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Abstract

The generation of high-quality images has become
widely accessible and is a rapidly evolving process. As a
result, anyone can generate images that are indistinguish-
able from real ones. This leads to a wide range of applica-
tions, including malicious usage with deceptive intentions.
Despite advances in detection techniques for generated im-
ages, a robust detection method still eludes us. Further-
more, model personalization techniques might affect the de-
tection capabilities of existing methods. In this work, we
utilize the architectural properties of convolutional neural
networks (CNNs) to develop a new detection method. Our
method can detect images from a known generative model
and enable us to establish relationships between fine-tuned
generative models. We tested the method on images pro-
duced by both Generative Adversarial Networks (GANs)
and recent large text-to-image models (LTIMs) that rely
on Diffusion Models. Our approach outperforms others
trained under identical conditions and achieves comparable
performance to state-of-the-art pre-trained detection meth-
ods on images generated by Stable Diffusion and MidJour-
ney, with significantly fewer required train samples.

1. Introduction
Generative neural networks enable the generation of

high-quality images. While this has many benefits for sci-
entific, creative, and business purposes, it can also be used
for malicious deception. As image quality continues to im-
prove, it becomes increasingly difficult for human observers
to distinguish between real and fake images without careful
observation and identification of inconsistencies, especially
in spite of large text-to-image-models (LTIMs) [17, 18].
Therefore, there is an urgent need for an automated tool
that can both detect generated images. This work aims to
provide such a method, which has demonstrated good per-
formance on both novel and popular approaches.

Acknowledgement: This work was supported in part by the Israel
Science Foundation (grant No. 1574/21).

Project page: https://sergo2020.github.io/DIF/

The advancement of image generation has been made
possible by the use of Deep Neural Networks (DNNs), par-
ticularly the Convolutional Neural Networks (CNNs) sub-
class. CNNs provide the best of both worlds by combin-
ing the image prior [51] with the flexibility of DNNs [28].
This has led to the development of image generators, which
are generative models trained to produce images given a
sample from known distributions and can be conditioned
on input. The most popular type of image generator fami-
lies is the Generative Adversarial Network (GAN) [22, 42],
which quickly gained popularity for its ability to produce
high-quality and high-resolution images in various applica-
tions such as [6,8,32–34,57]. Previously these models have
demonstrated state-of-the-art (SOTA) results in the field of
image generation.

However, the advent of diffusion models [26, 44] have
introduced a new paradigm that has shown the ability to
generate high-quality images surpassing those produced by
GANs [14]. Diffusion models are also a type of genera-
tive models and can be easily conditioned to arbitrary in-
put. This gave rise to a new type of image generators, the
LTIMs. These models incorporate advanced image genera-
tors (e.g., [16, 26, 44]) and are capable of generating high-
quality images from text captions combined with other in-
put domains [3–5,40,43,47,53]. Despite the advancements
and conceptual shifts, all the mentioned methods still de-
pend on CNNs for image generation.

To detect generated images, there are typically two ap-
proaches: data-driven and rule-based. Data-driven meth-
ods [11, 23, 52] involve training models on large datasets of
images, which are expected to generalize to unseen data.
However, these methods may struggle to detect images
from conceptually different generators, as shown in a later
study [10]. Rule-based methods, on the other hand, rely on
identifying common patterns or characteristics seen in gen-
erated images [7, 21, 31, 36–38, 54], and typically require
less data. However, most of these rules have only been
demonstrated on a selected set of GAN models and image
domains, which makes it necessary to re-evaluate the rules
for novel types of image generators. This can be a laborious
process as the rules are human-devised.
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Despite significant progress in synthetic images detec-
tion, the widespread adoption of LTIMs created new chal-
lenges in the field. Due to the resource-intensive nature
of LTIMs’ training, access to LTIMs and the amount of
available generated images for research purposes is limited.
As a result, data-driven approaches and some rule-based
methods may not be practical, as they require a significant
amount of data for training, and in some cases the training
of an image generator itself. Therefore, new detectors are
expected to not only perform well, but also to be trained on
a small number of images.

Detecting images generated by “personalized” models
poses an additional challenge. These models are fine-tuned
versions of LTIMs that are trained to generate images with
specific objects or in particular styles [2, 20, 46]. Despite
their widespread use, the impact of personalization and fine-
tuning on fingerprints has not been studied.

