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Abstract

We present a two-stage mechanism for generic image
restoration in natural driving conditions, where multiple
non-linear degradations simultaneously impact perception
for humans and driving assistance systems. Our approach
overcomes the limitations of utilizing a single neural net-
work that incurs excessive computational overhead and
vields sub-optimal recovery. The proposed first stage com-
prises computationally inexpensive image processing oper-
ations applied at a patch level using a lightweight convo-
lutional neural network (CNN) that determines their inten-
sity of operation. This patch size is guided by the recep-
tive field of the CNN, allowing for dynamic restoration of
non-linear and non-homogeneous degradation profiles. The
second stage leverages a lightweight end-to-end neural net-
work functioning as an inpainting network. It identifies in-
adequately restored regions and leverages global semantic
and structural information to fill the affected areas. This ap-
proach enhances the restoration process by considering the
entire image and addresses the remainder of localized de-
ficiencies. In addition, we integrate dense perception tasks
such as semantic and depth estimation during the optimiza-
tion cycle to ensure restored images that are perceptually
pleasing and conducive for downstream perception tasks.
Since datasets covering diverse degradation scenarios for
high- and low-level perception tasks are lacking, we uti-
lize a synthetic data augmentation technique to generate
non-homogeneous non-linear degradation profiles. Exper-
iments on images captured in adverse weather conditions
demonstrate the efficacy of our approach, yielding higher
perceptual quality in restored images and improved perfor-
mance in downstream perception tasks under adverse driv-
ing conditions. Importantly, our method offers computa-
tional efficiency compared to end-to-end image restoration
algorithms, making it suitable for real-time applications.

1. Introduction

Enhancing the perceptual quality of images affected by
natural weather degradation is paramount for human drivers
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hyunjin.yoo@forvia.com

Results from SegFormer-b5

Ground Truth Segmentation

Figure 1. Demonstration of multiple weather degradations affect-
ing the perceptual quality of an image at a local and global level.
(a) Simultaneous solar glare and motion blur, (b) global illumi-
nation variation with localized motion blur. Utilizing these im-
ages directly for perception tasks results in poor prediction qual-
ity, as shown for semantic segmentation using BDD100K trained
SegFormer-b5 [83] model.

and modern driving assistance systems. Consequently, ex-
tensive interest is shown in developing algorithms capa-
ble of recovering clear images from their degraded coun-
terparts. The current body of literature on image restora-
tion primarily focuses on degradation-specific approaches,
wherein early methods employed traditional computer vi-
sion algorithms to construct simple filters [50,59]. In con-
trast, state-of-the-art (SoTA) approaches rely on data-driven
techniques [31,53,79], leveraging the feature extraction and
representation capabilities of neural networks to restore de-
graded images. However, the degradation-specific nature
of these algorithms necessitates a preliminary identification
step, resulting in computationally expensive two-stage so-
lutions (identity, then restore). Thus, despite the evident
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need, practical deployment of such algorithms in the field
has been limited.

Recently, existing works [67,74] adopt an end-to-end ap-
proach towards image restoration by training an underly-
ing neural network to learn the mapping between images
affected by single or unknown degradation combinations
(motion blur, haze, rain, raindrop, and snow) and their clear
counterparts. However, their problem definition either con-
fines the input-output image pairs to static natural scenes
or requires the generation of synthetic weather augmenta-
tions to produce noisy images from clean ones. While the
former reduces the size of the training dataset and fails to
capture diverse scene interactions, the latter introduces a
performance gap [69,70] due to inaccuracies in degradation
modeling. Furthermore, these restoration algorithms have
demonstrated reduced performance when applied to images
captured from different sources having distinct camera re-
sponse functions compared to the training dataset. This
highlights three significant challenges that hinder the prac-
ticality of learning-based generic image restoration algo-
rithms: (1) the need to identify degradation profiles and cor-
responding restoration mechanisms, (2) sensitivity to dif-
ferent camera response functions and (3) inability to suffi-
ciently restore corrupted regions of interest for consistent
performance of performance algorithms. These challenges
become more pronounced in scenarios with multiple global
or local degradation profiles, as commonly encountered in
driving scenes (see Fig. 1).

