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Abstract

In this paper, a discriminator-free adversarial-based Un-

supervised Domain Adaptation (UDA) for Multi-Label Im-

age Classification (MLIC) referred to as DDA-MLIC is pro-

posed. Recently, some attempts have been made for intro-

ducing adversarial-based UDA methods in the context of

MLIC. However, these methods, which rely on an additional

discriminator subnet present one major shortcoming. The

learning of domain-invariant features may harm their task-

specific discriminative power, since the classification and

discrimination tasks are decoupled. Herein, we propose

to overcome this issue by introducing a novel adversarial

critic that is directly deduced from the task-specific classi-

fier. Specifically, a two-component Gaussian Mixture Model

(GMM) is fitted on the source and target predictions in or-

der to distinguish between two clusters. This allows extract-

ing a Gaussian distribution for each component. The result-

ing Gaussian distributions are then used for formulating an

adversarial loss based on a Fréchet distance. The proposed

method is evaluated on several multi-label image datasets

covering three different types of domain shift. The obtained

results demonstrate that DDA-MLIC outperforms existing

state-of-the-art methods in terms of precision while requir-

ing a lower number of parameters. The code is publicly

available at github.com/cvi2snt/DDA-MLIC.1

1. Introduction

Multi-Label Image Classification (MLIC) aims at pre-

dicting the presence/absence of a set of objects in a given

1This research was funded in whole, or in part, by

the Luxembourg National Research Fund (FNR), grant ref-

erences BRIDGES2020/IS/14755859/MEET-A/Aouada and

BRIDGES2021/IS/16353350/FaKeDeTeR. For the purpose of open

access, and in fulfillment of the obligations arising from the grant

agreement, the author has applied a Creative Commons Attribution 4.0

International (CC BY 4.0) license to any Author Accepted Manuscript

version arising from this submission.
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Figure 1. The work of [4] cannot be directly applied to MLIC

due to the differences between the two tasks: (a) Single-label im-

age classification uses a softmax activation function to convert the

predicted logits into probabilities such that the sum of all class

probabilities is equal to one; and (b) On the other hand, multi-

label image classification uses sigmoid activation where each logit

is scaled between 0 and 1, giving higher probability values for the

objects present in an image.

image. It is widely studied in the Computer Vision com-

munity due to its numerous fields of applications such

as object recognition [2], scene classification [25], and

attribute recognition [14, 28]. With the latest advance-

ments in deep learning, several MLIC methods [10, 21,

22, 29] have achieved remarkable performance on well-

known datasets [8, 16]. Nevertheless, the effectiveness of

deep learning-based methods widely relies on the availabil-

ity of annotated datasets. This requires costly and time-

consuming efforts. As a result, given the limited number

of labeled data, existing MLIC methods tend to have poor

generalization capabilities to unseen domains. This prob-

lem is commonly known as domain-shift, where a method

trained on a source dataset fails to generalize on a target

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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one belonging to a different domain. To overcome this is-

sue, Unsupervised Domain Adaptation (UDA) [9, 19] can

be an interesting strategy. The idea behind UDA is to lever-

age unlabeled data from the target dataset to reduce the gap

between the source and the target domains.

In the literature, many works have been proposed for

UDA in the context of single-label image classification [9,

17–19,23], while less efforts have been dedicated to propos-

ing UDA methods that are suitable for MLIC. Inspired

by the predominance of adversarial-based approaches in

single-label image classification, few methods [15, 20, 27]

have attempted to extend UDA to MLIC. Similar to [9],

these adversarial approaches leverage a domain discrimi-

nator for implicitly reducing the domain gap. In particular,

a min-max two-player game guides the generator to extract

domain-invariant features that fool the discriminator. Nev-

ertheless, this may come at the cost of decreasing their task-

specific discriminative power, as highlighted in [4].

Chen et al. [4] attempted to solve this problem in the

context of single-label image classification by implicitly

reusing the classifier as a discriminator. In particular, they

considered the difference between inter-class and intra-class

correlations of the classifier probability predictions as an

adversarial critic. Nevertheless, the per-class prediction

probabilities are not linearly dependent in the context of

MLIC. This means that these probabilities are not con-

strained to sum up to one, as shown in Figure 1. Hence, the

approach of [4] can only be naively generalized to MLIC

by considering multiple binary classifiers, namely, one for

each label. Therefore, a critic similar to the one in [4] can be

used by computing the correlations between the probability

predictions of each binary classifier. However, this is not

optimal since the domain adaptation would be carried out

for each label classifier separately, ignoring the correlations

between the different labels. This is also experimentally

confirmed in Section 4.

