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Abstract

Generative Adversarial Networks (GANs) can generate
hyperrealistic face images of synthetic identities based on
a latent understanding of real images from a large training
set. Despite their proficiency, the term “synthetic identity”
remains ambiguous, and the uniqueness of the faces GANs
produce is rarely assessed. Recent studies have found that
identities from the training data can unintentionally appear
in the faces generated by StyleGAN2, but the cause of this
phenomenon is unclear. In this work, we propose a novel
framework, SynthProv, that utilizes the improved interpo-
lation ability of StyleGAN2 latent space and employs image
composition to analyze leakage. This is the first method that
goes beyond detection and traces the source or provenance
of constituent identity signals in the generated image. Ex-
periments show that SynthProv succeeds in both detection
and provenance tasks using multiple matching strategies.
We identify identities from FFHQ and CelebA-HQ training
datasets with the highest leakage into the latent space as
“leaking reals”. Analyzing latent space behavior to evalu-
ate generative model privacy via leakage is an important re-
search direction, as undetected leaking reals pose a signif-
icant threat to training data privacy. Our code is available
at https://github.com/jaisidhsingh/SynthProv.

1. Introduction
Synthetic image generation is desirable for creating and

augmenting datasets for sensitive tasks [38] for which ob-
taining a large and diverse set of real-world data is chal-
lenging, such as robust facial analytics [39, 53, 57]. Gen-
erative Adversarial Networks (GANs) are one of the most
widely used generative models due to their ability to gen-
erate high-fidelity images from random noise [15], upon
learning a representative latent distribution given a large set
of training samples. Improved understanding of the latent
distribution and its editability has led to more controlled
and higher quality image generation [45, 55, 62]. Images
generated using state-of-the-art GAN architectures such as
StyleGAN2 [23] not only resemble the photorealism of real

Figure 1. Overview of SynthProv: the first of its kind framework
to trace the leakage of real identities into the learned StyleGAN2
latent space. We exploit the properties of semantically meaningful
interpolation in the latent space to construct composite images,
which are used to trace the presence of identity-related information
in synthetic images to contributing real images.

images but are considered better than real images in as-
pects such as human trustworthiness [27,36]. This suggests
that these generated images could potentially substitute ac-
tual training samples in facial recognition tasks [20,39,57].
Nevertheless, the reliance of the image generation process
on the genuine training examples raises privacy issues for
user content within the training dataset [28], even when it is
not explicitly utilized for downstream tasks.

Deeper understanding of the relationship between the
generated images and the training data has demonstrated
that information from the training data leaks into the syn-
thetic images through associations between samples in the
latent space [49, 56]. In most cases, GAN latent space may
not enable direct matching of real and synthetic image pairs
due to its non-Euclidean nature [30], but it does not rule out
detectable associations between training images of real sub-
jects and synthetically generated images. Generative mod-
els differ from other predictive models, as they generate im-
ages as predictions, which may share visual features with
training images on various latent manifolds learned for dif-
ferent image understanding tasks. Leaked information from
training images can be easily detected through the released
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synthetic image data using image matching techniques [49].
Identifying instances of information leakage is essential for
assessing the privacy of models, yet detection alone does
not ensure privacy. To effectively reduce leakage and im-
prove the privacy of training data, it is critical to examine
both the origin and characteristics of this leakage.

For improved generation and editability, latent manifolds
learned by GANs provide the ability to interpolate and gen-
erate semantically relevant images [45, 62] while impos-
ing very few limits on the density with which the latent
distribution can be sampled [7]. This has helped discover
semantically relevant directions in the StyleGAN2 latent
space [45, 55, 62] and enabled controlled image editing via
operations on latent vectors along those directions. The
proposed approach utilizes these properties and employs
strategic sampling with aggregation of representations in
the latent space to highlight shared information between the
support set, i.e., training images, and the generated sam-
ples. Due to certain directions encoding specific facial at-
tributes [45], composite images constructed in the latent
space from samples along identity-invariant latent direc-
tions, act as pseudo-generated images and can help high-
light information sharing behavior essential for detecting
and tracing identity leakage. The difference between this
behavior for synthetic and real image representations in the
latent space, is utilized to detect leakage and retrieve the
images leaking most information, termed as leaking reals.
The proposed method (see Figure 1) traces the identity in-
formation present in synthetic faces back to the real training
set. This extra step provides output in a human interpretable
format, where synthetic images can be visually compared to
a group of real images to explain leakage.