While perceptual aesthetics of restored images are
desired from a human visual perception viewpoint, re-
searchers have demonstrated the detrimental effects of poor
image quality on downstream perception tasks such as fea-
ture matching [66], object detection [2, 60, 69,72, 81, 82],
semantic segmentation [19,42, 57], depth estimation [62,

, 77] and simultaneous localization and mapping [30].
Given that these tasks are crucial components in achieving
a comprehensive scene understanding capability for modern
driving assistance systems, it is desirable to have a general-
purpose image restoration algorithm that generates percep-
tually appealing results and enhances the performance of
downstream perception tasks. Thus, the ability to restore
naturally degraded images benefits both drivers and driving
assistance operations.

Considering the existence of degradations at global lev-
els (e.g., illumination, rain, snow) and local levels (e.g.,
motion blur, glares), utilizing a general-purpose CNN for
restoration would result in inefficient computations since
these operations are applied globally. To address this, we
propose a two-stage approach. In the first stage, we employ
computationally inexpensive image processing operations
that can be locally applied to remove mild to moderate lo-
cal degradations focusing on the illumination of the image,
such as brightness, contrast, saturation, and color variations.

In the second stage, a lightweight CNN is deployed to lever-
age global semantics and texture information, enabling the
recovery of occluded or missing details within an image.
Furthermore, as we employ the CNN for the inpainting task,
we identify mechanisms to reduce the computational foot-
print while maintaining consistent performance, resulting in
a lightweight and practically viable framework. Since there
is a lack of datasets capturing paired clean and degraded
images, we utilize a synthetic degradation mechanism that
utilizes instance maps combined with global illumination
variations [47] and flare generation [21]. This approach en-
sures the complete framework is general-purpose and can
simultaneously remove multiple degradations without ex-
cessive computational overhead.

We utilize perception and dense prediction metrics dur-
ing optimization to ensure that the restored images are visu-
ally pleasing and do not adversely affect downstream per-
ception tasks. This approach eliminates pixel variations
that may lead to model sensitivities. Previous approaches
[2,60,69,81,82] predominantly focused on coarse predic-
tion tasks such as object detection, which exhibit robustness
towards minor imperfections in the input. Consequently,
images restored by these approaches improve object de-
tector performance but may result in perceptually unpleas-
ant outputs. In contrast, dense prediction tasks are sensi-
tive to even minor imperfections, even within perceptually
pleasing images. Therefore, incorporating dense prediction
tasks during optimization ensures visually satisfying results
and consistent performance in downstream dense prediction
tasks.

Finally, we highlight that current image restoration tasks
suffer performance limitations when evaluated on out-of-
distribution datasets, as they are primarily optimized for
images captured by similar devices. To overcome this
limitation, we propose the utilization of multiple RGB-to-
RAW CNNs, which convert input RGB images into camera-
specific RAW format. Increasing the diversity of cam-
era image-signal-processing (ISP) during training enhances
the robustness of the proposed system to different image
sources. We summarize our contributions as,

* We propose a two-stage local-global image restoration
framework that disentangles image restoration into lo-
cal image enhancement and global image restoration.

* To ensure local degradation diversity within training
samples, we generate a combination of instance-aware
local and global degradations.

* To ensure improved perceptual quality and prediction
performance, we utilize dense prediction tasks during
optimization.

* We highlight that current image restoration solutions
are sensitive toward Camera ISP. Thus, we propose the
utilization of multiple learnable inverse-ISP pipelines
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to simulate the camera response functions of unique
cameras.