In this paper, we introduce a discriminator-free adversar-

ial UDA approach for MLIC based on a novel adversarial

critic. As in [4], we propose to leverage the task-specific

classifier for defining the adversarial critic. However, in-

stead of relying on the prediction correlations, which is not

suitable in the case of MLIC, we propose to cluster the

probability predictions into two sets (one in the neighbor-

hood of 0 and another one in the neighborhood of 1), es-

timate their respective distributions and define the critic as

the distance between the estimated distributions from the

source and target data. This intuition comes from the fact

that source data are usually more confidently classified (as

positive or negative) than target ones, as illustrated in Fig-

ure 2. The same figure also highlights that the distribution

of predictions can be modeled by two clusters; showing the

interest of modelling the predictions with a bimodal distri-

bution. Hence, we assume that the distribution shape of
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Figure 2. Histogram of classifier predictions2. Predicted probabil-

ities using source-only trained classifier2 on: (a) source dataset3

(Is), and (b) target dataset3 (It).

probability predictions can be used to implicitly discrimi-

nate source and target data. Concretely, we propose to fit

a Gaussian Mixture Model (GMM) with two components

on both the source and target predictions. A Fréchet dis-

tance [7] between the estimated pair of components is then

used to define the proposed discrepancy measure. The ex-

perimental results show that the proposed approach outper-

forms state-of-the-art methods in terms of mean Average

Precision (mAP) while significantly reducing the number

of network parameters.

In summary, our contributions are:

• A novel domain discrepancy for multi-label image

classification based on the distribution of the task-

specific classifier predictions;

• An effective and efficient adversarial unsupervised do-

main adaptation method for multi-label image classi-

fication. The proposed adversarial strategy does not

require an additional discriminator, hence reducing the

network size during training;

• An experimental quantitative and qualitative analy-

sis on several benchmarks showing that the proposed

method outperforms state-of-the-art works.

The rest of the paper is organized as follows. Section 2

formulates the problem of domain adaptation for multi-

label image classification, and presents our intuition behind

using the classifier as a critic. Section 3 introduces the pro-

posed approach termed DDA-MLIC. The experimental re-

sults are reported and discussed in Section 4. Finally, Sec-

tion 5 concludes this work and draws some perspectives.

2. Problem Formulation and Motivation

2.1. Problem formulation

Let Ds = (Is,Ys) and Dt = (It,Yt) be the source and

target datasets, respectively, with Ps and Pt being their re-

2TResNet-M [22] trained on UCM [3] dataset.
3Source: UCM [3] validation set (420 images), Target: AID [12] vali-

dation set (600 images).
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spective probability distributions such that Ps ̸= Pt. Let

us assume that they are both composed of N object labels.

Note that Is = {Iks}
ns

k=1 and It = {Ikt }
nt

k=1 refer to the

sets of ns source and nt target image samples, respectively,

while Ys = {yk
s}

ns

k=1 and Yt = {yk
t }

nt

k=1 are their associ-

ated sets of labels.

Let us denote by I the set of all images such that

I = Is ∪ It. Given an input image I ∈ I with

y ∈ {0, 1}N being its label, the goal of unsupervised do-

main adaptation for multi-label image classification is to

estimate a function f : I 7→ {0, 1}N such that,

f(I) = 1fc◦fg(I)>τ = 1Z>τ = y , (1)

where fg : I 7→ R
d extracts d-dimensional features,

fc : R
d 7→ [0, 1]N predicts the probability of object pres-

ence, Z = fc ◦ fg(I) ∈ [0, 1]N corresponds to the predicted

probabilities, 1 is an indicator function, > is a comparative

element-wise operator with respect to a chosen threshold τ .

Note that only Ds and It are used for training. In other

words, the target dataset is assumed to be unlabeled.

To achieve this goal, some existing methods [15] have

adopted an adversarial strategy by considering an additional

discriminator fd that differentiates between source and tar-

get data. Hence, the model is optimized using a classifier

loss Lc such as the asymmetric loss (ASL) [21] and an ad-

versarial loss Ladv defined as,

Ladv = Efg(Is)∼P̄s
log

1

fd(fg(Is))
+

Efg(It)∼P̄t
log

1

(1− fd(fg(It))
,

(2)

where P̄s and P̄t are the distributions of the learned features

from source and target samples Is and It, respectively.

While the adversarial paradigm has shown great poten-

tial [15], the use of an additional discriminator fd which is

decoupled from fc may lead to mode collapse as discussed

in [4]. Inspired by the same work, we aim at addressing the

following question – Could we leverage the outputs of the

task-specific classifier fc ◦ fg in the context of multi-label

classification for implicitly discriminating the source and

the target domains?

