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Abstract

Image quality assessment is a challenging computer vi-
sion task due to the lack of corresponding reference (pris-
tine) images. This no-reference bottleneck has been tack-
led with the utilisation of subjective mean opinion scores
(MOS) termed as supervised blind image quality assessment
(BIQA) methods. However, inaccessible opinion score sce-
narios limits their applicability. To relieve these limitations,
we propose to employ reconstruction based learning trained
only on pristine images. This permits an implicit distri-
bution learning of pristine images and the deviation from
this learned feature distribution is subsequently utilised for
unsupervised image quality assessment. Specifically, an
adversarial convolutional variational auto-encoder frame-
work is employed with KL divergence, perceptual and dis-
criminator loss. With state-of-the-art results on four bench-
mark datasets, we demonstrate the effectiveness of our pro-
posed framework. An ablation study has also been con-
ducted to highlight the contribution of each module i.e. loss
and quality metric for an efficient unsupervised BIQA.

1. Introduction

The acquisition, compression, transmission, and storage
of digital images inevitably introduces noise/distortions in
images. These distortions directly affect the reliability of
subsequent image processing. For instance, the accuracy of
disease diagnosis depends on the quality of medical images
[48]. Thus, current computer vision research has focused on
image quality assessment (IQA) as a crucial pre-processing
task. The objective of IQA is to automatically quantify im-
age quality consistent with human assessments [50].

Existing IQA methods are primarily categorised into
three classes (1) Full-Reference (FR), (2) Reduced-
Reference (RR), and (3) No-Reference (NR) methods [48].
This categorisation is based on the availability of a reference
(pristine) image with the corresponding distorted image. FR
and RR methods have shown promising performance with
complete and partial reference image information respec-
tively [50]. In real-world scenarios, reference images are of-
ten unavailable, such as for authentically distorted images.
Thus, NR-IQA permits broad applicability in contrast to FR
and RR methods.

No-Reference IQA methods quantify perceptual qual-
ity without relying on reference (pristine) images. These
NR-IQA methods are also termed as blind image quality
assessment (BIQA) methods. A majority of the existing
BIQA methods utilise a supervised regression model trained
on distorted images and the corresponding mean opinion
scores (MOS) [48], where MOS is a subjectively generated
score based on the perceptual quality of an image. These su-
pervised methods are also termed as opinion aware BIQA
methods. With the advancement in deep learning, current
opinion aware methods are based on the utilisation of con-
volutional neural networks (CNNs) [2, 4, 60]. The opti-
mal training of deep learning models requires large train-
ing samples with MOS. But the cost of subjective annota-
tions is time-consuming and requires multiple assessments.
Thus, these opinion aware BIQA methods lack generaliz-
ability [50]. To mitigate the dependence on large anno-
tated data, unsupervised (opinion unaware) BIQA methods
have been introduced. These methods do not rely on expen-
sive subjective scores and may provide better applicability.
Thus, this paper focuses on opinion unaware BIQA meth-
ods.
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In this context, we propose to employ reconstruction
based strategy for quality-aware feature learning from pris-
tine images. Generative Adversarial Network (GAN) [11]
based frameworks have already been proposed in this con-
text. For example, a quality-aware GAN was developed to
generate a hallucinated reference conditioned on the dis-
torted image [22]. Similarly, authors in [25] proposed to
generate the primary content of a distorted image. Another
study [38] presented a restorative adversarial network to
reconstruct the input distorted images. It is to be noted
that these aforementioned methods belong to the super-
vised/opinion aware BIQA paradigm. That is they rely on
subjectively generated mean opinion scores. In contrast,
the proposed framework is unsupervised/opinion unaware
BIQA method trained only on pristine images that permits
an implicit rich feature distribution learning.

Recently, authors in [41,66] proposed data augmentation
strategies for generating positive and negative pairs to be
utilised in a contrastive self-supervised paradigm. Specifi-
cally, this pretext task permits the learning of quality aware
features without relying on MOS. However, the quality pre-
diction based on these learnt features still relied on MOS,
formulated as a supervised regression model. In contrast,
we propose to utilise the deviation from the learned rich
feature distribution for unsupervised image quality assess-
ment. Another study [62] employed a pairwise learning-to-
rank loss for extracting quality aware features. This loss
formulation also relied on mean opinion score at the train-
ing stage. In contrast, the proposed training paradigm is not
constrained by specific distortion types, datasets, or subjec-
tively generated MOS during training. Similar to our work,
few studies [34,51,58] have attempted to model multivariate
Gaussian (MVG) based on statistical features response from
patches of only pristine images. Although, low-dimensional
their performance is highly dependent on expert knowledge.
In addition, due to the diverse degradation in natural images
these features are also sensitive to one distortion type and
may not be applicable to other distortions. However, the
proposed reconstruction based strategy permits an implicit
rich feature distribution learning with no prior assumptions.
The contributions of this paper are as follows:

• We propose to utilise reconstruction based learning via
adversarial variational autoencoder network. Trained
only on pristine images, the proposed framework is
unconstrained with respect to specific distortion types,
datasets, or MOS.

• A designed combination of loss functions permits
content-agnostic and quality-aware feature learning.
The deviation from this learned feature distribution
is utilised for unsupervised/opinion unaware BIQA
method at the inference stage.

• An ablation study has been conducted to show the ef-
fectiveness of the proposed modules with respect to
loss and image quality metrics.

The rest of the paper is organised as follows: Section 2
gives an overview of the relevant BIQA literature, and Sec-
tion 3 presents the proposed methodology. Experiments and
results analysis are included in Section 4. Finally, section 5
concludes the paper.

2. Related work
Blind image quality assessment (BIQA) methods are

broadly categorised as (1) Supervised BIQA methods that
utilise opinion scores in addition to the distorted images also
termed as opinion-aware BIQA methods, (2) Weakly super-
vised BIQA methods that derive opinion scores from exist-
ing full reference IQA methods and (3) Unsupervised BIQA
methods that only utilises distorted images also termed as
opinion-unaware BIQA methods. In this section, we review
BIQA methods based on the aforementioned categorisation.

2.1. Supervised BIQA Methods

These methods rely on image quality scores along with
distorted images. In this context, few studies proposed
to utilise hand-crafted features that encapsulate the repeat-
ing patterns of natural scenes termed as Natural Scene
Statistics (NSS) extracted from (a) spatial domain, (b)
discrete cosine transform domain, and (c) wavelet do-
main. Blind/referenceless image spatial quality evalua-
tor (BRISQUE) [33], blind image integrity notator (BLI-
IDNS) [39], BLIIDNS-II [40], and blind image quality in-
dex (BIQI) [35] are widely adopted methods belonging to
this category. In contrast, few methods proposed to en-
capsulate the edge distribution of image gradients such as
gradient magnitude map and the Laplacian of the Gaus-
sian response (GMLOG) [52], blind structural degrada-
tion (BSD) [20] and no-reference structural and luminance
(NRSL) [21]. Authors in [56] proposed to automatically
learn codebook representation (CORNIA) from raw images
and a support vector regressor was employed to develop a
learned model with codebook representation and subjective
scores. Distortion identification frameworks have also been
proposed with the underlying assumption that distortions
significantly modify the image’s statistical characteristics.
For example, Distortion Identification based Image Verity
and INtegrity Evaluation index (DIIVINE) was proposed
in [36] that performs distortion identification followed by
image quality evaluation. DeepBIQ [2] utilised multiple
sub-regions features from fine-tuned CNNs, followed by av-
erage pooling of these regions for image quality assessment.
Similarly, authors in [4, 60] also proposed two-stage CNN-
based frameworks for synthetic and authentic distortions.
Transformer-based image quality assessment methods have
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been investigated in [9]. In contrast to these deep-learning
networks, the proposed framework does not rely on image
quality scores.

2.2. Weakly Supervised BIQA Methods

These methods rely on Full-reference (FR) methods to
derive pseudo subjective scores for image quality assess-
ment. For example, authors [53] used the FR method pre-
sented in [12] to generate pseudo labels, which were sub-
sequently used in support vector regression. Similarly, re-
ciprocal rank fusion (RRF) was used in [55] to train the
image quality assessment method on pseudo labels. In an-
other study [49], authors used different FR methods for each
distortion and combined these distortion-specific scores to
predict the overall image quality. However, these methods
suffers from the limitations of the adopted FR models for
generating labeled training dataset.