2. Related Works
2.1. Enhanced Perceptual Image Restoration

A longstanding goal within the computer vision com-
munity is the ability to recover images affected by natural
weather degradations such as fog, snow, rain, noise, and
motion blur. This has fuelled widespread research wherein
different degradation-specific architectures have been pro-
posed. Specifically, tasks such as dehazing [15, 53,73, 80,

], deblurring [ 13, 14,35,36,92,96], raindrop removal [52],
deraining [3,22,27,40,54,79,86,89], desnowing [5, | 1,12,

,44,63], and noise removal [ 1, 10,37,51,85,90,94] along-
side mechanisms to improve their robustness [68, 87, 91]
have been extensively studied. However, all leading ap-
proaches utilize an encoder-decoder architecture built using
a CNN or, more recently, transformers. The objective be-
hind such a framework design is to leverage mild/moderate
affected regions to estimate the structural and textural prop-
erties of significantly degraded regions. While this ap-
proach restores images that are pleasant to human eyes and
score well on perceptual metrics such as LPIPS [95] and
NIQE [48]. We observe these algorithms as sensitive to
camera response, limiting performance when deployed in
the wild.

2.2. Perception Guided Image Restoration

Alternatively, different works have proposed to utilize
the perception task within the training pipeline to ensure
consistent performance of high-level perception tasks such
as object detection [2,60,69,81,82]. Herein the perception
model is fixed, and the underlying restoration algorithm is
trained to enhance a degraded image to improve the detector
performance. While prior approaches utilize object detec-
tion as the auxiliary optimization task, its coarse prediction
nature makes object detectors less sensitive to minute pixel
imperfections. In addition, utilizing an object detector re-
duces the scope of restoration as the underlying restoration
algorithm is rewarded only to restore regions enclosing ob-
jects of interest while ignoring the remainder of the image.
Hence we contend that utilizing object detector results in lo-
calized restoration determined by the labels associated with
a given detector. Such a restoration mechanism is not un-
suitable for scenarios requiring complete scene information.

2.3. Influence of Camera ISP

The purpose of a camera ISP is to convert raw digital sig-
nals of the scene to human-perceivable RGB images. The
current camera ISP is designed manually and is primarily
proprietary. Recent advances in image restoration by image
restoration saw the development of a learning-based cam-

era ISP to generate RGB images end-to-end. Despite the
increasing attention, there is a lack of studies examining the
influence of camera ISP on image restoration and percep-
tion. This issue is exacerbated by the restricted nature of
the camera ISP, resulting in incorrect estimation of its in-
fluence on image restoration and perception as the building
blocks within a given camera sensor still need to be discov-
ered. Despite attempts to learn camera ISP in an end-to-end
manner [20,23,28] or as a multi-part approach wherein each
component is estimated such as tone-curve, white balance,
exposure correction [16]. Such solutions are not general-
izable as each distinct camera sensor has a unique ISP and
response function. Hence we propose learning multiple in-
verse camera ISP pipelines corresponding to unique camera
sensors. Given access to multiple camera ISP, we can easily
estimate its influence on image restoration and perception.

2.4. General Purpose Image Restoration

Recently several works have highlighted the need for
an end-to-end image restoration mechanism without requir-
ing prior degradation information. Notably, GIQE [67]
and TransWeather [74] are among the first works demon-
strating the viability of such approaches. However, these
approaches are computationally expensive and bound by
the degradations that can be restored accurately. Specifi-
cally, TransWeather is designed for restoring Fog, Rain, and
Snow, whereas GIQE can also restore low light and motion
blur. Despite this, such approaches are computationally ex-
pensive and cannot account for multiple weather degrada-
tions that can co-exist within an image, thereby limiting the
restoration quality. Furthermore, these approaches are unre-
stricted by the performance of prediction networks, thereby
limiting the scope of image restoration.

