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Abstract

In this work, we examine the potential application of
thermal cameras in improving perception capabilities in ad-
verse weather conditions like snow, night-time driving, and
haze, focusing on retaining the performance of Advanced
Driver Assistance Systems (ADAS), thus enhancing its func-
tionality and safety characteristics. While thermal sensors
offer the advantage of robust information capture in adverse
weather conditions, their integration is plagued with issues
surrounding poor feature capture in normal conditions, low
imaging resolution, and high sensor costs. We address the
former by formulating the problem definition as informa-
tion switching wherein thermal images are selected when
visible images are degraded. Furthermore, we consider a
single object detector for RGB and thermal images to en-
sure low latency. We propose utilizing a learnable projec-
tion function that translates the thermal image into RGB
color space, thus providing minimal modifications to the
underlying object detector. We address the issues of low
imaging resolution and cost by proposing a novel proce-
dure that combines super-resolution and object detection,
enabling the utilization of low-resolution and low-cost un-
cooled thermal imaging sensors. To ensure the complete
pipeline meets the actual deployment requirements of real-
time inference on resource-constrained devices, we intro-
duce a lightweight super-resolution algorithm, implement-
ing optimizations within the network structure followed by
global pruning. In addition, to improve the feature repre-
sentations extracted by lightweight encoders, we propose a
bidirectional feature pyramid network to enhance the fea-
ture representation. We demonstrate the efficacy of the pro-
posed mechanism through extensive simulated evaluations
on automotive datasets such as FLIR, KAIST, DENSE, and
Freiburg Thermal.

1. Introduction
Adverse weather conditions, such as fog, rain, snow, and

low illumination, pose significant challenges to the percep-
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Figure 1. Results on day and night images from FLIR [2] dataset.

tion stack of ADAS systems. Since these systems primarily
depend on RGB images, poor information captured in such
conditions results in the failure of underlying perception
tasks such as semantic segmentation [25, 56, 62, 66, 73, 85],
object detection [28, 37, 45, 55, 64, 67, 68, 86], depth es-
timation [80] and simultaneous localization and mapping
[26]. While general purpose image restoration algorithms
[38,54,62,74] can be leveraged to improve the image qual-
ity, their domain specific nature [63] restricts their practi-
cality.

To address this issue and improve driver situational
awareness under adverse weather conditions, we propose
the integration of thermal infrared (IR) sensors, as these re-
main mainly unaffected by external illumination and envi-
ronmental factors, making them an ideal solution. In con-
trast to traditional IR imaging systems that necessitate exter-
nal illumination sources [5], thermal imaging systems cap-
ture the inherent thermal radiation emitted by the surface
of objects. This characteristic is especially beneficial when
visual degradation hinders human and machine perception,
such as dealing with headlight flare during nighttime driv-
ing [16] or driving in foggy conditions [5]. Hence, these
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sensors can serve a crucial role in improving the reliability
of ADAS systems in adverse weather conditions.

Despite the inherent advantages of thermal imaging sen-
sors, their integration into the perception stack of vehicles
has been hindered by issues such as poor information cap-
ture in clear conditions, high sensor cost, and low image
resolution. Nevertheless, their value addition in terms of
safety makes their incorporation crucial. In contrast to
prior fusion-based approaches [59, 89, 91], we present a
novel switching mechanism that seamlessly integrates ther-
mal cameras into the perception stack with minimal modi-
fications. The proposed mechanism utilizes thermal images
as input to the underlying object detection algorithm when
RGB images are severely corrupted, ensuring robust per-
ception in challenging environmental conditions. To ensure
performance retention of the object detector towards change
in modalities (thermal and RGB), we propose a learnable
projection function that effectively transforms information
from the thermal domain into the RGB domain, preserv-
ing the performance of the underlying object detector while
facilitating efficient processing and decision-making within
the perception stack.