To the best of our knowledge, this is the first method
to conduct provenance of identity leakage within a widely-
used GAN model such as StyleGAN2 [23]. In other words,
the proposed framework leverages the latent space dynam-
ics of powerful and easily controllable GANs to detect and
trace back, or ascertain the source of, identity informa-
tion that has inadvertently leaked from the training images.
Experiments profile identity information leaking from the
commonly used training sets of StyleGAN2 and highlight
the real identities which are at risk in terms of privacy.

2. Related Work

The proposed method associates content between syn-
thetic images and training images to identify sources of
shared information. To do so, it builds upon the existing
understanding of GAN latent space, prior observations of
leakage in the space and image provenance analysis for im-
mensely complex composite images. In this section, we dis-
cuss the three groups and highlight how the proposed work
builds upon their findings to conduct provenance of leakage.

2.1. Latent Space Understanding

Modern image generation and manipulation methods
have tried to understand and edit latent representations to
increase the control and fidelity for conditional image gen-
eration [24,45,62]. Latent space of GANs have been treated
as a Reimannian Manifold [2, 8] and several works have
proposed editing images based on the arithmetic proper-
ties of the latent space [40, 52]. AttGAN [19] success-
fully modeled the relation between attributes and the latent
space learned by a GAN for constrained conditional ma-
nipulation. Other models exchange attribute information
in latent codes [58, 67] or disentangle images into iden-
tity and non-identity based attributes for editing [25, 47].
Shen et al., [45] in their method that enables face editing
in the latent space of GANs, show that certain directions
and subspaces can correspond to representation of different
attributes. The understanding developed by these methods
enable the design of our framework, which relies on latent
space sampling and traversal to highlight information leak-
age and the sources. For synthetic image editing, a sam-
pled vector from the GAN latent space is directly changed
whereas for manipulating real images, most methods em-
ploy an inversion approach [1, 10, 21, 42]. State-of-the-art
inverters use a two-step process. The first stage produces
a latent vector, which is then modified by the generator.
Two popular recent approaches are Pivotal Tuning Inversion
(PTI) [43] and HyperInverter [13]. PTI finetunes the gener-
ator for every latent vector to improve reconstruction, lead-
ing to expensive inference time. In contrast, HyperInverter
uses hypernetworks to predict the residual weights (infor-
mation lost when mapping input image to theW space) and
finetunes the generator using this to reconstruct the final im-
age. This reduces fine-tuning required during inference and
for better efficiency. Our method requires combining infor-
mation in latent space to create composite identities from
real ones, which are evaluated for leakage. In our experi-
ments, we use HyperInverter to infer the representations of
the real images in an already learnt GAN latent space, as it
balances the quality-efficiency tradeoff.

2.2. Information leakage in GANs

The adversarial training in GANs encourages a distribu-
tion that is centered around training samples. This puts the
current generation GANs at a significant risk of disclosing
private information from training images through the gen-
erated samples, which is termed information leakage [61].
Goodfellow et al, [15] hypothesize that given infinite time,
GANs can recreate the samples found in the training data.
Further, [14] showed that given access to model architecture
and weights, it is possible to reconstruct a person’s facial
image using facial recognition confidence scores. The vul-
nerabilities of GANs and other generative models are fur-
ther highlighted using membership inference attacks [46]

4747



where the goal is to detect whether a query image was used
to train the model [9,41,44,51]. The success of such attacks
have motivated the design of GANs architectures with pri-
vacy guarantees [20,50,59,61]. In the literature, techniques
for mitigation have received more attention than detection,
but the recent study by Tinsley et al. [49] specifically dis-
cusses leakage of identity information in StyleGAN2 space.
The study hypothesizes that identity information from real
face images seen during the training of a GAN leak into
the latent space. Upon observing comparison score distri-
butions for a given set of Real - Real (R-R) and Real - Gen-
erated (R-G) image pairs, they infer that the presence of
identity leakage is detected using only specific face match-
ers such as ArcFace. Similar to their work, we perform dis-
tribution analysis using the properties of the latent space to
study identity leakage. However, our construction of evalu-
ation pairs differs significantly from their approach and pro-
vides better identity relevant matching. Additionally, our
approach also associates identity leakage with the source
images and performs provenance analysis.

