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Abstract

Lipstick virtual try-on (VTO) experiences have become
widespread across the e-commerce sector and assist users
in eliminating the guesswork of shopping online. How-
ever, such experiences still lack in both realism and accu-
racy. In this work, we propose LipAT, a neural framework
that blends the strengths of Physics-Based Rendering (PBR)
and Neural Style Transfer (NST) approaches to directly ap-
ply lipstick onto face images given lipstick attributes (e.g.,
colour, finish type). LipAT consists of a physics aware neu-
ral lipstick application module (LAM) to apply lipstick on
face images given its attributes and Lipstick Refiner Module
(LRM) to improve the realism by refining the imperfections.
Unlike the NST approaches, LipAT allows precise and con-
trollable lipstick attribute preservation, without requiring
crude approximations and inference of various intertwined
environment factors (e.g., scene lighting, face structure etc)
involved in image generation that is required for accurate
PBR. We propose an experimental framework with quanti-
tative metrics to evaluate different desirable aspects of the
lipstick attribute driven try-on alongside user studies to fur-
ther validate our findings. Our results show that LipAT con-
siderably outperforms fully-automated PBR approaches in
preserving realism and the NST approaches in preserving
various lipstick attributes such as finish types.

1. Introduction
Throughout history, lipstick has been a go-to makeup

that instantly changes the appearance of people to make
them stand out and express their unique artistic style. With
the increasing size and the diversity of the global lipstick
market1, it is challenging to identify the well-suited lipstick
products for a particular face without physically trying it
at a cosmetic outlet. Since manually trying lipstick prod-
ucts is not always possible (e.g., during online purchases),
artificially applying lipstick to a face image has attracted

1https://www.alliedmarketresearch.com/lipstick-market

Figure 1. Results for lipstick virtual try-on with two lipstick prod-
ucts of the same colour (R=174, G=68, B=71) but different finish
types – matte (top row) and glossy (bottom row). Each row shows
the results by applying the lipstick attributes to the image in left
using three techniques: PBR approach in [30]; Swatch-based vari-
ant of NST approach in [37]; and the proposed approach in this
work (See Section 4.3 for more details about these techniques).

tremendous research interest in computer vision.
Our aim is to build a lipstick try-on framework that

works in a fully automated manner, and can be used with
face images captured on handheld devices, to accurately
render lipstick of specified type to the desirable region while
preserving its material properties (e.g. finish type, color).
The system should accommodate variations in scene spe-
cific (e.g. lighting condition) and user specific (e.g. face
structure, skin properties) factors while generating images,
should be easy to use and scalable to be used for a large
range of lipstick catalogues available on e-commerce sites.

Physics based rendering [13, 16, 17] presents itself as
a viable option due to the greater flexibility in control-
ling/manipulating scene, user and material specific proper-
ties. However, accurate image generation with PBR [16,17]
requires full knowledge myriads of factors (e.g., scene light-
ing, face structure etc) that influence generation process.
These factors are hard to control in the Virtual Try On
(VTO) setup and difficult to recover from images taken in
the wild. Thus, attempts to use PBR for try-ons rely on
crude approximations of the actual image formation pro-
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cess and are prone to render unrealistic images (see Fig. 1)
due to errors in estimating the parameters influencing the
rendering model via weak inference techniques [30].

Recent successes in neural network based implicit ren-
dering and conditional image generation have led to neural
style transfer (NST) as a promising approach for makeup
VTO [2,7,25,31,37]. Approaches which adapt NST [9,18],
focus solely on the problem of transferring the appearance
of lipstick from a reference face image to a target face im-
age. While NST’s adversarial training procedure bypasses
the requirement to explicitly reason about facial and scene
specific rendering parameters, this approach has two major
problems. First, such methods aim to learn (and preserve)
lipstick appearance as style purely through unpaired images
with and without lipstick. Due to the error in the decoupling
lipstick as style from content describing rest of the image,
they often end up transferring unwanted features like blem-
ish, wrinkles and at times fake specularities while ignoring
the target lighting condition during try-on (see Section 1 in
Supplementary Material for supporting examples). Second,
to facilitate VTO, these methods require large databases of
face images consisting of at least one image of a person
wearing each lipstick that we want to virtually try on –
making the try-on unusable for a large portion of any e-
commerce website’s lipstick collection.

To address the limitations of the existing approaches (see
Table 1), we propose LipAT, a novel neural framework for
Lipstick Attribute Transfer. LipAT artificially applies a
given lipstick product to a face image directly using lipstick
attributes by blending the strengths of physics-based ren-
dering approaches and neural lipstick transfer approaches.