3. Proposed Methodology

3.1. Non-Homogeneous and Non-Linear Degrada-
tion Generation

In the absence of real datasets capturing diverse driving
conditions, there is a critical need for a mechanism to gen-
erate non-homogeneous and non-linear degradations. This
mechanism is crucial in training image restoration algo-
rithms to handle the complexities and variations encoun-
tered in real-world driving scenarios. By incorporating non-
homogeneous and non-linear degradations, the degradation
space is expanded, leading to a more holistic training ap-
proach and improved performance of the image restoration
algorithm. Exposing the algorithm to a comprehensive set
of non-homogeneous and non-linear degradations makes it
more robust and capable of handling complex real-world
scenarios. We construct the proposed mechanism by com-
bining Instance Guided Degradation Generation, Illumina-
tion Change, and Flare Modeling augmentations. While the
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Figure 2. Overview of the proposed two-stage mechanism for restoring images captured in natural driving conditions. For clarity we omit
different sub-operations and would redirect readers to corresponding subsections for further details.
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Figure 3. Illustration of the Non-Homogeneous and Non-Linear
Degradation Generation mechanism. For simplicity we show di-
rect application of different mechanism and not their multiple
combinations.

proposed mechanism is similar to [24] in scope, i.e., data
augmentation, the proposed mechanism focuses on gener-
ating realistic degradations to improve image restoration al-
gorithm’s performance. It considers the specific challenges
and requirements of the image restoration domain, such as
non-linearity and non-homogeneity in degradation distribu-
tion, to simulate realistic weather and environmental condi-
tions. On the other hand, [24] is a method primarily aimed
at augmenting datasets, for instance, segmentation tasks, by
manipulating instance placements and backgrounds without
explicitly modeling degradation effects. We illustrate the

proposed mechanism in Fig. 3 and present the algorithm in
Algo. 1.

3.1.1 Instance Guided Degradation Generation

We provide a summary of instance-guided degradation gen-
eration (IGDG), wherein a clear image (I¢) and an instance
map (M) are the inputs. The global degradation space is
defined by rain, snow, and fog, while the local degrada-
tion space is defined by motion blur, water droplets, and
noise augmentations generated using [33]. Given these in-
puts, the algorithm iterates (i) over each instance and ap-
plies degradation if the probability value (p) is greater than
0.5 using a randomly sampled degradation type (d). This
ensures the introduction of diverse and realistic degradation
patterns uniquely affecting each instance. In order to in-
troduce the non-linearity of the degradation, we use degra-
dation order (degradation_order) that specifies the num-
ber of iterations the degradation type would be applied. As
this is a data-preprocessing step, we limit the order of non-
linearity to 3 to ensure a compute-bound. The algorithm it-
erates over the selected degradation order to introduce non-
linearity of degradation. By allowing non-linear and non-
homogeneous degradations, our algorithm significantly ex-
pands the degradation space, enabling a more holistic train-
ing of image restoration algorithms.

3.1.2 Global Illumination Change

For synthesizing low-light images, our approach draws in-
spiration from the methodology proposed by [47] wherein
to emulate the characteristics of low-light conditions, a
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combination of both linear and gamma transformations, in-
volving three essential parameters: «, 3, and -, are utilized.
The transformation is defined as follows:
Iout - ﬁ X (Oé X ID)PY (1)
The parameters «, (3, and y are dynamically determined
during synthesis. We sample these parameters from a uni-
form distribution to introduce diversity and naturalness into
the generated images. Specifically, a is uniformly sampled
from the range [0.5,1], 8 from [0.5,1], and 7 from [1,5].
While this pipeline models the illumination changes, it does
not account for noise distribution, which we include to ob-
tain a faithful representation of low-light images via,
Iout = 5 X (Oé X ID)’Y + n (2)
The term 7) represents image noise arising from photon
shot noise, read noise, and quantization noise. Photon shot
noise is modeled using a Poisson distribution [4, 25, 29],
accounting for the randomness of photon detection. Read
noise, which accounts for long-tailed distributions, is mod-
eled with the Tukey lambda distribution [32]. Quantization
noise, resulting from limited discrete levels, is modeled us-
ing a zero-mean Gaussian distribution. By incorporating
these noise models into our image processing pipeline, we
accurately capture noise sources such as photon shot noise,
read noise, and quantization noise, ensuring the quality and
fidelity of the final image.
3.1.3 Flare Generation
To generate realistic flares, we adopt the pipeline proposed
by [21], which defines flares as a combination of scattering
and reflective components. This approach enables the syn-
thesis of authentic night-time flare effects. The paper gen-
erously provides access to a 5000 scattering flares and 2000
reflective flares dataset. These flares can be integrated into
the training pipeline to introduce flare artifacts. By incor-
porating a wide range of flares in the training process, we
ensure that our model can handle diverse degradation sce-
narios, resulting in a more robust and versatile flare synthe-
sis system. The complete degradation pipeline is illustrated
in Fig. 3.