2.3. Image Provenance Analysis

Owing to the large scale online availability of manipu-
lated images, i.e., containing content from multiple donor
images [5], Image Provenance Analysis [32] aims to iden-
tify the origin and intent of such content. Actively tag-
ging all online images for ease of tracking its processing
and usage [54,60] requires standardization of the procedure
and may not always be feasible. Provenance analysis ap-
proaches in the literature that solely rely on image content
are a two-stage process [31]. The first step is query, i.e. re-
trieving related images to any given image and the second
is creating a directed acyclic graph where the edges denote
pairwise forensic relationship [66] or content contribution
from one image to another. This step-by-step analysis [3]
is intuitive for manipulated content in online media, but
the general framework may not directly apply to manipu-
lated content generated using GANs. Provenance for GAN-
generated deepfakes has also been proposed to trace possi-
ble sources of content [34,35]. The possible set of pairwise
relationships for this use case is smaller than the general
provenance framework, as it mostly considers deepfakes as
a composite of two original source images. This setup is
different from the proposed approach, in which we asso-
ciate sampled synthetic images from a latent distribution to
the true observed samples of that distribution.

3. Methodology
StyleGAN2-style architectures utilize learned latent

space from training images to represent face images on
manifolds, which may vary in terms of the richness of en-
coding semantic information. Previous works [13,43] learn
to map realistic face images to these latent representation

spaces. The latent manifold is guided by the information of
real face images, and thus identity information encoded in
this manifold is a derivative, or a function of the identities
of real faces in the training set. The highly complex and
variable function for each face representation in the latent
space is learned during training. This serves as the basis
of identity leakage, which we analyze by using the seman-
tically rich latent space. The shared semantic information
between pairs of features is utilized to construct composite
face images (in Sec. 3.1) which are then used to associate
real data with synthetic samples and detect identity leakage.
Subsequently, Sec. 3.2 describes the extraction and usage of
a specific direction in the StyleGAN2 latent space that en-
codes identity-invariance. Lastly, we propose SynthProv, a
method that characterizes the latent space using composite
images and incorporates the identity-invariant direction to
perform provenance of identity information (Sec. 3.3).

3.1. Composites for Identity Leakage

Given a random noise vector z ∼ N (0, 1), StyleGAN2
first maps this noise vector to a latent vector l ∈ W , by
l = Fmap(z), where Fmap is the mapping network. This
latent vector l is then utilized by G, the generator, to pro-
duce a face image I , given by I = G(l). The mapping
of the latent vector l by the generator network leads to the
encoding of rich representations of face images in the W
space. This enables semantic editing tasks such as facial in-
terpolation and editing [29,42,43,64] and style disentangle-
ment [19, 47, 52]. We utilize this semantically meaningful
W space to construct two types of image composites, syn-
thetic composites and real composites which are obtained in
the following manner.

Here, a Q-set notation is used as a placeholder for our
two settings of synthetic and real latent vectors and face
images. We create a Q-set composite, where Q = {l, l ∈
W} and randomly sample k vectors from Q, to obtain a
Q-set composite vector lqc using

lqc =
1

k

k∑
j=1

lqpj
(1)

where {lqp1
, ...lqpk

} are theQ-set parent vectors of lqc . Partic-
ularly, k <<< |Q|, and the remaining non-parent synthetic
latent vectors are denoted by {lqn} = Q − {lqp}. Subse-
quently, we use the generator G to obtain images for each
vector inQ denoted by Iq . The face image corresponding to
a composite latent vector lqc is denoted by Iqc . Similarly, the
images obtained by decoding the parent vectors and non-
parent vectors of lqc are given by Iqp = G(lqp) (parent im-
ages) and Iqn = G(lqn) (non-parent images) respectively.

We utilize the aforementioned formulation for Q ∈
{S,R}. Here S is the set of randomly sampled synthetic
latent vectors, whereas R is the set of latent vectors rep-
resenting real face images from the training set in the W
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Figure 2. Computation of latent identity distance (refer Sec. 3.2)
in the GAN latent space. The identity dissimilarity is measured
perpendicular to the global identity invariant direction, d∗.

space, obtained using HyperInverter [13]. The notations re-
garding the latent representations and their corresponding
images are described in the rest of the section (see supple-
mentary material for a table with all notations).