While high-performance thermal imaging sensors open
for consumer applications tend to be expensive, these are
still restricted to a maximum resolution of 640×512 pixels,
which is low compared to RGB sensors, where the maxi-
mum pixel resolution reaches up to 8MP. However, there
exist cheaper micro-thermal cameras [1] that can be used as
an alternative, albeit with a lower resolution of 160 × 120
pixels. Motivated by such sensors and their future appli-
cation in the automotive domain, we propose a software-
based framework for their integration to demonstrate ro-
bustness ensured in adverse weather conditions. However,
their reduced resolution poses a challenge to such integra-
tion. Thus, to overcome this, we propose a lightweight
super-resolution algorithm that provides a high-resolution
thermal image from its low-resolution counterpart. En-
abling the same thermal and RGB image resolution allows
us to utilize either for an underlying object detector. Since
such a framework is to be deployed in automotive applica-
tions, computer restrictions apply. While prior works utilize
a compute-efficient backbone for extracting features that are
used for object detection, the lightweight nature of such al-
gorithms results in reduced feature quality. Thus, to im-
prove the feature quality subsequently used for localizing
and classifying objects of interest, we propose modifica-
tion into the feature pyramid network wherein we propose
a compute efficient bi-directional FPN. Furthermore, we
utilize the designed object detection during the optimiza-
tion of the underlying super-resolution network to ensure
consistent super-resolution without adversarial patterns. To
evaluate the efficacy of the proposed mechanism, we con-
struct a segment-anything [35] extension for thermal im-

ages to generate pseudo training labels for several datasets
such as FLIR [2], KAIST [10], DENSE [5], and Freiburg
Thermal [75]. We elaborate upon the problem setting cor-
responding to these datasets in Sec. 3 and summarize our
methodologies as,

• We propose a switching mechanism that ensures dy-
namic utilization of thermal images in the event of
poor quality RGB images.

• To ensure compatibility between the thermal and RGB
modalities, we propose a projection function that trans-
forms the thermal image into compatible RGB space.

• To utilize low-cost, low-resolution thermal images, we
propose a lightweight super-resolution algorithm that
follows hardware-aware efficient design.

• To improve the feature information captured by
lightweight feature extraction backbones, we propose
a bi-directional feature pyramid network.

• We utilize the object detection algorithm during op-
timization to reduce adversarial patterns in the super-
resolved images.

• We propose an extension to the Segment-Anything
model for thermal images to generate 2D bounding
boxes for training and evaluation purposes.

2. Related Works
2.1. Thermal Sensors in Automotive Perception

In recent years, numerous approaches have been pro-
posed to leverage thermal information to enhance the per-
formance of perception algorithms in adverse weather and
illumination conditions. Some early works focused on im-
age fusion [88] or feature enhancement [72] to improve
object detection [3, 37, 40, 53] algorithms. Among the
early works, the KAIST dataset [10] was introduced to ex-
plore the influence of different sensor modalities, aiming
to achieve all-weather perception capabilities. Prior re-
searchers [88] focused on examining the possibility of fus-
ing RGB and Thermal images to ensure consistent perfor-
mance of object detection algorithms. Alternatively, [12]
evaluated utilizing GANs to convert thermal images into
RGB space for improved object detection performance was
explored. However, it was noted that directly fusing fea-
tures across modalities generates sub-optimal results. With
this motivation, different attention mechanisms [59, 89, 91]
were proposed to improve feature quality for optimal fu-
sion and detection. Alternatively, researchers also focused
on improving the attributes that can be extracted from ther-
mal images restricted to 2D object detection. Towards this
objective [19, 33, 75] focused on performing semantic seg-
mentation on thermal images without utilizing prior anno-
tated data by following the approach of unsupervised do-
main adaption.
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Figure 2. Overview of the proposed framework to ensure consistent object detection performance in events of adverse weather conditions.

2.2. Real-Time Object Detection
From the aspect of automotive deployment, real-time ob-

ject detection is desired with object detection landscape be-
ing divided into anchor [6, 23, 58, 65, 76, 77] based and an-
chor free [20, 24, 39, 87] categories. While anchor-based
object detectors were widely used, their reliance on ex-
pensive post-processing operation of non-maximum sup-
pression (NMS) resulted in performance bottlenecks. Cur-
rent approaches for real-time object detection focus on
lightweight encoder [27, 60, 78], improving feature repre-
sentation via feature pyramid network [22, 65], lightweight
object detection head [20, 87] and elimination of complex
post-processing non-maximum suppression. Recently end-
to-end object detectors based on transformer architecture
were proposed (DETR [7]), wherein the need for expen-
sive NMS was eliminated by using bipartite matching. Sub-
sequent versions of DETR focused on improving training
convergence [9, 51, 84, 94]. As current SoTA real-time ob-
ject detectors rely on lightweight feature extractors, we em-
phasize on improving the feature quality by proposing a
bi-directional feature enhancement network. While prior
works [32, 43, 71, 79, 93] proposed similar mechanisms, we
highlight and address the performance bottleneck arising
from inefficiencies of convolution-based multi-level feature
fusion.

