and known/unknown view directions.

• Using pretraining with an extended version of the
CVUSA dataset [14], we demonstrate that (a) large
scale cross-view matching is feasible, and that (b) it
yields 6.22% improvement in top-1 recall.

• We establish a new SOTA in cross-view matching on
multiple datasets for a variety of test cases.

2. Related Work

Ground-view feature matching for geolocalization:
Early experiments for image geolocalization leveraged
handcrafted features as a foundation for retrieval in large
datasets of GPS-tagged ground imagery [15]. Later, it was
shown that modeling geolocation as a classification task
could provide improved performance by discretizing the
world into bins corresponding to regions of the planet and
training a CNN to classify images accordingly [16]. Recent
variants of these approaches have incorporated hierarchi-
cal modeling [17] semantic context [18] and transformer
networks [19] to improve performance. However, these
techniques rely on ground-view reference databases which
are geographically sparse and biased toward densely popu-
lated areas and tourist sites making these approaches lim-
ited for global usage. In contrast, satellite imagery provides
global coverage, making it a more attractive foundational
data source for matching.

Cross-view matching for geolocalization: One of the
first cross-view matching approaches leveraged handcrafted
features for matching overhead and ground images [20].
The work was furthered in [14] which had two main con-
tributions—introduction of a new aerial-ground image pair
dataset and feature matching using deep neural networks.
Early methods for cross-view matching applied pretrained
deep networks for feature extraction in aerial imagery [21]
but were limited due to a lack of domain-specific training
and the large domain gap between aerial and ground im-
ages. Later works leveraged 2-branch CNNs which were
cast in an embedding learning formulation between aerial
and ground imagery [1,22,23]. These benefit from separate
branches specialized for aerial and ground feature extrac-
tion, and often include shared parameters for feature aggre-
gation [3]. Recently, transformer networks have provided a
boost in performance using multi-head attention [6, 7].

Addressing the perspective gap: A major barrier for
effective cross-view matching is the domain gap between
aerial and ground images. Attempts to address the per-
spective gap usually seek to align aerial and ground fea-
tures in image space, for example using polar transforma-
tion [2], conditional synthesis strategies based on seman-
tic content [24], or generative adversarial learning [5, 25–
27]. Transformer-based approaches rely on spatial atten-
tion mechanisms to learn correspondences between features
in aerial and ground images [6, 7]. The state-of-the-art
panoramic cross-view matching technique uses a geomet-
ric disentanglement approach, learning spatial and semantic
correspondence through counterfactual learning [10].

Orientation-aware cross-view matching: Knowing
orientation (e.g., ground level image is looking north) is
a key factor in the cross-view matching process. Exist-
ing approaches incorporate orientation information to the
matching process through learned UV-mapping [22] or dy-
namic similarity matching to calculate correlation in spa-
tially aware features [4]. Alternatively, it is possible to learn
a joint embedding of global and local aerial views for the
corresponding limited FoV ground image [8].

Cross-view matching datasets: The largest existing
cross-view matching dataset, CVUSA [14], contains over a
million aerial and ground images. However, existing deep-
learning based approaches use only a small subset of the
dataset containing 44k image pairs. Other datasets have
been collected, but are focused on city-scale applications
and contain dense imagery for a handful of geographic re-
gions [22, 23, 28]. It is common to find misalignment in
aerial and ground images in existing datasets. Ground im-
age locations are typically gathered from consumer-grade
GPS (e.g., smartphone sensors) which are subject to noise.
Small errors can be corrected by comparing image similar-
ity between ground-view images and polar projected satel-
lite images [25], but misalignment is difficult to overcome.
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Figure 1. Schematic illustration of our aerial-ground image retrieval model. The two-branch model is shown on the left and ArcGeo loss
on the right.

Optimization for cross-view retrieval networks: Neg-
ative mining is a popular approach for learning a precise
local structure in embedding learning and is easily applied
to triplet loss. Existing work shows that in-batch negative
mining can improve top-1 recall of cross-view matching
networks [29, 30] and can be further improved using global
negative mining strategies [28, 31].