The contributions of this work are to propose:
• A neural approach for virtually trying lipstick on nat-

ural face images by using lipstick material properties
(e.g., colour, finish type, opacity) as the sole input. All
neural modules in our method, except the discrimina-
tor in Section 3.2, are trained with a collection of real
face images without lipstick and a set of lipstick at-
tributes – which are readily available.

• A thorough experimental framework for evaluating
different aspects of the rendered images with lipstick
to address the lack of consistent evaluation scheme in
previous works. Our framework includes a novel vari-
ant of FID for measuring the realism, called Patch-
FID, which is empirically shown to be aligning with
human perception of realism.

We verify the superiority of the proposed approach quanti-
tatively and qualitatively in preserving realism and lipstick
attributes over both PBR and NST approaches.

2. Related Work
In this section, we review recent approaches on lipstick

simulation, which can be categorised into two: (1) PBR-

PBR NST LipAT

Robustness to wild images ✓ ✓
No manual intervention ✓ ✓
Lipstick attribute controllability ✓ ✓
Does not require reference face image ✓ ✓

Table 1. Comparison between PBR-based approaches, NST-based
approaches and LipAT (our approach).

based approaches; and (2) NST-based approaches.
Physics-based Rendering Approaches. These tech-

niques address the lipstick simulation problem from the
computer graphics perspective by incorporating the knowl-
edge from physics on the interaction of light with different
cosmetic attributes and facial skin. Thus, these approaches
typically involve many parameters to simulate the appear-
ance of various optical properties (e.g., roughness score, re-
flection intensity and light intensity). The studies in [16,17]
propose such a framework to quantify how various intrinsic
layers (i.e., albedo, diffuse shading and specular highlights)
are altered by applying a lipstick product using the physics-
based models such as Kubelka-Munk [14] and Torrance-
Sparrow [33] models. Despite the strong theoretical moti-
vation behind this approach, it comes with the drawback of
requiring a set of image pairs of the subjects with and with-
out lipstick in order to tune the hyper-parameters. In [30],
the face images are decomposed into different colour ranges
– i.e., shadows; mid tones; and highlights. The appearance
of lipstick attributes are simulated in each layer separately
using various image filters (e.g., shadow/highlight filter,
piecewise-linear intensity transformation filter). The works
in [13,20] adopt 3D meshes of the lips predicted using facial
key-points. The 3D meshes are used to incorporate texture
of the lipstick (e.g., glossiness) with the help of the esti-
mations of the environment reflections. Although these ap-
proaches yield high quality images, they involve parameters
that require careful tuning for each image separately. Thus,
it is challenging to fully automate these solutions. Also,
these approaches heavily rely on off-the-shelf solutions for
producing 3D meshes and for estimating environment light-
ing, thus, yield unrealistic results for some face images. In
contrast, our framework draws insights from previous PBR
approaches and relaxes their strong inductive biases in some
of the operations in a data-driven manner.

Neural Makeup Transfer Approaches. These ap-
proaches aim to transfer the lipstick style of a reference face
image to a different target image with the help of deep gen-
erative models. BeautyGlow [3] adopts Glow, deep genera-
tive model for transferring styles, to transfer makeup styles
between images. BeautyGAN [19] addressed the makeup
transfer and removal task by introducing a symmetric im-
age to image architecture with a global cycle consistence
loss. This work introduced local instance-level makeup loss
terms to preserve the style of the reference lipstick, which is
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Figure 2. Overview of LipAT, which consists of physics-motivated
lipstick application module and lipstick refiner module to simulate
realistic lipstick application using lipstick attributes.

consistently used in most of the subsequent works. Earlier
approaches are unable to simulate dramatic makeup styles.
CPM [25] and LADN [5] were introduced to address such
dramatic makeup styles. CPM adopts UV maps to align fa-
cial features of source and target faces. LADN proposes a
pseudo labelling approach to provide distant supervision for
transferring dramatic makeup styles with high-frequency
details. Nevertheless, these approaches do not explicitly ex-
ploit correspondence at the semantic component level (e.g.,
eyes, lips), thus, yield inconsistent results for different poses
and expressions. To address this limitation, most recent
works [8, 31, 37] adopt segmentation masks or facial key-
points to identify corresponding regions between the refer-
ence and the target images, which are explicitly exploited
when transferring makeup. Although these approaches can
be easily extendable for other makeup products such as
foundation and eye shadows, it has been found that these
approaches typically transfer unwanted details of the refer-
ence image to the target image such as shadows, wrinkles
and blemishes. In SOGAN [21], this issue was explored
up to some extent by proposing a shadow and occlusion
robust makeup transfer approach. Although this approach
handles shadows and occlusion, the generated images from
this approach are not realistic as the previous makeup trans-
fer approaches. Overall, these neural approaches require
the reference lipstick style on a face image – i.e., unable to
transfer lipstick using their attributes directly. To address
this research gap, the work in [12] proposed a technique to
virtually apply makeups using their colour attribute. How-
ever, this approach does not focus on preserving other lip-
stick attributes such as finish types. Our framework is par-
ticularly motivated by this research gap, which proposes a
neural framework to simulate face images with lipstick us-
ing lipstick attributes including complex attributes such as
finish types.