3.2. Stage 1: Local Image Restoration

This section addresses the challenge of restoring cor-
rupted images that undergo non-linear localized degra-
dation, necessitating multiple image restoration opera-
tions. Although task-specific neural networks have shown
promise in image restoration, their computational require-
ments make them impractical for real-time applications
having multiple degradations. Moreover, these networks of-
ten perform global image restoration, including regions that
do not require any restoration or enhancement. To over-
come these limitations, we propose a novel approach for lo-
cal image restoration and enhancement using traditional im-
age processing operations, such as gamma correction, white

Algorithm 1 Non-Linear and Non-Homogeneous Degrada-
tion Generation

Require: Clear Input Image (1)
Require: Instance map (M > 1)
Ensure: [p: Generated degraded image
1: degradation_space = rain, snow, fog, motion blur,
droplet, illumination, noise

2. Ip + I¢

3: foriin M do

4: p < random(0,1)

5: d < random(degradation_space)

6: degradation_order < random(0, 3)
7: r < Extract_Instance(i)

8: if p > 0.5 then

9: for j in degradation_order do

10: Ip + Apply_Degradation(Ip,r,d)
11: end for

12: end if

13: end for

14: if p > 0.5 then

15: Ip + Apply_Illumination_Change(Ip,r,d)
16: end if

17: if p > 0.5 then

18: Ip + Apply_Flare_Modeling(Ip,r,d)

19: end if

20: return Ip

balance adjustment, noise removal, sharpening, tone map-
ping, fog removal, and pixel corruption correction. With an
emphasis on localized operations, our method efficiently re-
stores and enhances specific regions of interest, improving
image quality while avoiding unnecessary computational
overhead.

We utilize a pre-trained Convolutional Neural Network
(CNN) trained on ImageNet [56]. We adapt the architec-
ture by removing the final pooling layer and adjusting the
output channel dimension, defining the factor and weight
for each image processing operation using 1x1 convolution.
Here, factor refers to the intensity of the operation, and
weight refers to the contribution of an operation toward final
restoration. This modification allows us to perform patch-
wise restoration, determined by the receptive field of the
last convolutional layer. By removing the pooling layer, we
preserve semantic information within each patch, enabling
localized restoration capabilities for targeted enhancement
and restoration of specific image regions. The patch-wise
representation offers a comprehensive understanding of lo-
cal image features, facilitating precise restoration opera-
tions. We visually illustrate our proposed mechanism in Fig.
3, showcasing the modified CNN architecture and the re-
sulting patch-wise outputs from the last convolutional layer.
This approach empowers us to perform local-level opera-
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tions, preserving spatial information and achieving precise
control over the restoration process, ultimately enhancing
image quality. We would redirect the readers to Appendix-
A of supplementary for summarization of different image
processing operations.

3.3. Stage 2: Global Image Restoration

While localized operations can restore localized degra-
dations, there are certain limitations, such as (1) bound-
ary artifacts in the final restored image and (2) inadequate
restoration when the degradations cover an area beyond the
patch size, which is determined by the receptive field size
of the underlying CNN, leading to inaccurate restoration
results. To overcome these, we introduce a lightweight
UNet [55] architecture in the second stage of our approach.
This UNet is designed to recover and restore the partially
restored image from the first stage. Moreover, we lever-
age the pixel corruption score generated in the first stage
as an attention guidance mechanism, highlighting the areas
needing restoration. Unlike complex encoder-decoder net-
works used in global image restoration approaches, which
suffer from computational complexity and limited perfor-
mance in low-light conditions, our two-stage network pro-
vides a generic image restoration algorithm with improved
efficiency and restoration capabilities.