The proposed method achieves high detection accuracy
with minimal training data (less than 512 images), leverag-
ing CNN architecture to extract fingerprints of image gener-
ators and detect images from the same generator. Other de-
tectors typically require hundreds of thousands of images.

Our method was tested on various image generators,
including established GANs and LTIMs. It outperforms
competitors trained under the same conditions and achieves
comparable performance to SOTA pre-trained detectors on
widely used LTIMs such as Stable Diffusion [44] and Mid-
Journey [27], with significantly fewer required training
samples. Moreover, our method proves valuable for model
lineage analysis (Sec. 4.4). However, it is important to note
that our method is a proof-of-concept work and has certain
limitations, which are discussed in Sec. 5.

2. Related Work
Data-driven methods rely on CNN classification mod-

els. These methods aim to detect compressed images from
unknown image generators by training a detector on images
from a single image generator. The authors of [52] fine-tune
a pre-trained Resnet-50 [25] with 720k fake and real images
produced by ProGAN and apply a set of compressions dur-
ing training. They achieve high average precision on images
from several GAN models, but demonstrate poor accuracy
(Sec. 4.2). In [23], the authors repeat the process, but with
a modified Resnet50 and heavier augmentations, resulting
in SOTA performance. However, after the development of
LTIMs, another study [10] revealed that later model gener-
alizes well only on the same image generator family.

One notable approach from rule-based methods involves
detecting spatially-stationary and high-frequency artifacts
that image generators produce within images [41]. These
artifacts were observed in generated images [31,37,54], in-
cluding those produced by LTIMs [9, 10]. Since they are
unique to each trained image generator, they are referred

to as fingerprints (F-s). To estimate F , a set of residuals
is produced by passing each image through a denoising fil-
ter (fD ), and the residuals are then averaged. This leaves
only the common deterministic pattern within the residuals
— fingerprint. The image is associated with the generative
model by calculating the correlation coefficient between its
residual and the model’s F .

The usage of F-s holds great potential in model lineage
analysis. Marra et al. [37] demonstrated that residuals of
images generated by a specific model architecture exhibit
high correlation not only with the model’s fingerprint but
also with the fingerprints of models sharing the same archi-
tecture [37]. Yu et al. proposed a supervised method to at-
tribute fake images to their source models, training a detec-
tor on a dataset of images generated by multiple GANs [54].
Nevertheless, this approach relies on manual supervision,
requiring researchers to make educated guesses about the
relationship between different models prior to training. Pre-
vious studies have not explored the relationship between
models and their fine-tuned versions, or the methodology
for model lineage analysis.

In addition to the above, F-s and other artifacts are pri-
marily observed in the spectrum space, by transforming the
image with the Fast Fourier Transform (FFT). Some stud-
ies [19, 56] use this concept by training models on image
spectrum samples or performing operations within Fourier
space. Some attempts have also been made to synthesize
a large set of F-s for further training of detectors [30, 56].
However, while these methods demonstrate good detection
accuracy for a set of image generators on average, they may
perform poorly with some of them.

Another group of rule-based methods focuses on detect-
ing color distortions in generated images [7, 21, 36, 38].
These detection methods are usually evaluated on both gen-
erated and natural images and have shown promising re-
sults. However, it should be noted that color distortions
have only been demonstrated for a few image domains and
GAN models.

3. Method
Our method extracts a CNN fingerprint of an image gen-

erator using a small number of generated images and ap-
plies it for the detection of other images produced by the
same image generator. The method relies on the proper-
ties of CNNs, as explained below with a simple experi-
ment (Sec. 3.1). Then we’ll explain the fingerprint extrac-
tion (Sec. 3.2) and following detection process (Sec. 3.3),
including implementation details (Sec. 3.4).

3.1. Deep Image Fingerprint

Deep Image Prior [51] demonstrated that CNNs incor-
porate an image prior in their structure. Consider an im-
age restoration task, where given a corrupt image X ∈
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Figure 1. The reconstructed gray images (top) and their FFT log-
magnitude (bottom). For previewing images are normalized. The
mean value is subtracted before applying the FFT. U-Net pro-
duces mix of boundary artifacts (lines) and up-sampling artifacts
(checkerboard). C-Net produces solely boundary artifacts, while
Up-Net exclusively yields up-sampling artifacts. In the Up-Net
model, the input noise is up-sampled after 1x1 convolution, result-
ing in blocks with varying gray levels.