Cross-view matching with limited FoV: Comparatively
fewer investigations have been made which account for dif-
ferences in FoV. One technique for handling low FoV im-
agery fuses local and global aerial features and incorpo-
rates variable FoV data augmentation to learn a robust rep-
resentation for low FoV matching [8] achieving a top-1 re-
call of 22.54% on the CVUSA dataset using cropped im-
agery corresponding to FoV = 90°. Still, the highest per-
formance reported for FoV = 90° imagery [7] achieves top-
1 recall of 30.12% in comparison with 94.08% for FoV =
360° [7], showing a significant gap in performance between
panoramic and limited FoV imagery.

3. Methodology

We provide an overview of our approach and describe
the cross-view matching problem formation in Section 3.1.
Next, we describe the model architecture (Section 3.2), and
our novel ArcGeo loss for learning robust cross-view em-
beddings (Section 3.3). Lastly, we describe our model pre-
training and data augmentation strategy to obtain robust per-
formance in low FoV settings (Section 3.4).

3.1. Problem Statement

We formulate the image geolocation task as a cross-view
image retrieval problem. Given a set of ground-view query
images {Ig} and aerial-view reference images {Ia} we de-
fine positive image pairs as aerial and ground images taken

from the same location {Igi , Iai}, with all others being con-
sidered as negative pairs. Our objective is to learn a la-
tent representation where embeddings for positive pairs are
close, while embeddings for negative pairs are distant.

3.2. Model Overview

Figure 1 shows a diagram of our model architecture. We
leverage a two-branch model with separate encoders for
aerial and ground images (Ea and Eg respectively). Each
encoder takes the corresponding input image and generates
a set of aerial and ground features. Next, we apply a set
of shared layers including a multi-head self-attention mod-
ule (represented as two transformer layers), which models
global correlation between input tokens. In this case, in-
put tokens are deep features belonging to either the aerial
or ground images. The network head consists of two linear
layers with GeM pooling [32] to aggregate the features into
a final embedding vector as described in Section 4.4. The
model is optimized using our novel ArcGeo loss which in-
cludes an angular margin loss applied in a batch-all manner
to optimize both the local and global embedding landscape.
For more details of our loss function, see Section 3.3.

Our design has several benefits. Because aerial and
ground embeddings are calculated independently, it is more
efficient than approaches which evaluate correlations be-
tween feature maps to identify view direction [4]. The joint
consideration of feature maps makes the generated embed-
dings unique to specific input combinations, and requires
re-computation of aerial reference features for each query,
thereby making it infeasable for large-scale image retrieval
applications such as geolocalization. In addition, the pro-
posed ArcGeo loss uses batch-all evaluation, which requires
each aerial embedding in the batch to be compared to each
ground embedding. If the aerial and ground embeddings
were co-dependant, they would have to be extracted B2
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times per batch, where B is the batch size. While the fea-
ture maps extracted by the backbones in each calculation
could be reused, the overhead of running the feature mixing
B2 times would still be significant, especially for the large
batches required by ArcGeo loss. Therefore, recent cross-
view matching studies [1, 3, 5, 6, 8, 22, 31] similar to ours
consider the interdependent generation of aerial and ground
embeddings to be more suitable for batch-all losses.

Our approach is agnostic to aerial image processing—it
can be applied to retrieval strategies using polar transformed
aerial images (e.g., as used in [2,4,6]) or using aerial images
directly (e.g., [7, 8]). ArcGeo does not assume known ori-
entation (i.e., view direction) or FoV but can use this infor-
mation if available to improve retrieval accuracy. This has
allowed us to conduct extensive ablations comparing a va-
riety of model architectures and data preparation strategies
with other approaches which rely on specific inputs [8, 10].

3.3. ArcGeo Loss

One of the key differences of our approach from pre-
vious works is the use of ArcGeo loss, proposed in our
study instead of batch-all triplet loss [33], which is typi-
cally used in image retrieval training. Triplet loss performs
local optimization of the embedding space by considering
one positive and one negative example. Batch-all formula-
tion and negative mining seeks to improve local specificity
by a search for hard triplets containing negative examples
located nearby in the embedding space. Meanwhile, the
global structure of the embedding space is optimized indi-
rectly through triplet-based updates.