While a typical UNet architecture [55] can be utilized
for image restoration tasks, the computational footprint as-
sociated with it may restrict its deployment on resource-
constrained devices. To address this issue, we reexamine
the construction blocks of UNet, such as the convolutional
block and fusion layer, to develop a more compact solu-
tion. We introduce split convolutional (SC) blocks, which
are constructed using point-wise and depth-wise convolu-
tional layers, allowing us to capture diverse feature repre-
sentations in a gated manner. This modification reduces
the computational requirements and enables the network
to maintain a high level of accuracy. Additionally, we
adapt the SK (Selective Kernel) module, initially proposed
in [39], by incorporating dimensional reduction and expan-
sion. This modification reduces the parameter requirement
while leveraging the GPU’s parallelizability, reducing com-
putation time. Finally, in our approach, we input both the
pixel degradation map and the input image into this net-
work, enabling us to obtain a final restored image that is
globally coherent, with consistent object boundaries and re-
duced artifacts.

3.3.1 Split-Convolutional Block

Given an input feature (f;, € RMSHW) we first down-
sample the feature space using pixel unshuffle [65] opera-
tion (fous € RNACH//2W//2) The obtained feature map
is then normalized using RescaleNorm [73] and split along
channel dimension into two parts. One of the parts is pro-

cessed using pointwise convolution (1x 1) followed by sig-

moid activation, while the other half is processed by point-
wise and depthwise convolution (3 x3). Subsequently, these
parts are combined using an element-wise product. Thus,
the first part acts as a gating mechanism. We then perform
dimensional expansion followed by a pixel shuffling opera-
tion to upsample the aggregated feature map. We summa-
rize the complete illustration of the process in Fig. 4.
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Figure 4. Illustration of the proposed Split-Convolutional Block
as a Compute-Friendly alternative to standard convolutional layer.

3.3.2 Selective Kernel Fusion

Motivated by the Selective Kernel method proposed [39],
we redesign the concatenation operation used to combine
features from the encoder (f1) and decoder (f>) parts of the
network. The encoder and decoder features are rich in spa-
tial and semantic information, respectively. Thus, we pro-
pose a frequency selective fusion mechanism to effectively
combine these different feature representations. This mech-
anism selectively fuses low and high-frequency information
from the encoder and decoder. We employ the global aver-
age pooling operation to extract the low-frequency compo-
nents from a feature map, following the approach described
in Wang et al. [78]. However, our focus differs from theirs,
as we aim to perform frequency-based feature concatena-
tion. Given the input feature maps (f1, f2) to be fused, we
first extract the low-frequency components using average
pooling. Next, we subtract the low-frequency component
from the original feature map to obtain the high-frequency
component. In the frequency domain, we perform element-
wise addition of the feature maps, followed by channel at-
tention to identify relevant features within each channel. We
employ a gating mechanism that utilizes fully connected
layers to identify the relevant channels within the input fea-
ture maps. Subsequently, we fuse this channel attention
with the input features to amplify the relevant features. Fi-
nally, the amplified features are aggregated using element-
wise addition. We illustrate the modified Selective Kernel
Fusion mechanism in Figure 5.

3.4. Dense Perception for Optimization

The proposed two-stage image restoration mechanism
effectively recovers degraded images, producing visually
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Figure 5. Overview of the proposed Selective Kernel Fusion block.
Here we omit low and high frequency component extraction for
simplicity.

pleasing results. However, the enhanced images may in-
advertently introduce adversarial patterns that can degrade
the performance of perception algorithms. To mitigate this
issue, we delve into the analysis of error-causing areas,
specifically focusing on the Image Signal Processing (ISP)
pipeline [45] leading to Adversarial Restoration [69]. The
ISP can influence the performance of the restoration algo-
rithm as images captured from different camera sensors tend
to alter the performance due to the bias of restoration net-
works to a particular camera response function. We present
such examples in Appendix-B of the supplementary. Since
this adversarial restoration affects the underlying perception
tasks, we integrate such algorithms during the optimization
process of the restoration network to ensure consistent per-
formance. Furthermore, we introduce multiple camera re-
sponse functions to expand the color space so that the un-
derlying restoration network can restore images without any
adversarial pattern.