R3×H×W the goal is to obtain the restored image Ŷ ∈
R3×H×W from a trained model hθ:

Ŷ = min
θ

E(hθ, X) + P (X) (1)

E is a data term and P is the image prior.
For a CNN encoder-decoder model gθ, the architecture

itself serves as the image prior. Thus, the optimization task
is simplified, as the search is focused on finding only the
data term E within the weights (θ) space of the CNN with-
out the need of learning P . Here the input of gθ is a random
tensor Z ∈ RC×H×W , where each element is zi ∼ U(0, 1).

Ŷ = min
θ

E(gθ(Z), X) (2)

After the optimization, the reconstructed image is given
by:

Ŷ = gθ̂(Z), θ̂ = argmin
θ

E(gθ(Z), X) (3)

But, following a number of observations, Eq. (3) seems to
be incomplete. Images produced by CNNs include a unique
model fingerprint (F∈ R3×H×W ), thus:

Ŷ + F(gθ̂) = gθ̂(Z) (4)

To prove this statement, we perform a simple experiment:
we optimize the weights of CNN (θ) U-Net [45] to produce
a single gray image without any semantic content. It seems
as a trivial task, yet after convergence, the model is still
unable to reconstruct the image perfectly (Fig. 1).

We reveal the artifacts by simple image normalization
to range [0,1]. Two main fingerprint patterns are observed:

up-sampling and boundary artifacts. Previous research has
primarily focused on up-sampling artifacts, resulting from
interpolation and kernel overlap [15, 19, 30, 41]. In gen-
eral, an up-sampling replicates signal in spectrum domain.
To simulate only these artifacts, we optimize the Up-Net
model: four blocks of 1x1 [49] convolutional layers, to
avoid padding, followed by deconvolutional layers with ker-
nel size of 2 and stride 2. This produces a periodic pattern
in image space and dots in the spectrum domain (Fig. 1).

Boundary artifacts cause a grid-like structure in spec-
trum domain. When applying FFT to an image, it assumes
periodicity, but if image is not periodic, a “cross” artifact
will appear as a result of the image’s non-periodicity [39].
Our target gray image, which is periodic, does not exhibit
this artifact, but the reconstruction does. This phenomenon
is rooted in image padding and the mechanism of convolu-
tion layers, which are known to impact CNN performance
[1,29]. To simulate this, we optimize the C-Net model with
eight convolutional layers, each having a kernel size of 3,
a stride of 1, and a padding of 1. This configuration helps
preserve the spatial dimensions of the input and induces ar-
tifacts. Addition of up-sampling replicates “cross” structure
resulting in grid structure in spectrum domain.

Consequently, in parallel to the Deep Image Prior [51],
where a CNN’s structure was shown to be an image prior,
here we have shown that CNN’s structure is also artifact
prior. As such, we term our method deep image fingerprint
(DIF), and describe it next.

3.2. Fingerprint Extraction

We can extract fingerprints of a target model by an opti-
mization of θ given a set of generated images and a set of
arbitrary real images. The optimization is similar to the de-
noising procedure [51], where F is acquired by Eq. (3), but
instead of computing mean square error loss with respect
to some image we compute correlation with respect to a set
of image residuals. Residual Ri ∈ R3×H×W is defined as
Ri = fD(Xi), where (Xi) is an image and fD is a denoiser
filter [37].

The goal is to produce fingerprint that is highly corre-
lated with residuals of generated images, and non-correlated
with residuals of real images. Pearson Correlation Coef-
ficient is proved to be a good correlation metric between
image residual and model’s fingerprint [37, 54]. In practice
we transform each input into their zero-mean and unit-norm
versions, preform inner product and average values. This
will be referred simply as correlation and denoted as ρ(·, ·).

The loss function is formulated similarly to contrastive
loss in siamese setting [24]. We define a similarity factor
tij ∈ {0, 1}, which is equal to 1 when two residuals are
from the same class and 0 otherwise and correlation dis-
tance (Dij) as euclidean distance between correlation val-
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ues:
Dij =

√
(ρ(Ri,F)− ρ(Rj ,F))2 (5)

Finally the sample loss function (LS ) is summarised below:

LS =
tij ·Dij + (1− tij) · (m−Dij)

m
(6)

m is a hyper parameter.