3. Proposed Framework

This work proposes the first neural approach for apply-
ing a lipstick on a given face image using the attributes of
the lipstick. We denote the output image of our approach

Figure 3. Overview of LipAT-LAM, which first decomposes the
given image I into its intrinsic components – diffuse D and specu-
lar S components, then updates S and D using the given roughness
score ar and base colour ac of the lipstick, respectively. LipAT-
LAM recomposes the output image Îa using the updated intrinsic
components (Sa and Da) and the lipstick opacity ao.

as Ia by applying a lipstick product a to a target face im-
age without lipstick I . As shown in Fig. 2, our frame-
work consists of two modules. The first module is Lipstick
Application Module (LipAT-LAM), a neural architecture to
apply lipstick to a face image in a physics-aware manner.
We denote the output of LipAT-LAM using a face-image
without lipstick I and a lipstick a as Îa. The architecture
of LipAT-LAM is explicitly designed to exploit the knowl-
edge motivated by geometry and reflectance models, which
is particularly important to preserve lipstick attributes such
as finish types. Unlike the existing PBR approaches, once
trained, this module transfers lipstick attributes without re-
quiring any manual tuning of parameters. However, this
module heavily relies on the off-the-shelf pretrained neural
blocks for face parsing [11] and specularity extraction [30].
This could make Îa unrealistic for some images. To ad-
dress this limitation, LipAT-LAM is followed by Lipstick
Refiner Module (LipAT-LRM). LipAT-LRM produces the
final image Ia using the output from LipAT-LAM Îa and I
as input. This module is learned to refine the potentially un-
realistic outputs from LipAT-LAM due to the imperfection
in off-the-shelf blocks in LipAT-LAM.

3.1. Lipstick Application Module (LipAT-LAM)

This module is learned to apply lipstick to a target face
image using lipstick attributes. This work characterises lip-
stick products using 3 attributes, namely: (1) ac – RGB val-
ues of the base colour; (2) ar ∈ [0, 1] – gloss roughness,
which controls the finish type of a lipstick product (e.g.,
ar = 0.7 for a matte lipstick); and (3) ao ∈ [0, 1] – makeup
opacity, which controls how strongly the lipstick is applied.

LipAT-LAM aims to keep the other parameters in con-
ventional rendering engines (e.g., scene lighting parame-
ters) consistent between I and Îa, while simulating the se-
lected parameters only on the lip area of I . To only update
the lip of the face image I , LipAT-LAM guides the lipstick
application process using a segmentation mask M I of the
lip region in I . This mask is produced using the off-the-
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Figure 4. Intrinsic decomposition of LipAT-LAM. Top row shows
an face image without lipstick I and the bottom row shows the
same lip after applying a glossy lipstick using LipAT-LAM.

shelf neural face parser [11]. With the help of M I , LipAT-
LAM simulates lipstick attributes as described below.

Following the dichromatic reflection model in [28],
LipAT-LAM first divides the target image I into two com-
ponents: diffuse (D) and specular (S) components, which
can be added together to reconstruct I = D + S. Here, S
represents the highlights of I and the body reflection D rep-
resents I with highlights removed. LipAT-LAM updates the
lip region of each component using the given attributes and
combines them to reconstruct the target image with lipstick
Îa. Following [30], we adopt the shadow/highlight image
filter in [30] to decompose the images as shown in Fig. 4.

3.1.1 Diffuse Component Update

Following [27, 30], we update the lip region of the diffuse
component D using the base colour of the given lipstick ac
in the perceptually uniform LAB colour space (see Section
10 in Supplementary Material for more details about LAB):

D̃a = LAB(D) + LAB(ac)−
∑

M I ⊙ LAB(D)/
∑

M I

D̂a = M I ⊙ LAB−1(D̃a) + (1−M I)⊙D (1)

where LAB(·) and LAB−1(·) are the colour conversion
functions for RGB-LAB and LAB-RGB respectively and
⊙ denotes elementwise multiplication.