2.2. Motivation: domain discrimination using the
distribution of the classifier output

The goal of MLIC is to identify the classes that are

present in an image (i.e., positive labels) and reject the ones

that are not present (i.e., negative labels). Hence, the classi-

fier fc is expected to output high probability values for the

positive labels and low probability values for the negative

ones. Formally, let z = θ(fc(fg(I))) = θ(Z) ∼ P̂ be the

random variable modelling the predicted probability of any

class and P̂ its probability distribution, with θ being a uni-

form random sampling function that returns the predicted

probability of a randomly selected class. In general, a well-

performing classifier is expected to classify confidently both

negative and positive samples. Ideally, this would mean that

the probability distribution P̂ should be formed by two clus-

ters with low variance in the neighborhood of 0 and 1, re-

spectively denoted by C0 and C1. Hence, our hypothesis is

that a drop in the classifier performance due to a domain

shift can be reflected in P̂ .

Let zs = θ(fc(fg(Is))) ∼ P̂s and zt = θ(fc(fg(It))) ∼

P̂t be the random variables modelling the predicted proba-

bility obtained from the source and target data and P̂s and

P̂t be their distributions, respectively. Concretely, we pro-

pose to investigate whether the shift between the source and

target domains is translated in P̂s and P̂t. If a clear dif-

ference is observed between P̂s and P̂t, this would mean

that the classifier fc should be able to discriminate between

source and target samples. Thus, this would allow the defi-

nition of a suitable critic directly from the classifier predic-

tions.

To support our claim, we trained a model4 f using the la-

belled source data Ds without involving the target images5

It. In Figure 2 (a), we visualize the histogram of the clas-

sifier probability outputs when the model is tested on the

source domain. It can be clearly observed that the predicted

probabilities on the source domain, denoted by zs, can be

grouped into two separate clusters. Figure 2 (b) shows the

same histogram when the model is tested on target samples.

In contrast to the source domain, the classifier probability

outputs, denoted by zt, are more spread out in the target do-

main. In particular, the two clusters are less separable than

in the source domain. This is due to the fact that the classi-

fier fc benefited from the supervised training on the source

domain, and as a result it gained an implicit discriminative

ability between the source and target domains.

Motivated by the observations discussed above, we pro-

pose to reuse the classifier to define a critic function based

on P̂s and P̂t. In what follows, we describe our approach

including the probability distribution modelling (P̂s and P̂t)

and the adversarial strategy for domain adaptation.

3. An Implicit Multi-Label Domain Adaptation

Adversarial Strategy

As discussed in Section 2.2, the classifier probability

predictions are usually formed by two clusters with nearly

Gaussian distributions. Consequently, as shown in Figure 3

(a), we propose to approximate the distributions P̂s and P̂t

by a two-component Gaussian Mixture Model (GMM) as

4TResNet-M [22] trained on UCM [3] dataset.
5Source: UCM [3] validation set (420 images), Target: AID [12] vali-

dation set (600 images).
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Figure 3. (a) The classifier6 predictions zs and zt for both source

and target datasets7, respectively, can be grouped into two clusters.

Hence, a two-component GMM can be fitted for both source (P̂s)

and target (P̂t). While the first component is close to 0, the second

is close to 1, (b) A component-wise comparison between source

(P̂ 1

s , P̂
2

s ) and target (P̂ 1

t , P̂
2

t ) Gaussians of distributions extracted

from the fitted GMM confirms that target predictions are likely to

be farther from 0 and 1 with a higher standard deviation than the

source.

follows,

P̂s(zs) ≈
2∑

i=1

πs
iN (zs|µ

s
i , σ

s
i ) , (3)

and,

P̂t(zt) ≈
2∑

i=1

πt
iN (zt|µ

t
i, σ

t
i) , (4)

where N (zt|µ
t
i, σ

t
i) denotes the i-th Gaussian distribution,

with the mean µt
i and the variance σt

i , fitted on the target

predicted probabilities zt and πt
i its mixture weight such

that πt
1 + πt

2 = 1. Similarly, N (zs|µ
s
i , σ

s
i ) denotes the i-

th Gaussian distribution, with the mean µs
i and the variance

σs
i , fitted on the source predicted probabilities zs and πs

i its

mixture weight such that πs
1 + πs

2 = 1.

An Expectation-Maximization (EM) algorithm is used to

estimate the GMM parameters. In both source and target

domains, we assume that the first component of the GMM

corresponds to the cluster C0 (with a mean close to 0), while

the second corresponds to C1 (with a mean close to 1).