3.3. Detection of Generated Images

We perform detection through hypothesis testing. After
generating the F from the trained model (gθ̂), the model it-
self (and a GPU) is no longer necessary. Then, we compute
the means of the populations of real and fake correlations
according to Eq. (7), denoted as µr and µg , respectively.
Nr and Ng represent the number of real and generated im-
ages in the training set. For each test image, we extract its
residual Rtest = fD(Xtest) and then perform hypothesis test-
ing as follows: if |ρ(Rtest,F)− µg| < |ρ(Rtest,F)− µr|,
the tested image is considered generated, otherwise, it is
considered real or not produced by the target model. This
procedure does not require any parameters, such as thresh-
old.

µr =
1

Nr

∑
i∈r

ρ(Ri,F) , µg =
1

Nr

∑
i∈g

ρ(Ri,F) (7)

3.4. Implementation Details

In all of our experiments (Sec. 4), we train and test
the method in a similar manner. Margin is constant m =
0.01 and z has 16 channels. fD is a pre-trained DnCNN
model [55] that is trained separately on real images (Laion-
5B dataset [48]) with sigma range of [5, 15] and crop size
48 × 48 pixels. During the extraction procedure, fD ’s
weights are not updated. The extraction model is a U-
net [45]. Optimization was carried out using Adam [35],
with a constant learning rate of 5e−4. During training, the
fingerprint was accumulated using exponential moving av-
eraging. We provide additional details about the selection
of fD , the training process of DnCNN, and the U-Net ar-
chitecture in our supplementary materials.

4. Experiments
This study includes a series of experiments that involve

a varied collection of images generated by different LTIMs
and GANs. The datasets are summarized in Sec. 4.1. The
detection results are presented in Sec. 4.2, which is divided
into two parts: the detection of images produced by LTIMs
and the detection of GAN-generated images. In Sec. 4.3, we
investigate the effect of image generator training and fine-
tuning on its fingerprint, and in Sec. 4.4, we analyze the
relationship between selected LTIMs. Finally, in Sec. 4.5,
we test the method on compressed images.

4.1. Detection Data

Our data includes generated images from a variety of
LTIM and GAN models. In contrast to LTIMs, that produce
multi-domain images, GANs are often limited to a specific
image domain that they were trained on. Therefore, some of
the GAN datasets include a number of image domains, each
produced by a different model. Tab. 1 summarizes the data.
The amount of real and generated images per set is equal.
During the experiments we randomly split each dataset into
equally sized train and test sets.

Source model NI NM

CycleGAN 2,600 6
ProGANe 8,000 20
ProGANt 80,000 20
BigGAN 4,000 1
StyleGAN 12,000 3
StyleGAN2 16,000 4
GauGAN 10,000 1
StarGAN 4,000 1
SD 1.4 6,000 1
SD 2.1 6,000 1
MJ 6,000 1
DALL·E-2 2,000 1
GLIDE 6,000 1
DALL·E-Mini 6,000 1

Table 1. Our data. We specify the source model, number of images
NI , and number of model variants NM .

Datasets representing LTIMs were generated by us and
is available online. We randomly selected real images
and their corresponding captions from the Laion-5B [48]
dataset. Then, we used the captions to generate correspond-
ing images using publicly available Stable Diffusion mod-
els [44], versions 1.4 (SD 1.4) and 2.1 (SD 2.1), DALL·E-
Mini [12] and GLIDE [40]. In the case of DALL·E-2 [43]
we generated images with OpenAI’s official API1. Lastly,
a large set of generated images produced by MidJourney
(MJ) [27] is publicly available on the Kaggle website [50],
from which we select a random subset for this work.

Datasets representing GAN models were obtained from
the supplementary materials of Wang et al. [52]. Our
supplementary document contains a detailed review of the
datasets.

4.2. Detection of Generated Images

We evaluate DIF as a generated image detector and com-
pare it to rule-based methods and data-driven methods. We
summarize the results of detecting images produced by
LTIMs and GANs in Tabs. 2 and 3, respectively. To rep-
resent the number of training samples and the size of the
pre-training datasets, we utilize NS and ND respectively.