An alternative approach, performing direct optimization
of the global embedding space structure, was suggested in
the ArcFace paper [13], which revolutionized image re-
trieval for face recognition. In this approach the embed-
ding space structure is approximated with learnable cen-
troids assigned to each particular class, and Softmax based
updates are applied to identify where the particular embed-
ding should be pushed. To improve class separation, an an-
gular margin term is added. Similar to the margin in triplet
loss, this term ensures that the embeddings predicted by the
model are located closer to the ground truth centroids than
to the neighboring ones, improving local compactness of
the produced embedding. In contrast to face recognition,
however, in cross-view matching each location is often rep-
resented by a single aerial-ground pair. Therefore, during
training the positions of the centroids, approximating the
embedding space structure may experience a misalignment
with the actual model output for given locations due to a
very limited number of samples per each location. This mis-
alignment leads to incorrect updates of model weights and
may explain low performance of cross-view training with
ArcFace loss (Table 4).

To address this problem, we propose ArcGeo loss, which

approximates the global structure of the embedding space
with examples provided in each batch using a batch-all for-
mulation instead of relying on learnable cluster centers (see
Figure 1). Then, following the standard ArcFace formula-
tion, we add an angular margin to positive pairs, scale the
angles, apply SoftMax (flattening all pairs in the batch), and
compute cross-entropy loss using matching pairs as a set of
positive labels:

L = − 1

N
ΣN log

(
es cos(θii+m)

es cos(θii+m) +ΣN,j ̸=ies cos(θij)

)
where N is the batch size assuming N aerial and N

ground images provided with the matching index corre-
sponding to matching pair, θij is the angle between cor-
responding aerial and ground embeddings in the batch, s
is the scaling factor, and m is the angular margin penalty.
To improve the numerical stability, we clip the cosine ten-
sor and use the Li-ArcFace [34] formulation instead of the
original ArcFace formulation [13]. We select s = 20 and
m = 0.5 based on our experiments.

Even though ArcGeo loss uses a sparse approximation of
the global structure of the embedding space, at sufficiently
large batch size this approximation is sufficient to signifi-
cantly outperform triplet loss and Arcface loss (Table 4).

3.4. Model Pretraining and Data Augmentation

Existing cross-view matching datasets are limited in ge-
ographic scope and scale. For example, the subset of
CVUSA [14] that is typically used for comparative evalu-
ation contains only 35,532 training image pairs and 8,884
validation image pairs. CVACT [22] is similarly sized but
contains an additional 92,802 test images for larger evalua-
tion experiments. We show that model pretraining and data
augmentation can be used to ensure robustness in perfor-
mance for large scale tests.

Current approaches focus on model architecture im-
provements to address gaps in performance [3, 6, 7,
30]. While these methods demonstrate improvement for
panoramic cross-view matching, they show only incremen-
tal improvement for experiments with limited FoV. We
show that the size of the training datasets is insufficient for
training robust cross-view matching models. Our method
uses a training dataset that is an order of magnitude larger
than the smaller training subsets used previously. By train-
ing on larger data, we dramatically improve recall, espe-
cially for test cases with limited FoV (see Section 4.5).

Additionally, we observe that existing methods train sep-
arate models for each test-time FoV, where the training FoV
is precisely aligned with the test FoV [1, 3, 4, 6, 8]. This
training regime can yield models which perform well for a
narrow range of test-time FoV but require FoV to be known
during test time to obtain their expected performance. In
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many practical settings, FoV is not precisely known (e.g.
digital zoom can yield multiple FoV for a single type of
sensor). Hence, we leverage additional FoV-based data
augmentation where FoV is varied randomly during train-
ing. This, combined with proper pretraining yields a single
model which can perform well in a variety of test-time FoV
requiring no knowledge of FoV during test time.