2.3. Lightweight Super Resolution
The growing applications of super-resolution algorithms

resulted in increased interest in improving efficiency to de-
ploy such algorithms in real-time on resource-constrained
devices [4, 11, 15, 18, 29, 36, 41, 44, 81]. Towards this
objective, solutions such as reducing convolutional kernel
size [14], utilizing cascaded residual blocks [4]. To fur-
ther improve the efficiency of the underlying network ar-
chitecture, [29] proposed a multi-distillation block, which
was improved by [44] that utilized a residual feature dis-
tillation block. Recently [13] proposed expansion of opti-

mization space using a structural reparameterization tech-
nique wherein a multi-branch training network is simpli-
fied to a feed-forward inference network. Given these ef-
ficient super-resolution networks, remote sensing deploy-
ments were identified to improve object detection perfor-
mance on satellite imagery [17,31,52,57,61,83,90,95]. Un-
like prior works, we extend the scope of object-detection-
guided super-resolution to thermal images, with the deploy-
ment scenario focusing on improving driving decisions in
adverse weather conditions. Such a scenario requires real-
time inference on resource-constrained devices and is not
explored by prior works.

3. Methodology
3.1. Problem Overview

Given a low-resolution thermal image (ITLR) and an
aligned high-resolution RGB image (IRGB), the objective
is to leverage the thermal image in the event of poor RGB
quality to be used as input to the object detection algorithm.
Towards this, a light-weight super-resolution network is
proposed to upsample (x4) the thermal image (ITHR), which
is subsequently projected into RGB space for utilization by
the shared object detector.

3.2. Switching Functionality
The demand for lightweight and computationally effi-

cient solutions is paramount in the realm of image quality
assessment for optimal performance of object detection al-
gorithms. Addressing this need, we propose a pragmatic
approach to swiftly detect potential image degradation be-
fore integrating the input into the underlying object detec-
tion pipeline. Focusing on weather-induced corruptions, in-
cluding flare, snow, fog, rain, and low-light scenarios, we
observe that these often lead to over-saturation, creating re-
gions of intense brightness within the image. Capitalizing
on this insight, we introduce a straightforward yet effec-
tive strategy. By designing a basic filter, we identify dis-
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Figure 3. Overview of the proposed lightweight super resolution framework.

tinctive peaks in the intensity histogram of the RGB im-
age. These peaks, indicative of the predominant intensity
values, are averaged to determine the highest peak. Em-
ploying a thresholding mechanism (β1, β2), we can clas-
sify whether the given image has been compromised by
weather-induced degradation. Our proposed solution offers
a simple means of preemptively assessing image quality,
thus ensuring the robustness and accuracy of downstream
object detection tasks, even under challenging weather con-
ditions. We present the corresponding algorithm in Algo. 1
with qualitative samples in Appendix-A of supplementary.
From empirical evaluation we fix β1 and β2 to 180 and 20
respectively.

Algorithm 1 Weather Degradation Identification

1: Input← RGB image
2: Convert RGB image to grayscale using luminance con-

version.
3: Apply median filter to reduce noise
4: Compute image intensity histogram
5: Find the peaks in the histogram
6: Sort the peaks in ascending order
7: Compute the average intensity value of the highest peak
8: Set a threshold for weather (β1) and Illumination

degradation β2

9: if average intensity value ≥ β1 then
10: Return→Weather Degradation
11: else if average intensity value ≤ β2 then
12: Return→ Illumination Degradation
13: else
14: Return→ No Significant Weather Degradation
15: end if

3.3. Light-Weight Super Resolution
Given the presence of weather degradation affect-

ing RGB image quality, we perform lightweight super-
resolution for the thermal image. We adopt a two-fold strat-

egy to build upon the insights drawn from [48], which un-
derscored the direct correlation between deep learning net-
work inference speed and activation volume. Initially, we
streamline the computational load of the super-resolution
network by tactically downsampling the input image across
the channel dimension through strided convolution opera-
tions. This strategic spatial compression enhances compu-
tational efficiency and serves as a precursor for our subse-
quent innovations. Recognizing the inherent ill-posed na-
ture of low-resolution super-resolution problems [47–49],
wherein multiple high-resolution solutions coexist, we har-
ness the prowess of transformer-based super-resolution ar-
chitectures for adeptly capturing intricate non-local feature
correlations.