1https://platform.openai.com/docs/guides/images
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NP NS Method SD 1.4 SD 2.1 MJ DALL·E-Mini GLIDE DALL·E-2 Mean

0

1024

Joslin20 49.7 49.9 49.9 52.3 57.0 51.4 51.7
Marra18 52.6 48.0 75.7 85.3 57.6 56.3 62.6
Ning18 50.8 51.4 59.5 58.1 57.7 52.2 55.0
Resnet-50 72.2 72.6 87.1 87.5 94.1 88.7 83.7
Resnet-M 69.2 73.6 89.7 89.4 94.3 85.9 83.7
DIF 99.3 89.5 99.0 99.0 90.3 79.5 92.8

512
Resnet-50 70.6 70.5 90.0 85.4 92.7 85.4 82.4
Resnet-M 68.3 71.4 81.1 85.2 91.3 83.8 80.2
DIF 99.2 86.3 98.8 98.7 88.2 79.1 91.7

256
Resnet-50 66.2 64.0 86.4 82.0 89.0 81.4 78.2
Resnet-M 67.2 65.8 74.4 83.5 88.0 75.3 75.7
DIF 98.5 81.3 98.1 98.0 85.9 77.7 89.9

128
Resnet-50 66.2 64.0 85.9 75.1 87.6 75.2 75.7
Resnet-M 68.0 66.4 72.6 81.0 80.3 71.7 73.3
DIF 97.7 75.5 97.3 97.0 81.4 76.1 87.5

720k

1024
Wang20 63.7 61.7 75.7 78.3 74.5 74.7 71.4
Grag21 93.5 86.9 93.5 96.1 97.5 93.5 93.5
Corv22 99.7 99.0 99.2 96.4 96.0 91.9 97.0

512 Grag21 93.0 86.0 94.7 96.1 96.4 92.1 93.1
Corv22 99.6 98.6 98.8 95.9 95.1 89.4 96.2

256 Grag21 89.9 82.9 94.1 94.9 95.6 90.5 91.3
Corv22 99.6 98.6 99.0 95.6 94.8 89.0 96.1

128 Grag21 87.9 82.2 93.4 93.5 94.2 90.4 90.3
Corv22 99.6 98.4 98.6 93.9 89.1 77.5 92.9

0 Grag21 57.0 50.2 63.1 58.0 54.3 51.2 55.6
Corv22 99.3 99.3 99.0 89.5 57.0 51.6 82.6

Table 2. Classification accuracy (%). NS and NP are the amount of train samples and pre-train dataset size. DIF achieves best average
accuracy comparing to other rule-based and non pre-trained models even when NS = 128. For SD 1.4, MJ and DALL·E-Mini, DIF is also
comparable with the SOTA pre-trained and fine-tuned method (Corv22).

Rule-based methods rely on fingerprint extraction.
Marra18 [37] is a conventional method for extracting F
that involves averaging over residuals. Classification is then
performed using the extracted F as described in Sec. 4.2.
Joslin20 [31] follows a similar approach to Marra18, but
correlation is conducted in the Fourier domain. For these
two methods and DIF, we employ the same fD (Sec. 3.4),
as with it they demonstrate superior performance. Fur-
ther details can be found in the supplementary material.
Ning18 [54] involves extracting fingerprints from images
using a trainable auto-encoder model and classifying the
images with an additional CNN model.

We also compare to data-driven methods: pre-trained
Resnet-50 [25] on ImageNet [13], Wang20 [52] is Resnet-
50, which is trained on ProGAN images, Grag21 [23]
and Corv22 [10] utilize modified Resnet-50 architecture
(Resnet-M).

The methods Wang20, Grag21, and Corv22 have pre-
viously demonstrated SOTA results in the detection of im-
ages produced by GANs and LDMs [10]. Wang20, Grag21,
and Corv22 are trained on 720k images each, where half
of the dataset consists of real images, while the other half

is composed of images generated by ProGAN [32], Style-
GAN [33] and LDM [44], respectively. Additionally, we
performed fine-tuning on all the aforementioned models us-
ing NS images. In the case of fine-tuning, the models are
frozen, and only the last fully-connected layer is reinitial-
ized and updated during training.