In addition to pseudo scores, methods based on pseudo-
ranking order have also been proposed. In [23], authors
generated ranked image pairs by introducing various distor-
tion levels in the reference images to train a Siamese net-
work. In contrast to an efficient back-propagation strategy
proposed in the previous study, authors in [27,28] proposed
a loss function and perceptual uncertainty index for opti-
mal training of the Siamese network. Specifically, pseudo-
quality scores in these studies were automatically generated
via FR models such as Multiscale structural similarity (MS-
SSIM), visual information fidelity (VIF), and gradient mag-
nitude similarity deviation (GSMD). In the majority of these
methods, the pseudo-ranking scores were generated from
the reference image with the same distortion type but vary-
ing distortion levels. Thus, these labeled training datasets
do not capture the pseudo-ranking between different distor-
tions.

2.3. Unsupervised BIQA Methods

In contrast to the previously mentioned image quality
methods, few methods have been explored that alleviate
the limitation posed by the dependence on image quality
scores. For instance, authors in [34] developed a natural
image quality evaluator (NIQE) that learns a multivariate
Gaussian (MVG) model on natural scene statistics (NSS)
features extracted from patches of pristine natural images.
The image quality score is then computed via distance be-
tween the MVG model of the investigated image and the
learned pristine image MVG model. This method was ex-
tended in [58] as Integrated Local NIQE (ILNIQE) by in-
troducing additional statistical features i.e. color, gradient,
and Log-Gabor filter response. However, they generate im-
age quality scores that assign more weights to the salient
patches of the investigated image based on a pre-trained
CNN. Wu et al. [51] derived statistical features from bi-
nary patterns of local image structures (method denoted as

LPSI) for BIQA. Based on the empirical studies that high-
light the unimodal assessment of the aforementioned stud-
ies, authors in [24] introduced structure, naturalness, and
perception quality based degradations for BIQA. In contrast
to the previously mentioned methods that compute the dis-
tance between features of investigated image patches to a
corpus of pristine images, self-supervised frameworks have
also been explored. In [30] the authors formulated the pre-
text task as predicting distortion types and its distortion lev-
els for feature learning (method denoted as CONTRIQUE).
It is to be noted that the investigated images in authentically
distorted images show variations in contents and degrada-
tion types, this instance-level discrimination may limit the
learning of quality-aware features. A similar framework
was also utilised in [31] on synthetically generated images.
Another study [5] employed patch prediction as a pretext
task for synthetically distorted images (method denoted as
SPIQ).

In addition, methods based on specific distortion types
have also been proposed. Authors in [13] introduced a
multi-step IQA framework that systematically aggregates
distortion-specific single-quality metrics with different dis-
tortion effects. In another study [65], the distortion parame-
ters of singly and multiply distorted images were predicted
based on natural scene statistics (NSS) features. In con-
trast, authors in [32] proposed to generate a reference image
based on the introduction of severest distortion and com-
pared it with the investigated image for quality prediction.

It is evident that most opinion-aware BIQA methods
have been proposed for distortion-specific or synthetic
distortion-type scenarios. However, due to the diverse
degradation characteristics, these studies are limited in
terms of their applicability in authentically distorted sce-
narios.

3. Methodology

The workflow of the proposed framework is shown in
Figure 1. The framework comprises of two stages that ac-
complish (1) pristine data distribution learning and (2) ef-
fectively using the learned distribution from the first stage
to perform unsupervised BIQA. Specifically, the first stage
focuses on learning rich feature distribution of pristine im-
ages based on high-quality image reconstruction. And the
second stage focuses on quality metric generation of the
degraded/distorted test image based on the learned pristine
feature distribution. We elucidate these stages in the follow-
ing subsections.

3.1. Unsupervised Latent Space Learning

The first stage learns to generate pristine images based
on Convolutional Variational Autoencoder Generative Ad-
versarial Network (CVAE-GAN) [14]. It combines adver-
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Figure 1. (a) Training workflow of the proposed framework. Here, X denotes the input pristine image, X̂ denotes the reconstructed image
and (b) Testing workflow of the proposed framework. Here, µ and σ are the mean and standard deviation of the test image.

sarial learning [11] with the unsupervised learning of con-
volutional variational autoencoders.

CVAE-GAN comprises of two main components: a Con-
volutional Variational Autoencoder (CVAE) and a discrim-
inator. CVAE is a variant of autoencoder [64] with a proba-
bilistic model consisting of an encoder and a decoder. The
encoder generates a low-dimensional representation termed
as the ”latent code” or ”latent representation” of the input
images. This latent representation is then fed to the decoder
to generate an image similar to the input image. Specifi-
cally, the encoder is trained to map the input data with the
latent space distributed according to a probability distribu-
tion (for example Gaussian distribution). The second com-
ponent of the CVAE-GAN model is the discriminator net-
work.