Nonetheless, the computational demands of transformer
models are notorious, largely due to the quadratic complex-
ity stemming from self-attention mechanisms. Addressing
this hurdle, we introduce a novel convolution-based alter-
native to conventional self-attention. This innovative ap-
proach facilitates the extraction of multi-scale features that
subsequently undergo dynamic feature selection. This dy-
namic selection technique ensures the assimilation of non-
local feature interactions, which are then synergistically
augmented with the power of convolutional channel mixture
strategies [70]. This synergy enables the efficient extraction
of pertinent local features. Collectively, our lightweight yet
holistic framework emerges as a compelling solution for ro-
bust thermal image super-resolution under the complex in-
fluence of diverse weather conditions while simultaneously
adhering to the imperative of computational efficiency for
real-world applications.

In addressing the crucial need for capturing long-range
dependencies while circumventing the computational chal-
lenges posed by self-attention mechanisms, we present
an innovative solution rooted in feature pyramid networks
(FPNs) tailored to cater to diverse scales of contextual in-
formation. Our approach entails a multi-step process that
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effectively marries global and local feature integration. To
elaborate, we kickstart the process by constructing a robust
FPN architecture leveraging channel splitting techniques,
thereby facilitating the extraction of multi-scale features
across four distinct scales (1, 1/2, 1.4, and 1/8). These di-
verse scale-specific features are then refined through a ju-
dicious combination of operations that balance information
preservation and computational efficiency.

In particular, a 3×3 depth-wise convolution is a pivotal
element, allowing us to channel the extracted features into a
transformative phase. This is followed by an adaptive near-
est interpolation to homogenize feature dimensions across
the scales. To amplify the richness of the fused features, we
employ a refined 1×1 convolution, imparting the necessary
enhancement while preserving the computational economy
paramount for real-world applicability. Significantly, our
approach incorporates a GELU activation function, acting
as an enabler for introducing non-linearity, thereby foster-
ing the intricate representations that are quintessential for
robust feature extraction. This holistic methodology yields
a feature-rich representation that encapsulates global con-
text and fine-grained local information, all while circum-
venting the traditionally associated quadratic complexities
of the self-attention mechanism.

We replace the standard feed-forward layer with a convo-
lutional channel mixer [70] to enhance further the local spa-
tial modeling within the modified transformer block. Un-
like prior works that proposed utilizing 1×1 convolutions or
fully connected layer, the alternative mechanism uses 3×3
convolutions to expand features across channel dimensions
followed by mixing operation. Finally, 1×1 convolution
is applied to compress the feature space. We present an
overview of proposed super-resolution algorithm in Fig. 3.

3.4. Learnable Projection Function
In the realm of super-resolution for thermal images, we

confront the formidable challenge of executing robust ob-
ject detection tasks while treading lightly on the computa-
tional front. Prior endeavors in this domain have typically
resorted to employing distinct object detectors tailored to
different modalities or adopting a concatenation strategy
that combines RGB and thermal imagery. However, we
steer our approach in a different direction. We propose a so-
lution to integrate thermal imagery into the object detection
pipeline seamlessly. We have introduced a learnable projec-
tion function that orchestrates the transformation of thermal
image statistics into a format that seamlessly aligns with
the RGB space. This operation is grounded in channel-wise
mean-variance transfer. Mathematically, this novel projec-
tion is succinctly expressed as:

I
R̂GB

=
ITHR − µIT

HR

σIT
HR

· σ + µ (1)

here ITHR represents the input high resolution thermal
image, while µIT

HR
and σIT

HR
correspond to its mean and

standard deviation, respectively. For each channel in the R,
G, B space σ, µ are learnable parameters. To ensure that op-
timizing these parameters does not break the training cycle
due to boundary conditions when σ = 0 we include a fixed
bias of 1e-3.

The resultant I
R̂GB

is an image that faithfully encapsu-
lates the thermal characteristics within the RGB domain. By
performing this translation in statistics, we pave the way for
employing a single, unified object detector—a detector that
remains invariant to the input modality. This groundbreak-
ing approach not only simplifies the computational com-
plexity but also elevates the robustness and versatility of our
object detection system.