However, due to a large number of negative predictions

as compared to positive ones, the component C0 tends to be

more dominant. In fact, in a given image, only few objects

are usually present from the total number of classes. To alle-

viate this phenomenon, we propose to extract two Gaussian

components from the source and target GMM, ignoring the

estimated weights illustrated in Figure 3 (b).

Hence, we propose to redefine the adversarial loss Ladv

by computing a Fréchet distance dF [7] between each pair

of source and target components from a given cluster as fol-

lows.

Ladv =
2∑

i=1

αidF(N (zt|µ
t
i, σ

t
i),N (zs|µ

s
i , σ

s
i )) , (5)

with αi weights that are empirically fixed. Since the com-

puted distributions are univariate Gaussians, the Fréchet

distance between two distributions, also called the 2-

Wasserstein (2W) distance, is chosen as it can be explicitly

computed as follows,

d2F(N (z1|µ1, σ1),N (z2|µ2, σ2)) = (µ1−µ2)
2+(σ1−σ2)

2,

(6)

where N (z1|µ1, σ1) and N (z2|µ2, σ2) are two Gaussians

with a mean of µ1 and µ2 and a standard deviation of

σ1 and σ2, respectively. In addition, compared to the

commonly used 1-Wasserstein (1W) distance, it considers

second-order moments. Finally, in [1], the 2W distance has

been demonstrated to have nicer properties e.g., continu-

ity and differentiability, for optimizing neural networks as

compared to other divergences and distances between two

distributions such as the Kullback-Leibler (KL) divergence

and the Jensen-Shannon (JS) divergence. The relevance of

the 2W distance is further discussed in Section 4.9.

The overall architecture of the proposed method is

shown in Figure 4. Similar to [4], our network consists

of a feature extractor fg that aims to extract discriminative

image features from source Ds and target It datasets and

a classifier fc that simultaneously performs the classifica-

tion and discriminates between source and target features

by minimizing the proposed adversarial loss Ladv . A Gra-

dient Reversal Layer (GRL) between fg and fc enforces the

feature extractor to fool the classifier when acting as a dis-

criminator, hence implicitly learning domain-invariant fea-

tures.

4. Experiments

4.1. Datasets

In our experiments, different types of domain gaps are

considered. Due to the limited availability of multi-label

domain adaptation datasets, we convert several object de-

tection and semantic segmentation datasets for the task of

MLIC.

6TResNet-M [22] trained on UCM [3] dataset.
7Source: UCM [3] validation set (420 images), Target: AID [12] vali-

dation set (600 images).
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Figure 4. Overall proposed architecture of DDA-MLIC: The feature extractor (fg) learns discriminative features from source and target

images. The task classifier (fc) performs two actions simultaneously: 1) it learns to classify source samples correctly using a supervised task

loss, and 2) when used as a discriminator, it aims to minimize/maximize the proposed discrepancy between source and target predictions.

Cross-sensor domain shift Similar to [15], we use three

multi-label aerial image datasets that have been captured

using different sensors resulting in different resolutions,

pixel densities and altitudes, namely: 1) AID [12] multi-

label dataset was created from the original multi-class AID

dataset [30] by labelling 3000 aerial images, including 2400
for training and 600 for testing, with a total of 17 cate-

gories. 2) UCM [3] multi-label dataset was recreated from

the original multi-class classification dataset [31] with a to-

tal of 2100 image samples containing the same 17 object la-

bels as AID. We randomly split the dataset into training and

testing sets with 2674 and 668 image samples, respectively.

3) DFC [11] multi-label dataset provides 3342 high resolu-

tion images with training and testing splits of, respectively,

2674 and 668 samples labelled from a total of 8 categories.

In our experiments, the 6 common categories between DFC

and the other two benchmarks are used.

Sim2real domain shift We use the following two datasets

to investigate the domain gap between real and synthetic

scene understanding images. 1) PASCAL-VOC [8] is one

of the most widely used real image datasets for MLIC with

more than 10K image samples. It covers 20 object cate-

gories. The training and testing sets contain 5011 and 4952
image samples, respectively. 2) Clipart1k [13] provides

1000 synthetic clipart image samples, annotated with 20 ob-

ject labels, similar to VOC. Since it is proposed for the task

of object detection, we make use of the category labels for

bounding boxes to create a multi-label version. Half of the

data are used for training and the rest is used for testing.

Cross-weather domain shift In order to study the do-

main shift caused by different weather conditions, two

widely used urban street datasets have been used, namely:

1) Cityscapes [6] which is introduced for the task of se-

mantic image segmentation and consists of 5000 real im-

ages captured in daytime. 2) Foggy-cityscapes [24] which

is a synthesized version of Cityscapes where an artificial

fog is introduced. We generate a multi-label version of these

datasets for the task of MLIC considering only 11 categories

out of the original 19 to avoid including the objects that ap-

pear in all the images.