3.1.2 Specular Highlight Update

To preserve the finish type of lipsticks – characterised
by roughness, the specular highlights should be updated
accordingly. Most previous works [13, 30] adopt either
gamma correction on specular highlights or a PBR engine.
The gamma correction-based techniques [30] can produce
highlights aligning with the specular highlights of the orig-
inal images, but requires manually tuning of γ for each im-
age to produce realistic results. In contrast, rendering-based
techniques [13] need to estimate the lighting profile of the
original image to produce realistic outputs. To bridge these
two research gaps, LipAT-LAM learns a conditional deep
generative model SC : (S, ar) → Sa parameterized us-
ing θSC , that accepts the specular highlight component of
the face image without lipstick S and the roughness score
of the lipstick ar and returns the updated specular highlight

Figure 5. Updated specular highlights for a given roughness score
value (0.7 for top row and 0.1 for bottom row) and the specular
highlights in the skin (left image in each row) using three different
methods: using a PBR engine; LipAT-LAM; and AR [30].

component Sa as the output. We adopt the conditional U-
Net architecture (see Section 2 in Supplementary Material)
proposed in [24] as SC as shown in Figure 3.

To learn SC such that it updates specular highlights for
a given roughness score without explicitly predicting scene
lighting as in PBR, we adopt two loss functions: (1) PBR-
based label reconstruction loss that aims to imitate the spec-
ular updates by a PBR engine in a synthetic rendering en-
vironment; and (2) gamma correction-based label recon-
struction loss that aims to learn the gamma correction-based
weak highlight updating operation [30] using real images.

LLAM = Lpbr recon + Lγ recon (2)

PBR-based label reconstruction loss. This loss
term focuses on correcting specular highlights realistically.
We adopt a synthetic dataset Dtrain

synthetic constructed using
PyVista2 physics-based rendering engine (see Section 4.1).
Dtrain

synthetic consists of tuples < Spbr, ar, S
a
pbr > where Spbr is

the specular highlight component of a face image without
lipstick (assuming skin roughness as 0.3 [16]) with an arbi-
trary lighting profile; ar is a roughness score; and Sa

pbr is the
specular highlight component after updating Spbr according
to ar. Dtrain

synthetic reflects accurate physics-aware specular up-
dates as shown in the second column in Fig. 5. We formu-
late our PBR-based label reconstruction loss to force SC
to update highlights in a physics-aware manner using the
instances in Dtrain

synthetic as follows:

Lpbr recon =
∑

<Spbr,ar,Sa
pbr>∈Dtrain

synthetic
||Sa

pbr − SC(Spbr, ar)||
(3)

Gamma correction-based label reconstruction loss.
Since Dtrain

synthetic is generated under synthetic scene lighting,
the images in Dtrain

synthetic may not reflect the lighting profile
in real-world face images. We empirically observed that
training SC only using Lpbr recon reduced generalization to
real-world face images. Thus, we introduce Lγ recon based

2https://docs.pyvista.org/index.html
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Figure 6. Overview of LipAT-LRM, which adopts SPADE-based
neural architecture to refine the output from LipAT-LAM Îa with
the help of the image features of I and Îa that are generated from
pre-trained VGG-19 encoder.

on the specular components extracted from real face images
in Dtrain

real , which consists of tuples < I, Iwl,a > including
unpaired face images without lipstick I , with lipstick Iwl
and an attribute vector a. Following [30], we produce weak
ground truth (denoted as Sa

γ ) for Sa of I in Dtrain
real for a given

ar using gamma correction as follows:

Sa
γ = 1− (1− S)γ ; where γ = x exp (−y · ar) (4)

After regressing using the images in Dtrain
synthetic, we set x =

2.42 and y = 1.55. Ideally, x and y should be manually
tuned for each image individually as it depends on the light-
ing profile of each image, thus, Sa

γ could be unrealistic for
some instances with fixed x and y values. However, the
strength of Sa

γ is its ability to preserve the lighting profile
of Sa in real images without explicitly estimating it. With
these pseudo labels from gamma correction, we formulate
our gamma-based label reconstruction loss as follows:

Lγ recon =
∑

<I,a>∈Dtrain
real

||Sa
γ − SC(S, ar)|| (5)

We learn θSC such that it minimizes Lpbr recon for the im-
ages in Dtrain

synthetic and Lγ recon for the images without lipstick
in Dtrain

real . As shown in Figure 5, the proposed neural specular
highlight correction approach can realistically incorporate
roughness score without manual intervention.