3.2. Identity in GAN Latent Space

Prior research [24, 45, 62] has demonstrated high qual-
ity manipulation of facial attributes through the projection
of latent vectors along disentangled directions that encode
specific style or attributes. Building upon this line of re-
search, we first compute identity-invariant directions in the
W space and then use those directions to compute an iden-
tity distance metric. Note that this is different from a face-
matcher, which encodes identity-invariance in a different
image-derived space. Face matchers generally try to min-
imize distance between representations of images of the
same identity, while maximizing distance between different
identity representations. The learned space only encodes
identity-invariant information, with very few other image-
level details. Whereas, StyleGAN’s W space is known to
encode different levels of face details, with directions corre-
sponding to specific attribute information and some encod-
ing higher identity invariance than others. Using a direction
to compute dissimilarity in the identity features encoded in
the latent vectors of theW space, allows us to use its other
properties, such as GAN inversion, to relate latent behavior
with image space changes. This facilitates interpretability
in the leakage analysis.

A face-matcher m operates on a face image I to produce
an embedding given by e = m(I). For any two face
images I1 and I2, these identity embeddings are given
by e1 = m(I1) and e2 = m(I2). A higher similarity
in identities is represented when two embeddings are
closer in the face-matcher space, which is quantified by
a dissimilarity-based match score, ϕ(e1, e2), between the

two embeddings. This section describes how we compute
identity dissimilarity in theW space.

Identity-invariant direction: We utilize the relation
of identity information and latent representations in the
W space, and find a direction in the W space which
encodes identity-salient features. To do this, we solve the
optimization problem,

d∗ = argmin
d∈W

ϕ(es0,m(G(ls0 + αd))) (2)

where d is the parameterized identity-invariant direction.
Here, ls0 is a fixed, latent vector, which is decoded by G
to produce a face image Is0 . The face-matcher embedding
of Is0 is given by es0 = m(Is0).

The identity-invariant direction is optimized for each im-
age. However, experimental results (see supplement for re-
sults of this step) show that an overall globally consistent
and instance independent optimal direction d∗ is obtained.
This optimal identity-invariant direction d∗ is used in con-
structing the identity distance.

Latent identity distance: This metric quantifies the dis-
similarity between two latent vectors by utilizing the global
identity invariant direction, d∗. By incorporating d∗ into our
framework, we aim to encompass identity representations
within the semantically rich latent space. Consequently, we
define h(l1, l2, d

∗) as the measure of identity distance be-
tween two latent vectors, l1, l2 ∈ W given by:

h(l1, l2, d
∗) = | ∥v∥sinθ | (3)

where v = l2 − l1 and θ = cos−1( v·d∗

||v||·||d∗|| ), which is
the angle between the latent vector v and d∗. We observe
that the identity doesn’t change as we decode points while
traversing along d∗ (results are shown in the supplemen-
tary material). Consequently, evaluating the dissimilarity in
identity between two latent vectors can be more accurately
assessed by measuring the distance perpendicular to the di-
rection invariant to identity shown in Figure 2.

3.3. SynthProv Framework

The proposed, SynthProv, framework utilizes the seman-
tic information gathered in the synthetic composites and the
properties of the face matcher space and the W space for
retrieving real faces showing identity leakage. Figure 3
presents an overview of the framework and the steps are
explained as follows.

3.3.1 Selection of assistants

Our algorithm begins with a synthetic composite image Isc ,
and its synthetic parent images Isp . Firstly, for each syn-
thetic composite image, a threshold t is computed, given by
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Figure 3. The overview of the proposed SynthProv framework considering only two parents (k = 2). We first construct the composite
image Isc using which a set of assistants is chosen from non-parent synthetic images Isn. Next, we compute identity dissimilarity of
assistants and parents to the real training set, in both the face-matcher space and the W space. Finally, these mixed scores of identity
dissimilarity are ranked to trace the real faces leaking identity into synthetic samples.

t = min
j∈{1,...,k}

ϕ(esc, e
s
pj
) (4)

where espj
is the face-matcher embedding of the jth syn-

thetic parent of the synthetic composite. We then select
assistants, A, a set of synthetic non-parent images in Isn,
which appear closer to the synthetic composite in the face-
matcher space than any of its parents. Formally, given by

A = {i | ϕ(esc, esni
) ≤ t} (5)

In instances where the set A is large, we constrain the cardi-
nality of A to a, restricting the analysis solely to the indices
closest to the parents. Identity signals of the synthetic com-
posite are pooled across its parents and the assistants, to
use them as the best proxies for the identity of the synthetic
composite image. These identity proxies are then used for
the provenance of identity leakage, as described below.