We propose to train CVAE-GAN with only pristine
(high-quality) images to learn its latent space representa-
tion. While the CVAE learns to reconstruct pristine im-
ages, the discriminator network takes the reconstructed im-
age as input and outputs a probability score belonging to
the pristine distribution. The two networks CVAE and dis-
criminator are trained in an adversarial manner. Where,
the CVAE attempts to fool the discriminator by generating
high-quality images and the discriminator’s task is to dis-
tinguish between the original pristine images and the gener-
ated images. Kullback-Leibler Divergence (KLD) loss [6]
is used to enforce the latent distribution belonging to the
pristine distribution. The Kullback-Leibler divergence [17]
is formulated as:

LKLD = KL(q(z|x;ϕ)||p(z)) = 1
2

∑J
j=1(1 + log(σ2

j )− µ2
j − σ2

j ) (1)

where, J is the dimensionality of the latent space, µj and
σj are the mean and standard deviation of the jth dimension
of the encoder distribution, and p(z) is a standard normal
distribution. We also utilised VGG loss [45] to reconstruct
perceptually enhanced images. Reconstruction loss based
on VGG loss is given by:

Lper(x; θ, ϕ) =
1
N

∑N
i=1((fi − f̂i)

2) (2)

where, fi is the ith VGG feature of the input image, and
f̂i is the corresponding feature in the reconstructed image.
The loss for the CVAE is given by:

LCV AE(x; θ, ϕ) = Lper(x; θ, ϕ) +KL(q(z|x;ϕ)||p(z)) (3)

where x is the input image, θ and ϕ are the parameters of the
CVAE, z is the latent variable, q(z|x;ϕ) is the encoder dis-
tribution, p(z) is the prior distribution, Lper(x; θ, ϕ) is the
perceptual loss, and KL(q(z|x;ϕ)||p(z)) is the Kullback-
Leibler divergence between the encoder and prior distribu-
tions. To summarise, the training loss of the CVAE-GAN
can be written as:

Ltot(x, z; θg, θd) = Ex∼pdata(x)

[log(D(x; θd))] + Ez∼p(z)

[log(1−D(CV AE(z; θg); θd))]

(4)

where x is a real image, z is a random noise vector given by
CVAE, θg and θd are CVAE and discriminator networks’ pa-
rameters. The discriminator loss ensures high quality-aware
feature learning and also mitigate content-based learning.

3.2. Unsupervised Image Quality Assessment

The first stage of the proposed framework permits fea-
ture distribution learning of only the pristine images. We
then propose to utilise the learned weights of the encoder at
the inference stage (shown in Figure 1(b)) for unsupervised
BIQA. This hypothesis was motivated by the empirical ob-
servation shown in Figure 2. Figure 2 shows the scatter plot
of latent representations on CLIVE [8] and KonIQ-10k [15]
datasets. t-SNE algorithm has been employed to reduce the
dimensionality of these latent representation and project it
to a 2D space for qualitative analysis. Specifically, the fig-
ure shows that the latent representation of pristine images
lies close to the learned distribution whereas, the latent rep-
resentations of distorted/noisy images shows separability.
Thus, the deviation from the learned feature rich distribu-
tion of the test image provides a pseudo indicator of the
noise/degradations, thus facilitating unsupervised BIQA. To
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Figure 2. t-SNE visualization of the latent representations from
(a) CLIVE [8] dataset (b) FLIVE [43] dataset.

quantify this deviation, we employ latent distance metric
(SZ) proposed in [1], formulated as:

SZ(µhd, µt,Σhd,Σt) =
√

(µhd − µt)T (Σhd +Σt)−1(µhd − µt) (5)

Here, µhd and Σhd are the parameters of the learned dis-
tribution, and µt and Σt are the parameters of the test data
distribution.

The latent distance metric computes the distance be-
tween the latent representation and a reference point in the
latent space. The reference point is obtained by averaging
the latent representation of pristine images in each dataset.
This metric reflects the quality deviation of the test image
from the pristine quality at the inference stage. To sum-
marise, the second stage permits unsupervised BIQA based
on the learned encoder and latent space representation of
pristine images without relying on subjective MOS.