4. Experiments
We demonstrate our proposed approach with a set of

quantitative and qualitative experiments on several common
cross-view matching benchmark datasets. The experimental
results demonstrate the efficacy of various model configu-
rations and ablation studies of feature extraction backbone,
pretraining and training settings.

4.1. Datasets

We evaluate our method using two standard cross-view
matching benchmarks, CVUSA [14] and CVACT [22].
These datasets each contain 35,532 training image pairs and
8,884 validation image pairs. We also report results for the
CVACT full validation (test) set which contains an addi-
tional large test set of 92,802 image pairs. The ground im-
ages are cropped at the top and bottom to have similar ap-
pearance to CVUSA data, and the image size in these ex-
periments is identical.

Additionally, we conduct an extensive pretraining exper-
iment on the extended CVUSA-full dataset which contains
1.2M additional aerial-ground image pairs. In this extended
version of the dataset, street-view images have a maximum
FoV of 325 degrees compared to the 360-degree panora-
mas present in the standard CVUSA dataset. We select the
subset of imagery from this dataset containing only pairs
whose ground image was sourced from street-view style im-
ages which contains 413,740 image pairs. We exclude all
images corresponding to CVUSA validation from CVUSA-
full dataset. The aerial images are rotated and cropped and
the ground images are cropped at the top and at the bot-
tom to match the appearance of CVUSA data. We refer
to this extended dataset as CVUSA-full. The dataset can
be obtained via email request to the authors of the original
CVUSA dataset [14]. For more detail, see Section 4.6.

4.2. Data Preparation

We define a set of data pre-processing steps we use in
this work. Note that not every step will be used for training
a given model.

Polar Transform: We follow the commonly adopted
polar image transformation introduced by Shi et al. [2]
which has been shown as an effective means for bridging
the cross-view perspective gap.

Data Augmentation: We apply several standard data
augmentation strategies for training our model including

flip, rotation (by up to 20 degrees for ground and 360 for
aerial images), up to 20% rescale, shift, cutout, perspec-
tive change as well as hue, saturation, value, and brightness
variation.

Known/Unknown View Direction: We consider two
cases for known and unknown view direction. When view
direction is known, aerial images are south-aligned corre-
sponding the seam of the panoramic ground image, result-
ing in a view aligned polar transform. When view direction
is unknown, the ground images are rotated randomly along
the azimuth direction yielding image pairs with no view di-
rection alignment.

Image Size: Images are cropped and resized accord-
ing to desired FoV (shown in Table 1 of the Supplemen-
tary Materials). For common configurations (e.g. FoV =
360° and FoV = 90°) we adopt image sizes from existing
methods [8] to make our results comparable. In the case
of unknown view direction and polar transform, the entire
896×224 aerial image is given as an input to the model re-
gardless of the ground image FoV. We perform horizontal
cropping for limited FoV training and evaluation, while pre-
serving the vertical image size unless otherwise stated (see
the Supplementary materials).

Negative Mining: Negative mining has been shown to
be a critical part of many cross-view matching methods due
to the large imbalance between positive and negative pairs.
In many cases, there is only a single positive example per lo-
cation making it difficult to estimate the boundary between
positive and negative pairs. Our best performing model uses
a 2-step negative mining approach which incrementally in-
creases the difficulty of batches as training progresses. Our
strategy provides image pairs which are easy to separate in
the early stages of the training process, and gradually intro-
duces more difficult negative samples to refine the learned
embedding space.

4.3. Metrics

We consider top-k recall as our primary metric follow-
ing existing work [4, 6–8, 28] in cross-view matching. For
this metric we retrieve the K nearest aerial views as mea-
sured by cosine similarity of learned aerial and ground em-
beddings. The ground-view query image is considered cor-
rectly localized if the corresponding aerial image is within
the set of top-k retrieved images. We adopt the common no-
tation of r@K and evaluate our models for multiple values
of K. For limited FoV cases we randomly crop a section of
the corresponding panorama to use for evaluation. Reported
metrics are an average of 10 evaluation runs to eliminate
noise due to selection of random image crops.