To construct the output of LipAT-LAM, Da and Sa

should be ideally blended using add blending (Da + Sa).
Following [30], we adopt screen blending instead, which is
an operation similar to add blending, but softer.

Ĩa = 1− (1−Da)⊙ (1− Sa) (6)

Subsequently, Îa is produced by alpha blending the lip
region of I and Ĩa using opacity ao as the blending strength:

Îa = M I ⊙ (ao · Ĩa + (1− ao) · I) + (1−M I)⊙ I (7)

3.2. Lipstick Refiner Module (LipAT-LRM)

The output from LipAT-LAM Îa could be unrealistic
for some examples due to two main reasons: (1) incorrect
placement of lipstick due to the imperfections in binary lip
masks M I , particularly around the edge of the lip; and (2)
unrealistic specularities in Îa that are not well-aligned with

I . Since the differences of the multi-scale image features
between I and Îa (e.g., edges) could be useful to identify
the aforementioned imperfections, LipAT-LRM refines Îa

with the help of the knowledge available in I (see Fig. 6).
LipAT-LRM first adopts pre-trained VGG-19 [29] to

encode I and Îa into multi-scale feature representations.
We denote the lth level features from the pre-trained net-
work for I and Îa as F l(I) and F l(Îa) respectively, with
l ∈ [1, 2, 3, 4]. Although LipAT-LRM may use any pre-
trained image encoders [4, 32] capable of producing multi-
resolution feature maps, we adopt VGG-19 due to its
proven [25, 37] ability to provide informative features and
to facilitate a fair comparison to other works [25, 37].

To refine Îa using F l(Îa) while conditioning on F l(I),
we adopt a neural architecture for refining images R :
(F (I), F (Îa)) → Ia, which consists of multiple SPatially-
Adaptive DE-normalization (SPADE) [26] blocks in cas-
cade and parameterised using θR. Unlike other image gen-
erative neural blocks [24, 35], SPADE can effectively con-
trol pixel-level and semantic-level refinements via spatially
adaptive normalization, which makes it ideal for region-
specific image augmentation tasks as ours (see Section 3
in Supplementary Material for more architectural details).

To learn θR, LipAT-LRM adopts three loss functions: (1)
cosmetic loss; (2) refine loss; and (3) adverserial loss.

LLRM = λcos ∗ Lcos + λref ∗ Lref + λadv ∗ Ladv (8)

where λcos(= 10), λref(= 10) and λadv(= 1) control the
weighting for each loss term, which were set by tuning.

Cosmetic Loss. This loss is proposed to preserve the
simulated appearance of lipstick by LipAT-LAM, which
was defined as L1 distance between the pixel values in the
lip region of Îa and Ia:

Lcos =
∑

<I,a>∈Dtrain
real

||M I ⊙ Ia −M I ⊙ Îa||1 (9)

Refine Loss. This loss is proposed to refine the imper-
fection of Îa using the knowledge in I . This is a edge-
preserving perceptual loss function, which combines the
mean-squared loss in the pre-trained feature space [37] and
mean gradient error [10] in the pixel space between I and
Ia to filter out unaligned edges and specularities.

Lref =
∑

<I,a>∈Dtrain
real

||F l(Ia)−F l(I)||1+||G(Ia)−G(I)||2
(10)

where G returns pixel-level gradients [10] for a given image
using a Sobel operator.

Adversarial Loss. This loss function is proposed to
generate natural looking images with high perceptual qual-
ity. Ladv adopts the least-square adversarial loss proposed
in [22] by utilizing discriminator H parameterised with Hθ

to classify real and fake images as follows:

Ladv =
∑

<I,Iwl,a>∈Dtrain
real

[H(Iwl)
2] + [1−H(Ia)2] (11)
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We learn θR by minimizing LLRM using the images
with lipstick, without lipstick and attribute vectors in Dtrain

real .
Here, Iwl denotes the images with lipstick in Dtrain

real , which
are only used to optimize Ladv.

4. Experimental Setup
4.1. Datasets

Please refer to Section 4 in Supplementary Material for
details about the construction of the following datasets.