3.3. Implementation Details

In this study, we investigated the combinations of VGG,
KLD, and discriminator loss to learn rich features based on
the reconstruction of pristine images. Pre-trained VGG-
19 network [3] was employed to extract the features from
the intermediate layers to calculate the VGG loss [16]. An
Adam optimizer with a learning rate of 0.001 and a batch
size of 8 was used to train CVAE-GAN. The implementa-
tions used PyTorch framework with RTX 2080 Ti and Tesla
V100 GPUs.

4. Experiments & Results
4.1. Datasets

It is to be noted that the training of the proposed frame-
work rely only on the pristine images, this permits the util-
isation of pristine images from multiple datasets. Specifi-
cally, we employed 140K pristine images from the KADIS
[19] dataset and 4744 pristine images from the Waterloo
exploration [26] dataset to learn the distribution of high-
quality image features.

The proposed framework was evaluated on LIVE [44],
CLIVE [8], FLIVE [43], KADID-10k [19], KonIQ-10k [15]

Figure 3. Correlation of latent distance metric with Mean
Opinion Score. (a) CLIVE dataset and (b) KonIQ dataset.

and SPAQ [7] datasets. Among these datasets, LIVE [44]
and KADID-10k [19] are legacy datasets containing syn-
thetic distortions. LIVE contains 779 distorted images gen-
erated from 29 reference images with five types of distor-
tion: JPEG compression, JPEG2000 compression, Gaus-
sian blur, Gaussian noise, and fast fading. KADID-10k [19]
contains 10,125 distorted images generated from 81 refer-
ence images with 25 types of distortion at five levels of
severity.

KonIQ-10k [15], CLIVE [8], FLIVE [43] and SPAQ [7]
are ‘In the Wild’ datasets containing authentic distortions.
The KonIQ-10k [15] dataset consists of 10,073 natural im-
ages and is rated by 1,459 human observers using a crowd-
sourcing platform. CLIVE [8] consists of 1,162 natural im-
ages and FLIVE contains 982 images with different dis-
tortion types such as JPEG compression, Gaussian blur,
white noise, and bit error. The SPAQ [7] dataset consists of
11,125 smartphone-captured natural images rated by 4,876
observers. In the KonIQ-10k and SPAQ datasets, the subjec-
tive scores are generated using an absolute category rating
(ACR) method and then converted to MOS. In contrast, dis-
torted images in the LIVE dataset are scored using a double-
stimulus continuous quality scale (DSCQS) method.

4.2. Results

In this subsection, we firstly show the comparative
analysis with state-of-the-art BIQA methods on different
datasets. To highlight that the proposed framework is un-
constrained with respect to specific distortion types, an ad-
ditional comparative analysis was also conducted with dif-
ferent distortions. Lastly, ablation studies are included to
show the contribution of quality metrics and loss functions
in our proposed framework. The proposed framework was
evaluated on IQA metrics (1) SRCC [46] and (2) PLCC
[37]. These metrics measure the correlation between the
predicted quality scores i.e. the latent distance metric (in
our study) and MOS.

4.2.1 Comparative analysis on Benchmark Datasets

This analysis was conducted on 5 datasets: LiVE [44]
KADID-10K [19], CLIVE [8], SPAQ [7] and KonIQ-10k
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Table 1. Comparative analysis of the proposed framework with state-of-the-art BIQA models based on median SRCC and PLCC across
ten sessions. ’*’ denotes the values reported in the original paper, BRISQUE [33] and CORNIA [56] results are reported from

CONTRIQUE [31], remaining results are from LIQE [63].

Dataset LIVE [44] KADID-10k [19] CLIVE [8] KonIQ-10k [15] SPAQ [7]
Methods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC
NIQE [34] 0.908 0.904 0.389 0.442 0.446 0.507 0.415 0.438 0.697 0.685
ILNIQE [59] 0.887 0.894 0.565 0.611 0.469 0.518 0.509 0.534 0.719 0.654
Ma19 [29] 0.922 0.923 0.465 0.501 0.336 0.405 0.360 0.398 - -
BRISQUE [33] 0.939 0.935 0.528 0.567 0.608 0.629 0.665 0.681 0.809 0.817
CORNIA [56] 0.947 0.950 0.516 0.558 0.629 0.671 0.780 0.795 0.709 0.725
CONTRIQUE* [31] 0.960 0.961 0.934 0.937 0.845 0.857 0.894 0.906 0.914 0.919
PaQ2PiQ [57] 0.544 0.558 0.403 0.448 0.732 0.755 0.722 0.716 - -
KonCept [15] 0.673 0.619 0.503 0.515 0.778 0.799 0.911 0.924 - -
MUSIQ [18] 0.837 0.818 0.572 0.584 0.785 0.828 0.915 0.937 0.917 0.921
HyperIQA [47] 0.966 0.968 0.872 0.869 0.855 0.878 0.900 0.915 0.915 0.918
TreS [10] 0.965 0.963 0.881 0.879 0.846 0.877 0.907 0.924 - -
UNIQUE [61] 0.961 0.952 0.884 0.885 0.854 0.884 0.895 0.900 - -
LIQE* [63] 0.970 0.951 0.930 0.931 0.904 0.910 0.919 0.908 - -
Re-IQA* [42] 0.970 0.971 - - 0.840 0.854 0.914 0.932 - -
QPT-ResNet50* [67] 0.610 0.677 - - 0.894 0.914 0.927 0.941 0.925 0.927
Proposed 0.976 0.970 0.936 0.941 0.862 0.871 0.909 0.921 0.931 0.942