We use RGB — RAW image translation networks [17,

, 93] to obtain the camera response function of multi-
ple sensors via a reverse ISP process. Such an approach
allows us to capture camera-specific characteristics that
might be inaccessible due to the proprietary nature of ISP
or tolerances related to imaging sensors. Furthermore,
we consider dense perception tasks, deviating from com-
monly used coarse perception tasks. We highlight that
commonly used object detection algorithms are robust to-
wards localized degradations, and therefore, such restora-
tion algorithms cannot recover minute imperfections. On
the contrary, dense perception tasks such as segmentation
and depth estimation are sensitive toward minute local-
ized imperfections, which may not be visible. Hence, uti-
lization of such algorithms during optimization can pro-
vide benefits against generating adversarial patterns. With
this motivation, we integrate segmentation and depth esti-
mation as the dense prediction tasks. Since we utilize a
synthetic degradation generation mechanism, we can use
cityscapes pretrained segmentation and zero-shot depth es-
timation approach such as SegFormer [83] with Mix Trans-

former encoders (MiT) and ZoeDepth [7] for the generation
of ground truth. Specifically, using MiT-b5 and BEiT [6]
encoders, respectively, prioritizing accuracy over inference
speed. Furthermore, to reduce computational overhead dur-
ing the training stage, we use lightweight backbones such
as MiT-b0 and LeViT [26] for segmentation and depth esti-
mation, respectively.

3.5. Training Mechanism

The training process for our proposed framework follows
a stage-wise approach. In the first stage, we train the model
for 100 epochs using the Cityscapes dataset [18]. We ini-
tialize the learning rate to 2e-4 and employ the ADAM opti-
mizer with parameters 31 = 0.9 and 52 = 0.999 [34]. To con-
trol the learning rate, we use cosine annealing [46], starting
from 2e-4 and reducing it to 1e-6. The input image resolu-
tion is set to 512x512, and the batch size is set to 8. After
completing the first stage’s training, we jointly train both
networks for an additional 300 epochs. The hyperparame-
ter settings remain the same as in the first stage. To com-
pute the optimization function during training, we combine
several loss functions. These include L1 loss, Contrastive
loss [80], and SSIM (Structural Similarity Index Measure)
loss, which focuses on improving perceptual quality. Ad-
ditionally, we incorporate Segmentation and Depth losses,
which aim to enhance dense prediction quality. By com-
bining these various loss functions, our training addresses
both perceptual and dense prediction quality, resulting in a
robust and comprehensive optimization approach.

L =X x L1 + X3 ¥ Loops + A3 x Lssrm
+ )\4 * LSeg + )\5 * LDepth

Here Lgc, refers to the cross entropy loss and
Lpepn, refers to MSE loss.  The weighting factors
(A1, A2, A3, A4, \5) are empirically set to 1.0, 0.1, 10, 1, 1.

4. Experimental Evaluation
4.1. Datasets and Evaluation Metrics

For training purposes, we utilize the Cityscapes [!8]
datasets and generate the synthetic degradations follow-
ing the mechanisms proposed above. For comparison of
restoration quality, we utilize pretrained weights of prior
works GIQE [67], AirNet [38], Weather-Diffusion (WD)
[49] and evaluate performance on datasets capturing ad-
verse driving conditions such as ACDC [58], DENSE [&],
NuScenes [9] and Radiate [64] datasets. While these
datasets are meant for autonomous driving and provide ac-
curate depth estimation results, along with their semantic
extensions, they do not provide any reference clear ground
truth image. Thus for quantitative evaluation of image
restoration, we utilize no reference perceptual quality met-
rics such as NIQE [48] and CLIP-IQA [76]. In addition, we
utilize standard performance metrics for segmentation and
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Segmentation Results