4.2. Implementation details

The proposed DDA-MLIC makes use of the TResNet-

M [22] as a backbone and the Asymmetric Loss (ASL) [21]

as the task loss. All the methods are trained using the Adam

optimizer with a cosine decayed maximum learning rate of

10−3. For all the experiments, we make use of NVIDIA

TITAN V with a batch size of 64 for a total of 25 epochs

or until convergence. The input image resolution has been

fixed to 224× 224.

4.3. Baselines

To evaluate the proposed approach, we consider standard

MLIC approaches, namely, ResNet [10], ML-GCN [5],

3940



Table 1. Cross-sensor domain shift: Comparison with the state-of-the-art in terms of number of model parameters (in millions), and %

scores of mAP, per-class averages (CP, CR, CF1) and overall averages (OP, OR, OF1) for aerial image datasets. Two settings are considered,

i.e., AID → UCM and UCM → AID. Best results are highlighted in bold.

Type Method # params
AID → UCM UCM → AID

mAP P C R C F C P O R O F O mAP P C R C F C P O R O F O

MLIC

ResNet101 [10] 42.5 57.5 60.0 47.5 47.0 69.1 71.5 70.3 51.7 50.6 29.6 33.9 88.0 48.5 62.5

ML-GCN [5] 44.9 53.7 55.3 44.3 45.9 70.2 68.7 69.4 51.3 50.1 29.9 34.0 88.0 49.7 63.6

ML-AGCN [26] 36.6 55.2 36.6 64.9 45.1 45.0 88.1 59.6 52.1 48.2 47.4 42.9 77.1 79.8 78.4

ASL (TResNetM) [21] 29.4 55.4 48.7 52.8 47.1 58.7 79.1 67.4 54.1 54.5 40.2 41.9 85.4 65.1 73.9

Disc.-based
DANN (TResNetM+ASL) [9] 29.4 52.5 59.1 31.6 36.3 70.9 53.7 61.1 51.6 52.1 23.2 27.9 83.2 27.8 41.7

DA-MAIC (TResNetM+ASL) [15] 36.6 54.4 55.3 37.5 38.6 68.0 67.9 67.9 50.5 51.8 22.9 29.0 91.6 35.2 50.8

Disc.-free

DALN (TResNetM+ASL) [4] 29.4 53.1 53.3 32.4 36.7 69.2 53.9 60.6 53.2 52.2 29.3 32.7 82.0 41.2 54.8

DDA-MLIC (ours) 29.4 63.2 52.5 63.7 55.1 59.4 82.8 69.2 54.9 53.9 30.4 35.5 84.6 41.0 55.3

Table 2. Cross-sensor domain shift: Comparison with the state-of-the-art in terms of number of model parameters (in millions), and %

scores of mAP, per-class averages (CP, CR, CF1) and overall averages (OP, OR, OF1) for aerial image datasets. Two settings are considered,

i.e., AID → DFC and UCM → DFC. Best results are highlighted in bold.

AID → DFC UCM → DFC
Type Method # params

mAP P C R C F C P O R O F O mAP P C R C F C P O R O F O

ResNet101 [10] 42.5 56.9 52.9 61.5 48.7 46.1 63.7 53.5 66.4 74.4 31.2 36.9 67.2 37.2 47.9

ML-GCN [5] 44.9 58.9 56.7 57.9 45.8 45.7 65.0 53.7 64.6 72.4 32.0 35.6 64.4 38.9 48.5

ML-AGCN [26] 36.6 51.6 41.5 83.8 52.3 40.2 88.7 55.3 70.3 68.4 56.1 47.8 53.8 58.5 56.0
MLIC

ASL (TResNetM) [21] 29.4 56.1 49.6 68.4 49.9 43.5 74.1 54.8 68.9 66.3 53.1 44.0 52.6 57.0 54.7

DANN (TResNetM+ASL) [9] 29.4 43.0 40.7 13.6 19.3 46.0 15.6 23.3 64.1 77.3 22.6 30.1 68.6 26.5 38.2
Disc.-based

DA-MAIC (TResNetM+ASL) [15] 36.6 55.4 49.8 60.4 44.7 47.3 64.1 54.4 65.8 71.4 39.3 39.7 59.9 44.6 51.1

DALN (TResNetM+ASL) [4] 29.4 44.7 43.7 23.8 27.6 48.9 27.4 35.1 65.6 82.6 21.3 32.0 75.2 22.1 34.1
Disc.-free

DDA-MLIC (ours) 29.4 62.1 47.6 75.5 55.3 48.9 76.2 59.6 70.6 67.2 55.7 49.3 55.0 58.4 56.6