[15]. Specifically, the proposed framework was evaluated
on all five datasets across ten sessions and the median
SRCC and PLCC values are reported in Table 1. Among
the selected BIQA methods: NIQE [34], ILNIQE [59],
and Ma19 [29] are unsupervised/opinion unaware methods
whereas the remaining methods belong to supervised BIQA
paradigm. For comparison, we used SRCC and PLCC val-
ues of the state-of-the-art models either from [63] or from
the original paper.

It is evident in Table 1, that the performance of opinion-
unaware methods varies across all datasets. Similarly, su-
pervised BIQA methods trained on large dataset or a com-
bination of datasets do not show generalized performance
on datasets with synthetic and authentic distortions. In
contrast, the proposed framework equipped with an effi-
cient training strategy i.e. trained on a large pristine image
dataset outperforms opinion-unaware methods on both au-
thentic distortions and synthetic distortions. In comparison
with other supervised methods that either rely on opinion
scores at some stage or are trained with both distorted im-
ages and the corresponding pristine images, we show com-
parable performance. Thus, highlighting the effectiveness
of the training paradigm to learn quality-aware features and
its generalisation applicability on both authentic and syn-
thetic noise.

4.2.2 Comparative analysis on Different Distortions

We also conducted the performance evaluation of our
framework with different distortion types namely, “White
Noise”, “Gaussian Blur”, “JPEG2000 compression”, JPEG

Figure 4. t-SNE visualisation of the latent representations from
LIVE [44] dataset.

compression, and “Bit Errors in JPEG2000 Stream” from
LIVE [44]. The performance is contrasted with opinion-
unaware methods: NIQE [34], QAC [54], and IL-NIQE
[59] based on SRCC evaluation metric. This quantitative
evaluation is shown in Table 2 and qualitative evaluation
on various distortion types is depicted in Figure 4. Figure
4 highlights the contrast between latent representations of
differently distorted images.

To summarise, the aforementioned comparative analysis
show that the proposed framework can handle diverse and
complex distortions in natural images for image quality as-
sessment. To accomplish this task, the learned compact and
regularised latent representation encodes the quality-related
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Table 2. Comparative analysis of the proposed framework with state-of-the-art opinion-unaware BIQA methods based on SRCC metric.

Distortion types NIQE [34] QAC [54] IL-NIQE [59] Proposed
White Noise 0.9718 0.9511 0.9807 0.9885
Gaussian Blur 0.9328 0.9134 0.9153 0.9516
JPEG2000 compression 0.9186 0.8621 0.8939 0.9234
JPEG compression 0.9412 0.9362 0.9418 0.9618
Bit Errors in JPEG2000 Stream 0.8635 0.8231 0.8327 0.8961

Table 3. Ablation study with respect to Training Loss. Median SRCC and PLCC across ten sessions are reported.

Dataset LIVE [44] KADID-10K [19] CLIVE [8] KonIQ-10K [15] SPAQ [7]
Methods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

MSE + KLD 0.853 0.892 0.817 0.824 0.719 0.791 0.723 0.868 0.863 0.893
VGG + KLD 0.927 0.943 0.901 0.918 0.826 0.852 0.816 0.907 0.917 0.931
MSE + KLD+ Disc 0.951 0.957 0.916 0.919 0.847 0.859 0.854 0.915 0.921 0.937
VGG + KLD+ Disc 0.976 0.970 0.934 0.932 0.862 0.871 0.909 0.921 0.931 0.942

features of the pristine images. This facilitates the computa-
tion of image quality scores that are highly correlated with
subjective quality scores.