3.5. Bi-Directional Feature Pyramid Network
We propose modifications within the feature pyramid

network to improve the feature representation within the
single-stage object detectors while requiring less computa-
tion. Specifically, we propose performing 1×1 convolution
on multi-scale features before upsampling, resulting in the
same output resolution as traditional FPN while consuming
fewer parameters and floating point operations. Second, we
refine the multi-scale features using group-wise 1×1 convo-
lution. Finally, instead of using multi-scale features for per-
forming object detection, following prior real-time object
detection algorithms [20, 23, 24, 50], we use the aggregated
feature map to compute bounding box for objects of inter-
est. We refer to this mechanism as a bi-directional feature
pyramid network and present an overview in Fig. 4.

Feature 
Extractor

1x1

1x1

1x1

1x1

x2

x2

x2

Object 
Detector 

Head

1x1
1x1
1x1
1x1

x2
x4
x2

Figure 4. Overview of the proposed bi-directional feature pyramid
network.

3.6. Training Mechanism
We follow a three-stage training pipeline wherein we

train the object detector first on RGB images from the
FLIR dataset while integrating the proposed bi-directional
FPN. Since FPN is a common component within SoTA real-
time object detectors, it can be integrated easily within any
framework. For our experiments, we consider RTMDet [50]
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built on over mmdetection [8]. We train the aforemen-
tioned object detection using AdamW [34] (β1 = 0.9, β2 =
0.999) optimizer with a learning rate of 4e−3 and a weight
decay of 0.05 following a cosine annealing [46] learning
rate strategy for 300 epochs at an input resolution of 640 ×
512.

Secondly, we train the underlying super-resolution algo-
rithm alongside the projection function parameters while
keeping the object detector fixed. For these settings, we
train for 1000 epochs with a learning rate of 1e−3 adjusted
via cosine annealing [46] to 1e−5 and ADAM [34] opti-
mizer (β1 = 0.9, β2 = 0.999). For loss computation,
we follow prior works and utilize a combination of L1 and
weighted FFT loss [64] following,

L =||SR(ITLR)− ITHR||1+
λ ∗ ||FFT (SR(ITLR))− FFT (ITHR)||1

Here λ represents the weight parameter and is fixed to
0.1 based on empirical evaluation. Finally, we train the
complete framework for 500 epochs using a mix of RGB
and Thermal images from the FLIR dataset with a learning
rate of 1e−5 adjusted via cosine annealing to 1e−7 using
ADAM optimizer and combine the loss function for object
detection and super-resolution.

4. Experimental Evaluation
4.1. Datasets and Evaluation Metrics

For our experiments, we use publicly available datasets
such as FLIR [2], KAIST [10], DENSE [5], and Freiburg
Thermal [75]. Among these, the FLIR dataset stands out as
a particularly comprehensive benchmark, boasting a diverse
array of 15 distinct classes and a voluminous dataset encom-
passing 9711 thermal images and 9233 RGB images, each
boasting a resolution of 640 × 512. In contrast, the KAIST
dataset offers annotations specifically tailored to pedestri-
ans, a feature that sets it apart. To fortify our experimen-
tal setup, we augment the KAIST, DENSE, and Freiburg
Thermal datasets to incorporate an expanded array of la-
bel attributes. This augmentation endeavors to encompass
a broader spectrum of objects, spanning categories such as
Persons, Bikes, Cars, Motorcycles, Buses, Trains, Trucks,
Traffic Lights, Fire Hydrants, Street Signs, Dogs, Skate-
boards, Strollers, Scooters, and Other Vehicles. We exe-
cute this augmentation by strategically combining the Seg-
ment Anything Model and the Domain-Adaptive Panop-
tic Segmentation technique. Our augmentation scheme’s
intricacies, alongside detailed insights into class distribu-
tion and resolution variations, are meticulously elaborated
upon in Appendix B of the supplementary materials. To
simulate the lower-resolution thermal imagery, we adhere
to established conventions by applying the bicubic down-
sampling algorithm, supplemented by noise utilizing noise
models presented in the SCUNet framework. We draw upon

the widely adopted PSNR and SSIM metrics for quantita-
tive performance assessments to gauge the quality of super-
resolution results. Additionally, to assess object detection
performance, we rely on the mAP (@0.50 IoU) metric,
renowned for its comprehensive evaluation of detection ef-
ficacy.
4.2. Comparison with SoTA : Thermal Super Res-