ML-AGCN [26] and ASL [21] as well the recently in-

troduced DA method for MLIC approach called DA-

MAIC [15]. Note that the standard MLIC approaches are

trained on source-only datasets, hence do not incorporate

any domain adaptation strategy. In addition, given that the

problem of DA for MLIC is under-explored, we propose to

adapt two additional DA methods for single-label classifi-

cation to MLIC. In particular, the existing discriminator-

based and discriminator-free adversarial DA approaches

i.e., DANN [9] and DALN [4] are considered by adopt-

ing the following changes. The original cross entropy loss

in both DANN and DALN is replaced with the Asymmet-

ric Loss (ASL) [21]. Additionally, we propose to convert

the multi-label output of the classifier in DALN to multi-

ple binary predictions before applying the Nuclear Wasser-

stein Discrepancy (NWD) [4]. Moreover, for a fair compar-

ison, we replace the CNN backbone from the conventional

ResNet101 to the same backbone as ours, namely TResNet-

M [22], for the three DA baselines.

4.4. Experimental settings

In our experiments, we report the number of model

parameters, mean Average Precision (mAP), average per-

Class Precision (CP), average per-Class Recall (CR), av-

erage per-Class F1-score (CF1), average Overall Precision

(OP), average overall recall (OR) and average Overall F1-

score (OF1). Given the seven considered datasets, i.e.,

AID, UCM, DFC, VOC, Clipart, Cityscapes and Foggyc-

ityscapes, seven experimental settings are considered, i.e.,

AID → UCM, UCM → AID, AID → DFC, UCM → DFC,

VOC → Clipart, Clipart → VOC, Cityscapes → Foggy. For

instance, AID → UCM indicates that during the training

AID is fixed as the source dataset while UCM is considered

as the target one. The results are reported on the testing set

of the target dataset.

4.5. Results

4.5.1 Quantitative analysis

Table 1, Table 2, Table 3 and Table 4 quantitatively com-

pare the proposed approach to state-of-the-art methods. It

can be seen that our model requires equal or fewer num-

ber of parameters than other state-of-the-art works, with a

total number of 29.4 million parameters. We achieve the

best performance in terms of mAP for AID → UCM, UCM

→ AID, AID → DFC, UCM → DFC, Clipart → VOC and

Cityscapes → Foggy.

The first 4 rows of Table 1, Table 2, Table 3 and Ta-

ble 4 report the obtained results using different methods of

MLIC without DA [5, 10, 21, 26]. It can be observed that

our method consistently outperforms all these methods in

all settings (cross-sensor, sim2Real, and cross-weather) in

terms of mAP showing the effectiveness of the proposed

DA method for MLIC.

Furthermore, the results reported in the 5th and 6th

rows of Table 1, Table 2, Table 3, Table 4 show that

the proposed discriminator-free DA method clearly outper-
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Table 3. Sim2Real domain shift: Comparison with the state-of-the-art in terms of number of model parameters (in millions), and %

scores for mAP, per-class averages (CP, CR, CF1) and overall averages (OP, OR, OF1) for scene understanding datasets. Two settings are

considered, i.e., VOC → Clipart and Clipart → VOC. Best results are highlighted in bold.

Type Method # params
VOC → Clipart Clipart → VOC

mAP P C R C F C P O R O F O mAP P C R C F C P O R O F O

MLIC

ResNet101 [10] 42.5 38.0 64.8 14.3 22.5 82.3 18.3 29.9 50.1 66.2 17.5 25.5 83.9 29.6 43.7

ML-GCN [5] 44.9 43.5 62.5 20.3 28.4 86.6 27.8 42.1 43.1 57.9 21.0 26.8 73.5 30.6 43.2

ML-AGCN [26] 36.6 53.7 75.5 35.5 44.4 79.1 39.9 53.1 38.0 45.5 25.1 28.2 61.8 36.6 45.9

ASL (TResNetM) [21] 29.4 56.8 72.0 38.5 47.6 82.8 45.7 58.9 64.2 69.0 30.7 37.3 80.0 45.7 58.2

Disc.-based
DANN (TResNetM+ASL) [9] 29.4 47.0 77.0 22.0 32.5 86.8 23.6 37.1 67.0 76.8 23.3 32.6 93.1 20.4 33.4

DA-MAIC (TResNetM+ASL) [15] 36.6 62.3 77.4 42.6 51.6 83.1 51.0 63.2 74.3 84.5 53.9 63.0 83.7 57.7 68.3

Disc.-free
DALN (TResNetM+ASL) [4] 29.4 45.0 82.2 21.4 32.6 92.0 22.7 36.4 66.7 78.3 22.2 31.7 90.8 18.0 30.0

DDA-MLIC (ours) 29.4 61.4 84.7 28.1 39.4 90.9 33.3 48.8 77.0 86.9 29.3 38.2 88.4 35.3 50.4

Table 4. Cross-weather domain shift: Comparison with the state-of-the-art in terms of number of model parameters (in millions), and %

scores of mAP, per-class averages (CP, CR, CF1) and overall averages (OP, OR, OF1) for urban street datasets. Cityscapes → Foggy is the

setting that is considered. Best results are highlighted in bold.