3.3.2 Mixed score-based retrieval

The set of latent vectors corresponding to identity proxies
is defined as Ql = {lsp1

, ..., lspk
, lsA1

, ..., lsAq
}. We compute

the latent identity distance of each member of Ql from each
real latent vector inR. This results in a distance-matrixMl

given by
Ml = h(Ql,R, d∗). (6)

Additionally, we construct a proxy embedding set Qe, such
that Qe = {esp1

, ..., espk
, esA1

, ..., esAq
}. Each face-matcher

embedding in the proxy embedding set Qe, is matched to
the face-matcher embeddings of the real training set, eR.
and the scores are denoted byMe, where

Me = ϕ(Qe, e
R). (7)

Using these, we compute Mprov = Me ◦ Ml. The ma-
trixMprov contains the combined dissimilarity scores (both

matcher and latent space based) of each identity proxy from
the query image. Lastly, the row-wise mean of the matrix
Mprov is used to obtain provenance scores, given by sprov.
This score signifies the extent of the identity contribution
of each training face, in the synthetic composite face. The
lower the value of the provenance score, the greater is the
extent of identity leakage. The images having the lowest
provenance scores are termed as leaking reals (LRs) for a
given synthetic composite image query.

4. Implementation Details

Dataset Generation - We construct synthetic image set
S, synthetic composite images and real composite images
from a given set of real images R in the following man-
ner. For each dataset that StyleGAN2 was trained on,
|S| = |R| = number of training samples of the dataset.
Thus, for the Flickr Faces High Quality dataset, or FFHQ,
|S| = |R| = 70, 000 while for the CelebAHQ [24] dataset
|S| = |R| = 30, 000. Further, for each dataset we vary k
from 2 to 6, and construct 10, 000 composites for each value
of k. This is done for both synthetic and real composites.

Face Matchers - Our experiments employ two face match-
ers to obtainMe, namely ElasticFace [4] and ArcFace [12].
ArcFace, uses an additive angular loss with a CNN back-
bone such as ResNet-100 [18] to learn highly discrimina-
tive features for face recognition, and is trained on the MS-
Celeb-1Mv2 [17]. ElasticFace employs flexible margin val-
ues in existing spherical loss functions to outperform previ-
ous approaches. The CASIA-WebFace [63] dataset is used
for training ElasticArcFace+ with a ResNet-50 backbone.
In particular, we use the ElasticArcFace+ version of Elas-
ticFace. Cosine distance is used for matching using Arc-
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Face, while ElasticFace uses Euclidean distance to compute
match scores. We utilize normalized face-matcher embed-
dings in all our experiments.

Provenance - In our algorithm, for each synthetic com-
posite query, we first select a assistants to act as identity
proxies along with its parents. The value of a is set to be 10
in our experiments, for all values of k. This is done so that
the identity proxies consist of highly similar identities w.r.t.
that of the query face image.

To minimize eq. (2), we sample points in theW space at
steps of size α from ls0, which are decoded into face images
G(ls0 + αd). This is done by iteratively incrementing α by
a fixed value δ = 0.1, hence the update in α is given by
α← α+ δ. We use PyTorch [37] as the framework for our
experiments, where d is directly set as a learnable param-
eter. The Adam [26] optimizer, initialized with a learning
rate of 1e− 4, is used for the backpropagation of the mean
squared error. Additionally, both d and d∗ are normalized
by their L2 norm.

Lastly, the number of synthetic composite queries in our
algorithm is set as 10, 000. All experiments are run on
an NVIDIA V100 GPU. We pre-compute h(S,R, d∗) and
ϕ(eS , eR) for efficiency. Finally, our framework takes ap-
proximately 2.5 hours to retrieve leaking reals and approxi-
mately 14.5 hours is needed for the pre-computation of h.

5. Experiments
Training StyleGAN2 on the FFHQ and CelebAHQ

datasets separately guides the latent representation space
differently. Different identities present in the training set,
along with different dataset sizes and training iterations, can
affect how faces and identities are encoded in theW space.
Hence, we evaluate our methodology for each variant of
StyleGAN2. To investigate identity leakage, the following
experiments were devised.