olution

We perform comprehensive evaluation encompassing
both qualitative performance assessment along side in-
vestigating the computational complexity measured us-
ing floating-point operations per second (FLOPs) and the
overall parameter count. Towards this evaluation, we
benchmark the performance of state-of-the-art (SOTA)
lightweight super-resolution methodologies for thermal su-
per resolution and summarize the quantitative results in Ta-
ble 2. To ensure fair evaluation, we retrain these algo-
rithms adhering to the hyperparameters stipulated by the
authors of corresponding papers. This retraining is con-
ducted leveraging the low-resolution images generated by
the method delineated in Section 4.1. Based on the qualita-
tive and quantitative assessments, we conclude the proposed
super resolution algorithm to surpass SoTA performance
while relying on less computational resources in terms of
lower parameter count and reduced computational complex-
ity. Notably, our optimization strategy takes two distinct
paths: one relies solely on high-resolution thermal images,
while the other harnesses the synergistic insights provided
by the integrated object detector. In subsequent evaluation,
we distinguish these two optimization paths as ”Ours-I” and
”Ours-II,” respectively. An in-depth perusal of Table 2 un-
derscores the superiority of our proposed super-resolution
algorithm (Ours-I), surpassing the established ShuffleMixer
[69] while simultaneously maintaining a commendably lean
computational footprint and parameter requirement. In-
triguingly, we also observe a modest yet consistent perfor-
mance improvement when our super-resolution algorithm
is jointly optimized with the object detector. This improve-
ment can be attributed to the introducing of a systematic
bias from the object detector, thereby endowing the super-
resolution algorithm with improved structural precision. It
is worth noting that this introduction of bias is not indica-
tive of dataset leakage, as both the object detector and the
super-resolution algorithm are trained on the same training
dataset, ensuring a uniform and equitable training environ-
ment. For completeness, we summarize performance when
using SoTA super resolution trained alongside object detec-
tion mechanism following proposed mechanism in Tab. 1.

4.3. Comparison with State-of-the-Art: Real-Time
Object Detection

To evaluate the performance of our real-time object de-
tection baseline and its variants enhanced with our proposed

7476



Input GT Bicubic FSRCNN

CARN EDSR IMDN PAN

EFDN ShuffleMixer Ours-I Ours-II

Figure 5. Qualitative performance evaluation of SoTA super-resolution algorithms retrained on FLIR dataset [2]

bi-directional feature pyramid network, we conducted com-
prehensive comparisons. We extended these object detec-
tion algorithms by seamlessly integrating them with our
super-resolution algorithm, as detailed in Appendix-D of
our supplementary materials. Our primary focus was on
compact versions of established frameworks, specifically
RTMDet [50] and YOLOX [21]. Our evaluation involved
a meticulous analysis, and the quantitative results are pro-
vided in Table 3. Throughout this evaluation, our training
process adhered closely to the prescribed methodologies of
the original frameworks, maintaining the specified hyper-
parameters. Notably, when training with thermal images,
we adjusted the number of input channels to a single en-
tity. We observed a significant performance improvement
for both RTMDet and YOLOX, affirming the effectiveness
of our proposed enhancements. Importantly, this perfor-
mance boost was achieved without compromising the ef-
ficient allocation of parameters and computational opera-
tions. Our empirical investigation underscores the enduring
potential of our enhancements, making them versatile tools
capable of delivering robust object detection results in both
RGB and thermal imaging domains.

4.4. Ablation Studies

4.4.1 Influence of modality change

A systematic exploration into the profound implications of
modality alterations on the foundational object detection
paradigm underscores the crux of our analysis. This exten-

Table 1. Influence of integrating object detection algorithm
(YOLOX-tiny detection) during optimization on performance
of SoTA super resolution algorithms using DENSE and FLIR
datasets.

SR-Method DENSE FLIR FLIR-Thermal Detection
Bicubic 25.15 / 0.21 25.92 / 0.70 47.28
FSRCNN [14] 25.73 / 0.65 26.97 / 0.73 48.18
CARN [4] 25.56 / 0.71 26.45 / 0.77 49.51
EDSR [42] 25.40 / 0.75 25.98 / 0.78 49.57
IMDN [30] 25.07 / 0.66 25.75 / 0.77 49.82
PAN [92] 25.46 / 0.76 26.01 / 0.79 49.24
EFDN [82] 26.02 / 0.72 26.28 / 0.73 49.22
ShuffleMixer [69] 26.04 / 0.77 26.36 / 0.78 48.98

Table 2. Quantitative performance of SoTA super resolution algo-
rithm for DENSE and FLIR datasets.