Training Datasets. The training of LipAT involves two
datasets: (1) Dtrain

real - This dataset consists of 10,000 unpaired
face images without lipstick and with lipstick from CelebA-
HQ [15], and 10,000 lipstick attribute vectors. The lipstick
attribute vectors are sampled alternatively using a probabil-
ity distribution fitted to the space of the lipstick products us-
ing public data and a uniform distribution. The images with-
out lipstick and attribute vectors are used to learn the neural
components in LipAT, and the images with lipstick are only
used to optimize Ladv; and (2) Dtrain

synthetic - This dataset con-
sists of 10,000 specular components that are rendered using
80 different face images under 25 different simulated scene
lighting profiles and 5 different roughness scores with the
help of PyVista PBR engine.

Test Datasets. The testing of LipAT involves two
datasets: (1) Dtest

up - Similar to Dtrain
real , this dataset consists

of 2048 unpaired face images with lipstick and without lip-
stick from CelebA-HQ and 2048 lipstick attribute vectors.
There are no overlapping images between Dtest

up and Dtrain
real ;

and (2) Dtest
wp - This dataset consists of 127 weakly paired

images with and without lipstick and the corresponding lip-
stick attribute vectors that are inferred with the help of pre-
trained neural models for makeup removal [31] and material
attribute extraction [1, 23].

4.2. Evaluation Metrics

We quantitatively evaluate two aspects: (1) preservation
of the realism; and (1) accuracy of the attribute preservation.

Patch-FID, a novel metric to evaluate realism. To
evaluate the preservation of realism of the generated im-
ages, most previous works adopt Fréchet Inception Dis-
tance (FID) [6]. For given two image datasets – the one
consisting of real images Dreal and the other consisting of
generated images Dgen, FID metric is formulated as the
Wasserstein distance dW [34] between the two Gaussian
distributions Nreal and Ngen estimated using the images in
Dreal and Dgen from an intermediate layer of the pre-trained
Inception model [32]. If the selected intermediate layer
outputs C number of channels, Nreal and Ngen are mod-
elled as C-variate Gaussian distribution after performing
global average pooling to convert intermediate feature maps
∈ RC×H×W of images to c-dimensional vectors. Here, H
and W are the height and the width of a feature map. Due

to this global average pooling operation, FID treats the fea-
tures corresponding to all the pixels in face images equally.
Thus, FID score becomes insensitive to the update in the
targeted region when only a smaller region of real images
are updated to generate Dgen – e.g., lip region of a full face
image. We quantitatively verify this statement in Section 5
of Supplementary Material using an example.

To address this limitation, we propose Patch-FID, which
estimates Nreal and Ngen only using the activations from
the Inception model corresponding to the updated regions
in the images. To identify the intermediate features corre-
sponding to lip region of an image, we masked the pixels
of the image using black, except the pixels within a bound-
ing box drawn around the lip region. Then, we identified
the locations of the intermediate feature map of the masked
image that have different values compared to the feature
map of a completely black image. When estimating Nreal
and Ngen, we only average values of the identified locations
in each channel to represent the image as a C-dimensional
vector, instead of performing global pooling. Our experi-
ments show that Patch-FID is more suitable to evaluate the
realism of our task and agreeing with human perception of
realism. To compute the proposed Patch-FID we treat im-
ages with lipstick from Dtest

up as Dreal and applying lipstick
to images without lipstick from Dtest

up as Dgen. We present
formal derivation and more experiments with Patch-FID in
Section 5 of Supplementary Material.

Other quantitative metrics. To quantitatively evaluate
the second aspect – accuracy of the lipstick simulation, we
adopt paired Dtest

wp constructed in Section 4.1 and numeri-
cally evaluate how accurately we can reconstruct the im-
ages with lipstick in Dtest

wp by applying lipstick to the corre-
sponding images without lipstick. For this, we adopt Struc-
tural Similarity Index measure (SSIM) [36] and L1 distance.
Since our work only focuses on lipstick simulation, only
the pixels within the bounding box around the lip region are
used to compute SSIM and L1 metrics.

4.3. Baselines

In this work, we compare the proposed approach with
8 baselines that are categorised as: (1) PBR-based ap-
proaches; (2) NST-based approaches; and (3) Hybrid ap-
proaches3. Under PBR-based approaches, we adopt three
baselines: Colour-Transfer [27]; AR [30]; and LAM, which
only consists of our lipstick application module.