We also consider mAR@5 (Mean Average Recall at 5),
which is expressed as the following:

mAR@5 =
1

U
ΣUΣ

min(n,5)
k=1 R(k)
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where U is the number of images, R(k) is recall at cutoff of
k, and n is the number of predictions per image (the model
predictions are sorted). This metric can be considered as
weighted model performance for making a correct predic-
tion within top-1 to top-5. Specifically, the metric assigns
1.0 if the model makes the correct prediction from the first
attempt, 0.5 for the second attempt, and so on until 0.2 for
top-5 prediction. If the model does not predict a correct im-
age within top five results, the metric value for the image
is zero. So, this metric can be interpreted as a weighted
performance measure within top-5, putting an emphasis on
prediction within fewer attempts. This has the benefit of
robustly describing model performance for cases where the
model correctly ranks imagery at position k + 1.

4.4. Feature Extraction

We conduct experiments with two popular feature ex-
traction backbones, the CNN-based model ResNeXt-50 and
a pure transformer model ViT-B, to demonstrate the ap-
plicability of our approach regardless of model architec-
ture. We follow a typical image retrieval training format
where batches of aerial and ground image pairs {Igi , Iai}
are passed to their respective encoders to obtain local fea-
tures {xgi , xai

}. For ResNeXt-50 based models we add a
multi-head self-attention module (MHSA) which serves to
aggregate and attend to feature maps extracted from the two
branches. For our transformer-based experiments we re-
port results for two ViT-B pretraining configurations (BEiT-
v2 [35] and DEiT-v3 [36]). For these we omit the shared
feature aggregation and pooling layers and produce the em-
bedding through modification and propagation of the class
token, as is typically used in transformer-based image re-
trieval [37]. Details of feature extraction configurations are
in the Appendix.

Table 1 shows results for several models trained using
our ArcGeo loss with a standard training configuration. As
expected, r@1 increases with increasing number of network
parameters. Interestingly, we observe significant improve-
ment in using a BEiT-v2-B backbone compared to DEiT-
v3-B, which use the same ViT-B model and differ mainly in
pretraining strategy. We argue that model architecture se-
lection is less important than selection of proper loss func-
tion and pretraining strategy which we further demonstrate
in ablations (Section 4.6). For computational reasons, most
of our experiments use a ResNeXt-50 backbone.

4.5. Comparison with State-of-the-art Approaches

We compare our proposed approach with several exist-
ing methods including approaches [2, 4, 7, 8, 28]. Because
existing work in limited FoV cross-view matching is lim-
ited, we also report performance for the panoramic test case.
Though the focus of our work is not on improving perfor-
mance for panoramic images, our improvements appear to

CVUSA, FoV = 90°, known view-direction
Method # Parameters r@1 r@5 r@1%

(%) (%) (%)
Ours (ResNeXt-50) † 62.77M 83.80 94.34 96.48
Ours (DEiT-v3-B) † 172.17M 87.40 95.83 99.55
Ours (BEiT-v2-B) † 172.17M 90.10 96.91 99.66
Ours (ResNeXt-50) †♢* 62.77M 93.47 98.12 99.81

Table 1. Quantitative results showing multiple model architectures
for FoV = 90° test case on CVUSA with known view-direction.
The † indicates models which use polar transformation. The ♢
indicates the use of the ASAM optimizer and global negative min-
ing. The * indicates pretraining on the larger CVUSA-full dataset.

apply universally, increasing performance over baseline ap-
proaches even for FoV = 360° input images.

Localization for Panoramic Imagery: We evaluate
three model configurations including versions which use a
ResNeXt-50 CNN backbone as well as a BEiT-v2-B (ViT-
B) backbone, demonstrating the flexibility of our approach
to adapt to a variety of backbone feature extraction models.
As shown in Table 3, when using a transformer network
for our backbone, our approach provides higher top-k recall
compared to baseline methods.