Method DENSE FLIR # Params(K) FLOPs(G)
PSNR / SSIM PSNR / SSIM

Bicubic 25.15 / 0.21 25.92 / 0.70 - -
FSRCNN [14] 25.54 / 0.64 26.46 / 0.70 12 5
CARN [4] 25.47 / 0.61 26.44 / 0.70 1503 87
EDSR [42] 25.31 / 0.66 25.97 / 0.70 1498 107
IMDN [30] 24.96 / 0.65 25.69 / 0.69 695 39
PAN [92] 25.39 / 0.66 26.01 / 0.70 257 21
EFDN [82] 25.95 / 0.21 26.26 / 0.70 1051 41
ShuffleMixer [69] 26.18 / 0.65 26.52 / 0.72 398 28
Ours-I 26.24 / 0.62 26.48 / 0.72 220 12
Ours-II 26.95 / 0.67 27.16 / 0.75 220 12

sive inquiry is undertaken by scrutinizing the performance
of an RGB image-oriented object detector when confronted
with thermal images and vice versa. Our investigation is
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Figure 6. Qualitative examples demonstrating change in input
modality on pretrained object detection algorithm.

meticulously carried out to evaluate the impact on detection
capabilities, which is pivotal for understanding the interplay
between different sensory modalities. As part of this anal-
ysis, we venture into the domain of thermal imaging, facil-
itating the translation of single-channel thermal images to
RGB space through channel-wise duplication. While ne-
cessitated by input dimension compatibility, this approach
yields a marginal mAP of 26.70, starkly contrasting with
the baseline performance benchmark of 70.91.

Table 3. Quantitative performance of SoTA real time object detec-
tion algorithms on FLIR dataset.

Method FLIR-RGB FLIR-Thermal FLOPs (G) # Params (M)
YOLOX-tiny [21] 58.51 57.08 6.3 4.9
RTMDET-tiny [50] 67.83 67.19 7.8 4.3
YOLOX-tiny-Ours 61.29 60.59 6.1 4.6
RTMDET-tiny-Ours 70.91 69.84 7.2 4.0

Conversely, we delve into the consequences of deploy-
ing RGB images as input for a thermal image-trained ob-
ject detector. This pursuit entails converting RGB images to
grayscale before inferencing them using the object detection
algorithm. This approach manifests a corresponding map of
32.14, diverging remarkably from the baseline performance
of 69.84. Fig. 6 encapsulates the crux of these explorations
in a succinct visual representation. These profound observa-
tions unveil that modality transition instigates a precipitous
decline in detection performance, echoing the underlying
incompatibility intrinsic to the image space. In response
to this foundational challenge, we present a novel solution

that reflects our proposed methodology. As a testament to
the robustness and efficacy of this mechanism, we achieved
an outstanding baseline mAP of 29.41 across the compre-
hensive FLIR dataset. This performance boost is accompa-
nied by a tangible enhancement in detection confidence and
the compactness of bounding boxes in the projected thermal
space, a revelation underscored through a meticulous eval-
uation of qualitative outcomes. For the sake of comprehen-
siveness, we augment our discourse by providing additional
insights within Appendix C of the supplementary materials.
We provide qualitative example of conversion of thermal
image to RGB image using proposed projection function in
Fig. 7.

Thermal Input

Projected RGB Image

Figure 7. Conversion of thermal image (top) to RGB image (bot-
tom) compatible with object detector using the proposed projec-
tion function.

5. Conclusion
With the objective to retain performance of image based

perception systems in adverse weather and illumination
conditions, we design a framework integrating information
from a low-cost low-resolution thermal camera alongside
high resolution RGB image. In order to integrate thermal
image in adverse weather conditions, we first perform a
quality check for identification of saturated regions or low
illumination conditions. In event of poor image quality,
we utilize thermal image as the input for the object detec-
tion algorithm. Since the resolution and modality of ther-
mal image is different from RGB image, we incorporate a
lightweight super resolution network to upsample the ther-
mal image by a scale of 4. To address the modality change,
we propose a learnable projection function which maps the
super resolved thermal image into RGB space. Finally the
image is processed by a light weight object detection algo-
rithm to identify objects of interest. We perform extensive
studies to evaluate the performance of proposed mechanism
vis-a-vis combinations involving use of RGB or Thermal
images only and obtain superior results compared to using
either. Importantly, our approach offers computational effi-
ciency, making it suitable for real-time applications.
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