Since almost all the existing NST-based approaches are
unable to transfer lipstick using lipstick attributes, we mod-
ified SpMT [37], a recently proposed neural makeup trans-
fer approach, to create two neural-based baselines that can
transfer lipstick without requiring a full face image with
the reference lipstick: (1) Swatch-SpMT, which transfer lip-

3See Section 6 in Supplementary Material for detailed descriptions
about the baselines.
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Method
Type

Method SSIM (↑) L1 (↓) Patch-FID (↓) FID (↓)

PBR
Colour-Transfer [27] 0.7678 0.0328 24.3 50.6
AR [30] 0.798 0.0311 25.4 50.7
LAM 0.799 0.0310 23.2 50.8

NST Swatch-SpMT 0.7592 0.0330 21.7 51.8
Att-SpMT 0.6983 0.0371 24.8 52.3

Hybrid

LAM + CPM [25] 0.7437 0.0341 22.6 52.1
LAM + SSAT [31] 0.7528 0.0336 22.1 51.6
LAM + SpMT [37] 0.7692 0.0329 21.7 51.3
Our Approach 0.797 0.0309 20.2 51.2

Table 2. Results for the lipstick attribute transfer task using dif-
ferent methods, categorised as Physics-Based Rendering (PBR);
Neural Style Transfer (NST); and Hybrid (Hybrid).

Figure 7. Generated images from different methods using the at-
tributes vectors a in left of each row – each a vector gives the base
color, roughness score (0.1 for glossy and 0.7 for matte), and opac-
ity from top to bottom.

sticks via a swatch image; and (2) Att-SpMT, which transfer
lipstick directly using lipstick attributes.

As the hybrid approaches, we combine LAM with three
neural lipstick transfer approaches: (1) CPM [25]; (2)
SSAT [31]; and (3) SpMT [37]. For each baseline, we first
adopt our LAM module to simulate the lipstick on the tar-
get image, and then use it as the reference image to transfer
lipstick using the neural lipstick transfer approach.

5. Results

5.1. Quantitative Evaluation

We quantitatively evaluate the lipstick application accu-
racy of different methods using SSIM and L1 metrics with
Dtest

wp . As shown in Table 2, LipAT outperforms all the
compared baselines. The inferior performance of neural and
hybrid approaches could be primarily due to the inability of
their neural components to preserve finish types (see Fig-
ure 7). LipAT addresses these problems using its physics-
aware LipAT-LAM module. This statement can be further
verified as L1 (0.89 coefficient of determination with User
Study 2) and SSIM (0.94 coefficient of determination with

User Study 2) metrics report agreeing results with our user
study on finish type preservation. In addition, we observed
that most existing neural lipstick transfer modules are not
generalising well to unseen lipstick attributes such as bluish
colors as shown in the first row in Figure 7. Being able to
train LipAT using lipstick attributes directly makes LipAT
generalize well for such rarely seen and extreme cases.

Patch-FID vs FID. Table 2 also reports the evalua-
tion with respect to the proposed Patch-FID and the con-
ventional FID metrics. These metrics measure the real-
ism of the generated images. However, we observed that
Patch-FID yields highly correlated results with our user
study on realism – i.e., the coefficient of determination be-
tween Patch-FID and User Study 1 is 0.99, while the same
measure between FID and User Study 1 is 0.49 (see Sec-
tion 5.2), indicating the ability of Patch-FID to effectively
capture human perception of realism.

With the supporting results for patch-FID being a better
measure of realism on this task, we can observe that PBR
approaches are unable produce realistic images. In contrast,
the approaches with deep generative models can preserve
realism. Out of the neural and hybrid approaches, LipAT
still outperforms other approaches by as much as 7.4% in
Patch-FID. The high diversity of the generated images from
LipAT due to finish type preservation could be a contribut-
ing factor for this performance gap. Overall, LipAT outper-
forms neural approaches in preserving the attributes such as
finish type, and PBR approaches in preserving realism.

Ablation study. In Table 2, we compare LipAT with
a weaker variant called as LAM, which only includes the
LipAT-LAM module. With respect to SSIM and L1, LAM
yields comparable results to the full model. This means
that LipAT-LAM module largely contributes towards the
accurate preservation of attribute in the final results from
LipAT-LAM. Nevertheless, LAM yields unrealistic results
for some examples as shown in the zoomed in images in
Figure 7. We can quantitatively verify this as LipAT largely
outperforms LAM by 14.9% in Patch-FID. These results
verify the positive contribution of both modules in LipAT.

Controllability in LipAT. Almost all the existing neu-
ral lipstick transfer approaches do not allow controllability
across lipstick attributes. In contrast, our approach allows
controllable lipstick application as LipAT applies lipstick
directly using lipstick attributes. Figure 8 shows how the
results of LipAT vary when changing different lipstick at-
tributes. As can be seen, LipAT effectively incorporates the
attributes such as finish type, opacity and base color. To the
best of our knowledge, this is the first neural approach that
allows such controllable lipstick simulation.