Depth Estimation Results

Figure 6. Impact of different general purpose image restoration algorithms on foggy image from ACDC dataset. In addition, performance
of both segmentation and depth estimation algorithms using the restored images are included. Additional results and comparison with
SoTA dehazing algorithms is provided in Appendix-F of Supplementary. It should be noted that since reference image is captured in
degradation free conditions, there exists scene inconsistencies due to change in presence of dynamic objects.

depth estimation, i.e., mIOU (mean intersection over union)
and RMSE (root mean square error), respectively.

4.2. Comparison with SoTA

We conducted a qualitative comparison of our proposed
mechanism with several generic image restoration algo-
rithms, including GIQE [67], AirNet [38], and WD [49].
The results are summarized in Fig. 6, showcasing the vi-
sual performance comparison using retrained variants of
aforementioned algorithms using proposed mechanism to
ensure fair comparison. To further evaluate the impact of
the restored images on downstream perception tasks such
as depth estimation and semantic segmentation, we present
qualitative and quantitative results in Table 1.

Based on the qualitative and quantitative results, our ob-
servations are as follows: Firstly, poor weather conditions
have a detrimental effect on the performance of downstream
perception tasks, as the degraded images hinder the accu-
racy and reliability of these tasks. Secondly, while current
generic image restoration algorithms successfully restore
visually pleasing images, more than these restored images
are needed to improve the performance of pretrained algo-
rithms in downstream tasks s ignificantly. Merely achieving
visual quality does not guarantee enhanced performance in
perception tasks. Lastly, integrating perception tasks into
the optimization process improves the perceptual quality
of the restored images and the performance of downstream
perception tasks. By considering the specific requirements
and objectives of these tasks during the restoration process,
we can enhance the overall quality and effectiveness of the
restored images, leading to improved performance in subse-
quent perception tasks. We conduct further comparisons in

Appendix-C of supplementary and ablation in Appendix-D,
with additional qualitative results in Appendix-E.

Table 1. Quantitative performance of SoTA generic image restora-
tion algorithm and its implication on downstream perception tasks.

Method ACDC [58] DENSE [§]
NIQE / CLIP / mIOU |NIQE / CLIP-IQA / RMSE
Baseline 3.91/0.63/47.61 5.74/0.34 /1537

GridDehazeNet [43]

3.35/0.48/32.14

4.57/0.41/22.34

DeHamer [15] 3.68/0.46 /34.98 3.67/0.76/15.13
TridentNet [41] 4.4710.44138.42 5.7270.53/12.40
DA-Dehaze [61] 4.65/0.54/39.97 4.37/0.55/11.43
DIDH [71] 3.14/0.36/38.43 4.98/0.46/ 10.80
AECRNet [80] 2.46/0.25/39.15 2.65/0.54/11.03
GIQE [67] 2.85/0.59/53.42 3.49/0.51/10.67
AirNet [38] 2.99/0.77147.65 4.59/0.76 / 14.39
WD [49] 3.58/0.79 /42.42 421/0.68/12.96
Ours 2.99/0.61/55.97 3.54/0.51/10.95

5. Conclusion

Our two-stage mechanism for generic image restora-
tion in natural driving conditions addresses the limitations
of single neural network approaches. The first stage em-
ploys lightweight CNNs for dynamic restoration of non-
linear and non-homogeneous degradation profiles. The sec-
ond stage uses an inpainting network to fill inadequately
restored regions by considering global semantic and struc-
tural information. Integration of dense perception tasks en-
hances the perceptual quality of the restored images. We
utilize synthetic data augmentation to overcome the lack of
diverse degradation datasets. Experimental results on im-
ages captured in adverse weather conditions demonstrate
improved perceptual quality and downstream task perfor-
mance. Importantly, our approach offers computational ef-
ficiency, making it suitable for real-time applications.
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