Type Method # params
Cityscapes → Foggy

mAP P C R C F C P O R O F O

MLIC

ResNet101 [10] 42.5 58.2 53.6 27.8 32.2 93.2 48.3 63.7

ML-GCN [5] 44.9 56.6 56.1 34.6 38.8 89.4 56.9 69.6

ML-AGCN [26] 36.6 60.7 60.1 48.3 50.9 81.7 71.2 76.1

ASL (TResNetM) [21] 29.4 61.3 66.7 50.8 53.8 79.2 70.5 74.6

Disc.-based
DANN (TResNetM+ASL) [9] 29.4 53.5 50.6 12.5 18.6 89.5 21.8 35.1

DA-MAIC (TResNetM+ASL) [15] 36.6 61.9 70.7 37.2 42.7 90.2 59.6 71.7

Disc.-free
DALN (TResNetM+ASL) [4] 29.4 54.8 56.8 19.5 25.4 90.2 33.8 49.2

DDA-MLIC (ours) 29.4 62.3 73.7 45.7 48.9 84.1 69.3 76.0

forms discriminator-based DA approaches for MLIC [9,15]

on cross-sensor and cross-weather domain shift settings

in terms of mAP. This observation was not consistent for

sim2Ream domain shift, where our approach recorded an

mAP improvement of 2.7% over other discriminator-based

approaches on Clipart → VOC setting, but was slightly out-

performed with 0.9% in terms of mAP by DA-MAIC [15]

on VOC → Clipart setting.

Finally, we compare our method to the discriminator-free

method proposed in [4] for single-label DA and adapted to

MLIC as stated in Section 4.3. Unsurprisingly, our method

consistently outperforms the adapted version of DALN for

MLIC on all settings, reaching an improvement of more

than 17% in terms of mAP on the AID → DFC scheme.

4.5.2 Qualitative analysis

The proposed DDA-MLIC is qualitatively compared with

DANN [9] and DALN [4] in Figure 5 for the Clipart →
VOC setting. The top row shows input images with their re-

spective ground truth. The next three rows show the correct,

incorrect, and missing predictions, in green, red, and blue,

respectively. It can be noted that the proposed approach

correctly predicts the labels of the five image samples, in

contrast to other DA methods that are failing in some cases.

4.6. Ablation study

The results of the ablation study are shown in Table 5.

We report the obtained mAP for the following settings, i.e.,

AID → UCM, UCM → AID, UCM → AID, UCM → DFC,

VOC → Clipart and Clipart → VOC. The first row shows

the mAP obtained in the absence of any domain adapta-

tion strategy. The second row includes the scores obtained

when adopting an adversarial domain adaptation approach

using a standard domain discriminator. The third and last

rows show the obtained results when using the proposed ap-

proach using a 2-Wasserstein distance. It can be clearly seen

that by leveraging the classifier as a discriminator, the clas-

sification performance is generally improved in the pres-

ence of a domain shift.

4.7. Sensitivity analysis

In Table 8, we compare the mAP scores obtained for the

cross-sensor domain shift, using different combinations of

α1 and α2 defined in Eq. (5). We can observe from these re-

sults that giving either the same weights to each component

or a slightly larger weight to the first component (negative

labels) results in better performance.

4.8. GMM versus k­means

We employ the popular non-probabilistic clustering tech-

nique known as k-means to compare with the used GMM-

based clustering. In contrast to the former, which uses hard

thresholding to assign data points to specific clusters, GMM

uses soft thresholding by maximizing the likelihood that

any given data point will be in a given cluster. Table 7 com-

pares the mAP scores obtained using the two methods. It

can be clearly seen that using k-means results in a signifi-

cant performance drop for all benchmarks.
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Ground 

truth
chair, diningtable

DANN chair, diningtable, pottedplant, sofa

DALN chair, diningtable

OURS chair, diningtable

bicycle, person

bicycle, person

bicycle, person

bicycle, person

Correct

Incorrect

Missing

bottle, diningtable, person

bottle, diningtable, person

bottle, diningtable,  person

bottle, diningtable, person

chair, diningtable

chair, diningtable, pottedplant, sofa

bottle, chair, diningtable

chair, diningtable

chair, diningtable, sofa

chair, diningtable, pottedplant,

sofa, tvmonitor

chair, diningtable, sofa

chair, diningtable, sofa

Figure 5. Qualitative analysis: Comparison of the proposed DDA-MLIC (OURS) with DANN [9] and DALN [4] in terms of multi-label

predictions on Clipart → VOC.