5.1. Embedding Space Density

Composite images created using latent space interpola-
tion capture more information shared among samples in the
latent space than individual synthetic samples. Due to this,
synthetic composites can be more useful for identity leak-
age analysis than randomly sampled synthetic images them-
selves. This can be verified by evaluating the embedding
space density [33]. Density has been used as a metric to
evaluate the diversity of the synthetic samples of generative
models. Given a feature space containing real samples and
synthetic samples (given by X and Y respectively), den-
sity evaluates the expected number of real-sample neigh-
borhoods which contain a synthetic sample Yj . Formally,
density D(·, ·) is defined as

D(X,Y ) =
1

kM

M∑
j=1

N∑
i=1

1Yj∈B(Xi,NNDu(Xi)) (8)

where N = |X| and M = |Y |. B(x, r) is the sphere in
the feature space around x with radius r and NNDu(Xi)
is the distance from Xi to the uth nearest neighbor among
X \ {Xi}. In this experiment, we show how density in the
face-matcher embedding space can be associated with iden-
tity leakage. More real embedding neighborhoods contain-
ing a synthetic embedding imply more real identities be-
ing similar to the synthetic identity features, hence greater
identity leakage. Therefore, we evaluate if D(eR, eSc ) >
D(eR, eS) for all considered datasets and matchers, and the
results are presented and analyzed in Sec. 6.1.

5.2. Match Scores for Identity Leakage Detection

To detect identity leakage, we perform distribution anal-
ysis on synthetic composite images and real composite im-
ages. We compute the distribution of ϕ(eSc , e

S
p ), the match

scores between the identity embeddings of synthetic com-
posite images and their synthetic parent images. We jux-
tapose this distribution with the distribution of ϕ(eRc , eRp ),
the match scores between the identity embeddings of real
composite images, and real images which are strictly their
parents. Similar distributions of the match score of both
types of composite images, but with strictly non-parent syn-
thetic and real images, i.e. the distributions of ϕ(eSc , e

S
n)

and ϕ(eRc , eRn ) are also computed. The match score distri-
butions with parents and non-parents are compared to es-
tablish of the presence of identity leakage in StyleGAN2.

5.3. Leaking Reals Retrieval

For this experiment, the algorithm defined in Sec. 3.3 is
used to retrieve the leaking reals queried for 10, 000 syn-
thetic composite queries, for each value of k. The obtained
provenance scores sprov are used to rank the real face im-
ages in the training set to obtain the top-5 leaking reals (LR)
for each synthetic composite query. Additionally, the match
scores of these leaking reals to their respective queries are
analyzed in order to evaluate the presence of identity leak-
age in the GAN’s latent space. The match scores for leaking
reals being significantly lesser than those of real parents to
real composites indicates that LR images contribute their
identities more to the synthetic composite query, than to
their real composite. This is performed for all face-matchers
and datasets, with the results reported in Sec. 6.3.

6. Results
The results of the experiments described in the previous

section are discussed below.

6.1. Embedding Space Density

We compute density as devised in Sec. 5.1 for the given
face matchers in the embedding space. Table 1 shows that
the density of synthetic composites w.r.t to the set of real
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(d) ArcFace on CelebAHQ

Figure 4. Match score distributions between real and synthetic composite image and their parent images for FFHQ and CelebAHQ
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Figure 5. Match score distributions between real and synthetic composite image and their non-parent images for FFHQ and CelebAHQ.

images D(eR, eSc ) is greater than that of synthetic images
D(eR, eS) for all our datasets and face-matchers. Thus, on
average, the embedding of a synthetic composite image has
more real embeddings as its u nearest neighbors in com-
parison to the embedding of a randomly sampled synthetic
image. This signifies that a set of synthetic composite faces
shows greater association with the identities of real faces, in
the face-matcher space, than that shown by non-composite
synthetic faces. The transitive aggregation of real identity
information leaking into its parents leads to greater density,
and hence, greater identity leakage in synthetic composite
faces. Thus, synthetic composite images serve as better
samples for the analysis of identity leakage.

Table 1. Density computation in the matcher embedding space for
FFHQ and CelebAHQ.