LipAT’s Failure Cases. There are two main limitations
of LipAT: (1) LipAT’s inability to apply lipstick when the
neural lip parser used in LipAT fails to detect a lip region
in a given face image, despite its ability to rectify misalign-
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Figure 8. Controllability of LipAT with respect to different lipstick
attributes such as finish type, opacity and base color.

Methods User Study 1 User Study 2 User Study 3

Real Images 22.4% 62.3% N/A

AR [30] 17.4% 59.4% 18.9%
Swatch-SpMT 19.7% 47.2% 22.8%
LAM + SpMT [37] 19.9% 48.4% 25.6%
Our Approach 20.6% 55.7% 32.7%

Table 3. Aggregated user study results – user studies 1 (preser-
vation of realism) and 3 (accuracy of lipstick appearance) report
the percentage of each method to be voted over the other methods;
user study 2 (preservation of finish type) reports the accuracy of
identifying the correct finish type of the images.

ments caused by the neural lip parser; and (2) LipAT’s in-
ability to accurately apply lipstick to face images that al-
ready have lipstick applied. Due to space limitation, we
discuss these limitations in detail along with qualitative re-
sults in Section 10 of the supplementary material.

5.2. Qualitative Evaluation

For qualitative evaluation, we conducted 3 users studies
(see Section 7 in supplementary material for more details)
focusing on three aspects of the generated images.

User study 1 - preservation of realism. In this study,
participants have been shown two face images of the same
person with the same lipstick for each round. The im-
ages could be real images with lipstick or artificially altered
images by applying lipstick to real images using different
methods. We then asked participants to select the image
with the most realistic lipstick application. As shown in
Table 3, the neural-based approaches including our method
yield the best results out of the artificial methods, largely
outperforming the PBR-based baseline. This observation
verifies the strength of deep generative models-based lip-
stick application techniques in preserving realism.

User study 2 - preservation of finish type. This study
evaluates how accurately each method can incorporate fin-

ish types to the rendered images. For each round in this
study, participants have been shown two artificially gener-
ated images of the same person with two lipstick products
that has same colour but different finish types (i.e., glossy
and matte). The participants have been asked to select the
image that simulates the appearance of a glossy lipstick.
Our results (see Table 3) from this experiments show that
the images from the existing neural-based solutions (e.g.,
Swatch-SpMT and LAM+SpMT) cannot incorporate finish
types accurately as shown in Fig. 1. In contrast, LipAT yield
superior results, verifying the potential of LipAT for incor-
porating finish types.

User study 3 - overall accuracy of the lipstick appear-
ance. This study evaluates the overall correctness of differ-
ent methods. For each round, participants have been shown
a reference image with lipstick and a sequence of generated
images by artificially applying the lipstick on the reference
image to a different face image using lipstick attributes. We
asked participants to select the generated image that gives
the most accurate application of the lipstick in the reference
image. Table 3 shows that our approach outperforms other
baseline in this experiment. Also, we observed the results
of this study well aligns with the combination of the re-
sults from Patch-FID and SSIM (R2 = 0.89) instead of the
results from each metric alone (see Fig. 22 in the supple-
mentary material). Since Patch-FID and SSIM focus on the
preservation of realism and material properties respectively,
this observation further verifies the comprehensiveness of
our quantitative evaluation framework and the agreement
between the selected metrics and human perception.

6. Conclusion
We propose LipAT, a virtual lipstick try-on framework

that takes a face image with lipstick attribute to try on as
input. LipAT consists of two modules: LipAT-LAM, a
physics-motivated neural module to apply lipstick attributes
for a given face image using the attributes; LipAT-LRM -
a neural image refining module to improve the realism of
outputs from LipAT-LAM. Our framework requires no ad-
ditional information such as a style image with a model face
wearing the desired lipstick, facilitating a high level of scal-
ability in addition to granular attribute controllability across
complex lipstick attributes such as finish types. Our experi-
ments show that LipAT yields visually realistic results com-
pared to the state-of-the-art baselines while allowing the
controllability across the complex lipstick attributes.

For future work, we intend to extend our approach to
other makeup products such as foundation, eyebrow pencils
etc. Since other makeup products have attributes different
to lipstick (e.g., thickness in eyebrow pencils) and different
effects on the intrinsic layers of faces from the PBR per-
spective, scaling LipAT to other makeup products requires
additional research effort to address such challenges.
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