4.2.3 Ablation Study with respect to Training Loss

We conducted an ablation study to show the contribution of
the proposed combination of VGG loss, KLD loss, and Dis-
criminator loss. In this study, we first trained two variants
of CVAE, one uses the combination of Mean Squared Er-
ror loss and KLD loss while the other uses a combination
of VGG loss (perceptual loss) and KLD loss. The afore-
mentioned variants of CVAE-GAN was further trained on
an additional discriminator loss. We conducted the evalu-
ation across ten sessions and report the median SRCC and
PLCC in Table 3.

MSE loss encourages the CVAE to produce images with
minimum pixel-wise differences. However, blur and arti-
facts are present in the reconstructed images, resulting in
low SRCC and PLCC across all datasets. VGG loss cap-
tures the perceptual and semantic information of the im-
age, thus using the VGG loss instead of MSE loss gen-
erates realistic images that preserve the content and style
of the image. The effect of VGG loss is clearly shown in
the performance improvement of the CVAE for all datasets.
The use of discriminator loss introduces diversity and real-
ism to the reconstructed images that may not be captured
with VGG loss alone that is primarily focused on percep-
tual quality and mitigating the role of content in the im-
age. It is clear from Table 3 that the proposed combina-
tion of VGG loss, KLD loss, and discriminator loss pro-
vides the best performance on both synthetic and realis-
tic distortions. Figure 5 shows a qualitative comparison of
the generated pristine images with different loss functions.
In the figure, three sample images with different distortion
types are used to qualitatively and quantitatively compare
the reconstruction efficacy of different training paradigms.

For quantitative comparison of the reconstructed images,
PSNR and SSIM are employed. It is evident that the pro-
posed framework produces the best reconstruction results.
MSE+KLD loss tends to produce blurry images that lose
some details and textures. Whereas, VGG+KLD loss tends
to produce sharper images that preserve some details and
textures, but also introduce some artifacts and color shifts.
The VGG+KLD+Discriminator loss tends to produce real-
istic images with restored details and textures.

4.2.4 Ablation Study with respect to Quality Metric

Table 4 shows the performance evaluation of the proposed
framework wth respect to various image quality metrics.
Specifically, we compare the reconstruction error metric
(REM) and latent distance metric (LDM). It is to be noted
that in the first stage, the discriminator has been trained
to differentiate between low and high-quality images in an
adverserial manner. Thus, we also propose to utilise the
discriminator prediction score (DSM) [68] to quantify the
noise/degradation (i.e. quality). It is evident that LDM
achieves better performance than REM and DSM on all
datasets showing its efficacy to measure the image qual-
ity from the learned latent representation. Figure 3 shows
the correlation of latent distance metric computed from the
learned distribution with MOS.

5. Conclusion

In this study, we presented a novel training strategy
based on an adversarial variational autoencoder (CVAE-
GAN) for opinion unaware BIQA. Trained only on pris-
tine images, the proposed framework is unconstrained with
respect to specific distortion types, datasets, and MOS. A
designed combination of loss functions permits content-
agnostic and quality-aware feature learning. The deviation
from this learned feature distribution is utilised for unsuper-
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Table 4. Ablation study with respect to Quality Metric. Median SRCC and PLCC across ten sessions are reported.

Image quality metric KonIQ [15] CLIVE [8] FLIVE [43] SPAQ [7]
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

Reconstruction metric 0.681 0.795 0.653 0.741 0.419 0.387 0.852 0.873
Discriminator metric 0.883 0.902 0.847 0.823 0.536 0.491 0.919 0.907
Latent distance metric 0.909 0.921 0.862 0.871 0.571 0.638 0.931 0.942

Figure 5. Ablation study with respect to different loss functions. PSNR/SSIM metric is reported with the reconstructed image.

vised/opinion unaware BIQA method at the inference stage.
Based on the objective evaluation of the distorted im-

ages, we highlighted the superior performance of our pro-
posed framework compared to state-of-the-art unsupervised
BIQA on four authentically distorted benchmark datasets.
Thus, demonstrating the effectiveness of our proposed de-
sign with respect to loss and quality metrics. Our work
delves into utilising the learned latent space of widely avail-
able pristine image, permitting unsupervised/opinion aware
quality assessment applicable in real world scenarios.
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