Dataset Face-matcher D(eR, eSc ) D(eR, eS)

FFHQ ArcFace 5.20 3.13
ElasticFace 3.65 2.36

CelebAHQ ArcFace 6.97 5.11
ElasticFace 5.30 3.76

6.2. Match Scores for Identity Leakage Detection

In Figure 4, in the embedding space of the face matcher,
synthetic parent images are closer to their composite im-
age than real parents are to their composite image. This
exhibits that synthetic composites have more common iden-
tity features with their respective synthetic parents, than real
composites have with their real parents. Additionally, syn-
thetic composites have an overall lower dissimilarity score
w.r.t reals. The real training set images are considered to

have unique identities. Therefore, when a real composite
is constructed, due to the semantic attributes of the latent
space, the identity features of the real images are subdued.
This composite can have a highly entangled identity which
is perceived by the face matchers to be different from the
distinct identities of the parents. We also analyze match
scores of synthetic composites with the remaining synthetic
samples given in Figure 5. Similar to Figure 4, synthetic
composites are on average closer. This implies that there
exist identity signals that are not only common between the
composite and its parents, but they are also shared in the en-
tireW space, confirming the presence of identity leakage.

6.3. Retrieving Leaking Reals

We present the results of provenance to obtain leaking
reals (LRs), or real face images showing most identity leak-
age into synthetic composite queries. We report the match
scores of synthetic composite images to their LRs in Fig-
ure 6. The dissimilarity scores of the LRs are less to a
synthetic composite, than comparison scores of real parent
images to their own composite images. This shows that a
synthetic composite is more similar to a leaking real image
than a real composite is to its parents. This provides further
empirical proof regarding identity leakage of real samples.
In Figure 7, we show qualitative results of our algorithm in
retrieving the LRs for the given queries in the leftmost col-
umn of the figure. We see retrieval of real faces showing
similar and coherent identity features w.r.t to the queries.

6.4. Ablation Studies

Varying the number of parents considered to represent
identity signals for a synthetic image can affect detection
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Figure 6. Match scores of LRs computed using SynthProv with synthetic composite queries shown with match scores of real composite
image with their respective real parents. These scores are computed using all face-matchers on both datasets, for k = 2.

Figure 7. Qualitative results of SynthProv using ElasticFace on
the CelebAHQ dataset. These are the set of real images showing
the highest identity leakage, given synthetic composites as query
images. The synthetic composites have k = 2 synthetic parents.

Figure 8. Example low-quality images frequently obtained from
PGGAN when its latent space is sampled at a large scale.

and provenance of leakage. Thus, we conduct an ablation
experiment to understand the effect of varying the number
of parents when creating a composite. For k ∈ [2, 6], we
compute the match scores of the synthetic and real com-
posite with their respective parents and present the mean
and standard deviation of the obtained distributions (Table 2
shown in supplementary material). Different trends were
observed with respect to k within experiments with different
face-matchers and datasets. However, the overlap between
the distributions of the real and synthetic parents does not
increase, implying that the detection of identity leakage is
independent of the choice of k. We further ablate the dis-
tributions of match scores of LRs from their queries with
respect to k, and find that these distributions also do not
converge, showing our algorithm is independent of choice
of k (plots shown in Figure 2 of supplementary material).

6.5. Other Generative Architectures

Besides StyleGAN2, PGGAN [22] has also been ex-
plored for face image generation and inversion [16, 65].
However, evaluating our method on PGGAN, we find a
significant decrease in face image quality as compared to
StyleGAN2, shown in Figure 8. This can be due to the less
semantically dense latent space learned by PGGAN in com-
parison to StyleGAN2, which hampers the realism of face
images when the latent space is sampled at a large-scale
for our experimental setting. Matching unrealistic look-
ing faces is also not well-suited for face-matchers, making
PGGAN unfit for quantitative evaluation. While there are
other generative models, our experiments focus on GANs,
as they are believed to be significantly more private than
other state-of-the-art generative models such as diffusion
models [6,48]. A study by Carlini et al. [6] showed that the
entire training data for diffusion models [11] is extractable
through their generate-and-filter pipeline. Our work shows
that identity leakage is traceable in StyleGAN2, implying
that privacy risks exist in both GANs and diffusion models.

7. Conclusion
Detectable identities in generative models pose a threat

to the privacy of individuals present in the training data.
This paper introduces the first framework to profile leak-
age of identity information from training data to synthetic
data. The richW latent space allows us to (a) create iden-
tity aggregated composites and (b) find a globally identity-
invariant direction. SynthProv uses this information with a
face-matcher to trace identity. Our work successfully high-
lights the privacy threat posed by identity traceability in a
popular model, StyleGAN2. However, identity leakage may
be present in various generative models, varying with the
specific architecture used. We hope this work inspires fur-
ther research on generalizable identity leakage analysis for
robust and private image generation.
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