Meanwhile, performance using CNN-based ResNeXt-
50 backbone achieves competitive performance using stan-
dard pretraining techniques. We suspect performance of our
ResNeXt-50 based model to be limited due to the relatively
limited scope of transfer learning available from standard
ImageNet pretraining. Hence, we also report performance
for an identical model which was pretrained on a larger set
of cross-view image pairs from the CVUSA-full dataset.
This model significantly outperforms baseline approaches
and indicates that cross-view matching models may benefit
from large-scale pretraining to help address the domain gap
between aerial and ground images.

Note that our BEiT-v2-B does not leverage any special-
ized cross-view pretraining, ASAM optimizer, or global
negative mining. These techniques improve performance
for ResNeXt-50 but were omitted due to the increase in
computational cost.

Localization for Limited FoV/Unknown View Direc-
tion: The main goal of the proposed approach is to improve
performance for limited FoV test cases where view direc-
tion is unknown, as illustrated in Figure 2. We evaluate our
approach alongside existing works which also report perfor-
mance for limited FoV [1,3,4,6–8]. In some cases, the base-
line techniques were not necessarily focused on low FoV
matching so performance varies across methods.

Our model incorporates ArcGeo loss to create a robust
embedding landscape well-suited for matching in low-FoV
scenarios. We demonstrate this by evaluating a single in-
stance of our model across multiple test FoVs, (Table 4). In
contrast, existing approaches align train and test FoV (noted
as “Matching” in Table 2, requiring FoV to be known during
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CVUSA, unknown view-direction
Test FoV = 180° Test FoV = 90° Test FoV = 70°

Method Pretraining Training FoV r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10
(%) (%) (%) (%) (%) (%) (%) (%) (%)

CVM-Net [1] ImageNet-1k matching, fixed 7.38 22.51 32.63 2.76 10.11 16.74 2.62 9.30 15.06
CVFT [3] ImageNet-1k matching, fixed 8.10 24.25 34.47 4.80 14.84 23.18 3.79 12.44 19.33
DSM [4] † ImageNet-1k matching, fixed 48.53 68.47 75.63 16.19 31.44 39.85 8.78 19.90 27.30
GAL [ [8]] ImageNet-1k matching, w/ aug 48.91 69.87 78.50 22.54 44.36 54.17 15.20 32.86 42.06
L2LTR [6] † ImageNet-1k matching, fixed 56.69 80.86 87.75 26.92 50.49 60.41 13.95 33.07 43.86
TransGeo [7] ImageNet-1k N/A 58.22 81.33 87.66 30.12 54.18 63.96 - - -
Ours (ResNeXt-50) † ImageNet-1k, ‡ 90°, fixed 57.56 83.24 89.76 37.22 64.83 74.98 30.86 57.51 68.54
Ours (ResNeXt-50) †♢ ImageNet-1k, ‡ 90°, fixed 63.68 85.39 90.61 44.18 70.33 78.84 37.71 64.41 73.64
Ours (ResNeXt-50) †♢ CVUSA-full 90°, fixed 83.63 96.20 97.85 66.83 88.12 92.52 59.89 83.63 89.44

Table 2. Quantitative results for limited FoV test case on CVUSA. The † symbol indicates models which leverage polar transformation.
The ‡ symbol indicates models which were pretrained using self-supervised learning on ImageNet-1k / IG-1B [38] for ResNeXt-50 and
ImageNet-21k for BEiT-v2. The ♢ symbol indicates our models which were trained with global negative mining.

CVUSA, FoV = 360°, known view-direction
Method mAR@5 r@1 r@5 r@1%

(%) (%) (%)
SAFA [5] † - 89.84 96.93 99.64
DSM [4] † - 91.93 97.50 99.67
CDE [8] † - 92.56 97.55 99.57
L2LTR [6] † - 94.05 98.27 99.67
TransGeo [7] ♢ - 94.08 98.36 99.77
SEH [10] † - 95.11 98.45 99.78
GeoDTR [14] † - 95.43 98.86 99.86
Ours (ResNeXt-50) † 96.07 94.32 98.51 99.80
Ours (BEiT-v2-B) † 97.26 96.06 98.89 99.88
Ours (ResNeXt-50) †♢* 98.33 97.47 99.48 99.67

Table 3. Comparison of our approach with baseline methods on
CVUSA dataset. The † symbol indicates models which use polar
transformation. The ♢ indicates global negative mining. The *
indicates pretraining on the larger CVUSA-full dataset.