Table 5. Ablation study (w/o: without, w/: with). The reported % scores are mAP.

Methods AID→UCM UCM→AID AID→DFC UCM→DFC VOC→Clipart Clipart→VOC

Ours 63.24 54.87 62.13 70.64 61.44 76.96

Ours w/o DA 55.45 (-7.79) 54.12 (-0.75) 56.09 (-6.04) 68.91 (-1.73) 56.78 (-4.66) 64.15 (-12.81)

Ours w/ Discr. 52.54 (-10.70) 51.60 (-3.27) 51.60 (-10.53) 64.06 (-6.58) 46.97 (-14.47) 67.03 (-9.93)

Table 6. mAP comparison of using KL-divergence and 1-Wasserstein (1W) distance as discrepancy for domain alignment.

Methods AID→UCM UCM→AID AID→DFC UCM→DFC VOC→Clipart Clipart→VOC

Ours 63.24 54.90 62.13 70.64 61.44 76.96

Ours (with KL) 56.44 (-6.80) 53.51 (-1.39) 53.17 (-8.96) 64.55 (-6.08) 52.62 (-8.82) 77.86 (+0.90)

Ours (with 1W) 53.60 (-9.64) 53.20 (-1.70) 57.80 (-4.33) 69.70 (-0.94) 60.50 (-0.94) 75.50 (-1.46)

Table 7. mAP comparison of the proposed EM-based GMM clustering with k-means clustering.

Methods AID→UCM UCM→AID AID→DFC UCM→DFC VOC→Clipart Clipart→VOC

Ours 63.24 54.90 62.13 70.64 61.44 76.96

Ours (with k-means) 53.58 (-9.65) 52.20 (-2.70) 58.46 (-3.68) 68.06 (-2.57) 49.24 (-12.20) 68.27 (-8.69)

Table 8. Sensitivity analysis: A comparison of mAP by varying

the values of regularizers for each GMM component on the aerial

image datasets.

α values (α1, α2) AID→UCM UCM→AID AID→DFC UCM→DFC

α1=0.1, α2=0.9 56.0 50.6 55.4 67.1

α1=0.2, α2=0.8 55.0 52.4 55.3 67.4

α1=0.3, α2=0.7 56.0 50.3 57.0 69.3

α1=0.4, α2=0.6 58.0 52.4 59.2 69.3

α1=0.5, α2=0.5 63.0 53.0 57.7 70.6

α1=0.6, α2=0.4 54.4 54.4 55.4 66.4

α1=0.7, α2=0.3 54.9 52.6 57.6 65.6

α1=0.8, α2=0.2 53.8 52.9 62.1 69.3

α1=0.9, α2=0.1 55.6 53.9 56.0 66.6

α1=1.0, α2=0.0 57.8 52.0 57.2 69.5

4.9. Distance and divergence measure analysis

We propose using the 2-Wasserstein (denoted as 2W)

distance as a discrepancy measurement for the learned

GMM source and target components. As shown in Ta-

ble 6, we compute the mAP scores using the popular

KL-divergence and 1-Wasserstein (1W) distance in lieu of

2W. The effectiveness of the 2W distance as compared to

other measures in the proposed method, given its continu-

ity and differentiability properties, is clearly visible in Ta-

ble 6. More specifically, using the KL divergence or the

1-Wasserstein distance as a discrepancy measure results in

a slight to significant reduction in mAP across all bench-

marks, ranging from 0.9% to 9.6%.

5. Conclusion

In this paper, a discriminator-free UDA approach for

MLIC has been proposed. In contrast to existing meth-

ods which use an additional discriminator that is trained

adversarially, our method leverages the task-specific clas-

sifier for implicitly discriminating between source and tar-

get domains. This strategy is proposed to avoid decoupling

the classification and the discrimination tasks, while reduc-

ing the number of required network parameters. To achieve

this, the adversarial loss has been redefined using a Féchet

distance between the corresponding GMM components es-

timated from the classifier probability predictions. We have

demonstrated that the proposed approach achieves state-of-

the-art results on seven datasets covering three possible ar-

eas of domain shift, while considerably decreasing the size

of the network. In future works, we will investigate a differ-

entiable strategy for fitting the GMM for a fully end-to-end

training of the network.
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