Figure 2. Visualization of query images under different test-time
FoV (left) and top-5 retrieved aerial images predicted from our
model. Ground truth aerial pairs are marked in green.

test time to achieve the reported performance. In practical
applications, FoV may not be known and requires complex
approaches to estimate [39].

We improve top-1 recall from 30.12% to 44.18% using
our ResNeXt-50 based model for FoV = 90° case using
semi-weakly supervised ImageNet pretraining. Notably, we
achieve a massive boost in top-1 recall to 66.83% by pre-
training on additional data in the CVUSA-full dataset.

4.6. Ablation Studies

Effects of ArcGeo Loss: We conducted a set of ex-
periments to measure the effects of the proposed ArcGeo
loss compared to standard triplet loss used by existing ap-
proaches. We trained models for known and unknown view
direction and evaluated performance on several limited FoV
test cases (Table 5). We observe a significant improvement
in performance using ArcGeo loss, resulting in an 8.87%
improvement in r@1 for FoV = 90° when view direction is
known and a 15.59% improvement in r@1 for FoV = 90°
when view direction is known. This demonstrates the effec-
tiveness of our ArcGeo loss to be applied broadly for im-
proved cross-view matching with limited FoV, apart from
other performance increases obtained from negative mining
and data augmentation.

Effects of large-scale pretraining: Existing techniques
for cross-view matching typically use the CVUSA dataset,
specifically, the subset of ∼44k image pairs which were
proposed for use in early cross-view matching methods
[1, 14]. Since then, significant advances have been made
with modern techniques achieving impressive results with
> 94% r@1 for FoV = 360° test case. However, perfor-
mance on limited FoV quickly declines for these models,
yielding only ∼30% r@1 or less for FoV = 90°. We argue
that one possible reason for such a drastic decrease in per-
formance on low FoV imagery is a lack of diverse image
features in the small CVUSA training dataset. To main-
tain high accuracy for limited FoV test cases, models must
learn robust representations, matching as many features as
possible, not just the most discriminative set which would
be suitable for FoV = 360° matching. Without sufficient
diversity in the training data, the robustness of the learned
embedding is limited, potentially manifesting as rapidly de-
creasing performance with lowered FoV.

We designed a set of experiments to measure the effects
of pretraining with a larger dataset, specifically for perfor-
mance improvement in low FoV. We pretrain our cross-view
matching network using CVUSA-full which contains an ad-
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Test FoV = 180° Test FoV = 90° Test FoV = 70°
Method View Direction Loss Function r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10

(%) (%) (%) (%) (%) (%) (%) (%) (%)
Ours (ResNeXt-50) Unknown Triplet 44.31 72.73 81.85 28.59 55.92 67.32 23.82 49.91 61.71
Ours (ResNeXt-50) Unknown Arcface 8.52 15.32 19.69 8.02 13.96 17.87 7.87 13.60 17.38
Ours (ResNeXt-50) Unknown ArcGeo 63.68 85.39 90.61 44.18 70.33 78.84 37.71 64.41 73.64
Ours (ResNeXt-50) Known Triplet 84.99 95.56 97.43 78.19 92.10 95.05 70.86 87.85 91.98
Ours (ResNeXt-50) Known ArcGeo 93.72 98.39 99.03 87.06 95.34 97.09 81.08 92.17 94.78

Table 4. Quantitative results comparing ArcGeo loss with conventional triplet loss for limited FoV test case on CVUSA with known
view-direction. Each model was trained using polar transformation with FoV=90°, and global negative mining.

Test FoV = 180° Test FoV = 90° Test FoV = 70°
Method View Direction Pretraining r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10

(%) (%) (%) (%) (%) (%) (%) (%) (%)
Ours (ResNeXt-50) Unknown ImageNet-1k ‡ 63.68 85.39 90.61 44.18 70.33 78.84 37.71 64.41 73.64
Ours (ResNeXt-50) Unknown CVUSA-full 83.63 96.20 97.85 66.83 88.12 92.52 59.89 83.63 89.44
Ours (ResNeXt-50) Known ImageNet-1k ‡ 93.72 98.39 99.03 87.06 95.34 97.09 81.08 92.17 94.78
Ours (ResNeXt-50) Known CVUSA-full 97.44 99.54 99.66 93.47 98.12 98.85 89.42 96.48 97.76

Table 5. Quantitative results for limited FoV test case on CVUSA using various pretraining strategies. Each of model was trained using po-
lar transformation with FoV=90°, and global negative mining. The ‡ symbol indicates models which were pretrained using self-supervised
learning on IG-1B [46] for ResNeXt-50.

ditional 1.2M aerial-ground image pairs. We select the sub-
set of 413,740 pairs belonging to street view imagery simi-
lar to the CVUSA dataset. We perform basic image prepro-
cessing including vertical cropping to align the imagery to
be similar to CVUSA. Training is performed identically to
models shown in Table 5.

Pretraining on CVUSA-full was found to be benefi-
cial for all models, including known and unknown view-
direction cases. Table 6 shows how this pretraining strat-
egy increases r@1, with a larger effect on low FoV test
case. For example, performance for FoV = 90° test case was
increased from 87.06% r@1 to 93.49 r@1 (known view-
direction). Similarly, for unknown view-direction perfor-
mance FoV = 90° was increased from 44.18% to 66.83%.

Performance on CVACT: To demonstrate that our ap-
proach is applicable for multiple data sources we performed
additional experiments on the CVACT dataset. We use
BEiT-v2 training procedure identical to our CVUSA exper-
iments with test FoV = 360° and known view direction. Ta-
ble 6 shows a comparison of our results with several base-
line approaches.

Similar to improvements observed on CVUSA, our ap-
proach provides a massive improvement of the performance
on both CVACT val and CVACT test sets in comparison to
previously reported values. The difference is especially ap-
parent in the larger evaluation set yielding nearly 15% im-
provement over baseline models.

5. Conclusion

To address the challenges of cross-view matching under
limited FoV, we propose a novel ArcGeo loss and large-
scale pretraining to improve model robustness. We demon-
strate that a relatively simple model is capable of state-

CVACT val CVACT test
Known view-direction Known view-direction

Test FoV = 360° Test FoV = 360°
Method r@1 r@5 r@10 r@1 r@5 r@10

(%) (%) (%) (%) (%) (%)
CVM-Net [1] 20.15 45.00 56.87 - - -
Liu et al. [22] 46.96 68.28 75.48 - - -
CVFT [3] 61.05 81.33 86.52 26.12 45.33 53.80
SAFA [2] 81.03 92.8 94.84 - - -
DSM [4] † 82.49 92.44 93.99 35.63 60.07 69.10
L2TR [6] † 84.89 94.59 95.96 60.72 85.85 89.88
TransGeo [7] 84.95 94.14 95.78 - - -
SHE [9] † 84.75 93.97 95.46 - - -
GeoDTR [10] † 86.21 95.44 96.72 64.52 88.59 91.96
Ours (BEiT-v2) † 90.90 95.84 96.77 79.88 90.97 92.94

Table 6. The performance on CVACT dataset using test FoV =
360° with known view direction. The † symbol indicates models
which use polar transformation

of-the-art performance and can out-perform more compli-
cated models when ArcGeo loss is applied. Our pretrain-
ing experiments with CVUSA-full indicate that existing ap-
proaches may be limited by the relatively small dataset size
of CVUSA and CVACT. We also identify critical training
techniques for achieving high accuracy in limited FoV test
cases (e.g. ASAM optimizer and global negative mining).
The result is a single model which is capable of accurate
cross-view image retrieval across a wide range of test FoV.
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