According to the results in Tab. 2, the proposed method
achieves remarkably high performance with a low number
of training samples when applied to images generated by
LTIMs. DIF demonstrates higher accuracy compared to
other rule-based methods and a higher mean accuracy com-
pared to non pre-trained data-driven methods. Furthermore,
when directly comparing DIF to the best fine-tuned method
(Corv22), DIF performs equally well in the case of SD 1.4,
MJ, and DALL·E-Mini, and outperforms all non fine-tuned
models on average, even with NS = 128.

For GLIDE, SD 2.1 and DALL·E-2, the detection accu-
racy of DIF is lower. F is formed by model architecture,
weight initialization, and train data (Sec. 2). Refer to Fig. 2.
In contrast to SD 1.4, the FA of GLIDE exhibits a barely
visible grid pattern that gets lost within the accumulated
noise. This makes it a “weak” fingerprint, characterized by
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lower energy. Similar “weak” fingerprint is also observed
in SD 2.1. Despite sharing architecture with SD 1.4, SD 2.1
was trained on different dataset2 and possibly with different
weight initialization.

Similar results are obtained when evaluating images gen-
erated by GANs, as shown in Tab. 3. DIF surpasses all
rule-based methods and performs comparably to the best
pre-trained model (Grag21) in four out of seven GAN mod-
els. The lowest detection accuracy is observed for the
ProGANe dataset, which is expected. As mentioned in
Sec. 2, each trained model produces unique fingerprints,
and DIF is specifically designed to detect images from a sin-
gle model. For completeness, we also measure the detection
accuracy for ProGANt, where DIF is trained on images of
each model separately. In this case, the mean accuracy is
91.2%, with the highest accuracy reaching 96.0% and the
lowest accuracy being 83.2%. Similarly to the case of SD
models, we observe that not only model architecture affects
it’s F . A comprehensive evaluation for ProGANt is pro-
vided in our supplementary materials.

Summarizing the experiments, DIF exhibits strong per-
formance with both novel and well-established image gen-
eration methods. We have demonstrated that DIF outper-
forms other methods trained under the same conditions
on average, in the detection of images generated by both
LTIMs and GANs. Additionally, DIF performs compara-
bly to pre-trained SOTA methods (Grag21 and Corv22). It
is worth noting that DIF achieves these results with just a
few hundred images, while pre-training typically requires
three orders of magnitude more images and additional fine-
tuning. Therefore, we consider DIF to be a formidable com-
petitor to existing methods.

4.3. Detection of Images From Fine-Tuned Models

Now consider a more challenging setting, where given
a trained DIF for some image generator we aim to detect
images generated by its fine-tuned version. Due to unique-
ness of fingerprints (Sec. 2) images generated by these new
model variations might not be detected by DIF trained on
images produced by the original model.

To investigate the relation between source models and
their variations we conduct an experiment using varied
datasets and checkpoints. First, we train four ProGAN mod-
els (PA, PB , P̂A, and P̂B) for 70 epochs. PA and PB are
trained on 2,500 “cat” class images from AFHQ [34] with
random seeds A and B respectively. P̂A and P̂B are trained
with the same random seeds, but on 2,500 “wild” class im-
ages from AFHQ. Next, for each model we use five check-
points at epochs 20, 32, 40, 52 and 70, and generate 2,500
images for each. Finally, we construct 20 datasets by adding
real images from the corresponding train set of ProGANs to

2 https://github.com/Stability-AI/stablediffusion

each set of generated images. This results in 20 ProGAN
models with 20 datasets.

We preform a cross-detection on PA, PB , P̂A and P̂B

and for brevity summarize results for PA and PB in Fig. 3.
The full cross-detection map, including comparison to
cross-correlation of fingerprints, is available in our supple-
mentary materials. During cross-detection we attempt to
classify images produced by some image generator with
DIF which is trained on images from another image genera-
tor. Observe the symmetric relation within the same model:
for checkpoints of epochs 40, 52 and 70 cross-detection ac-
curacy is high and symmetric. Other relations include low
accuracy and/or asymmetric, which is exactly what is ex-
pected for DIF trained on unique F-s. We may conclude
that the model’s F changes during training. However, as
the model converges, these changes become insignificant,
resulting in high cross-detection accuracy for DIF.

We conduct an additional experiment where we mea-
sure cross-detection on images from a number of fine-
tuned/“personalized” stable diffusion models [46], which
involve updates of image decoder weights. The models are:
our custom fine-tuned SD 1.4 with a small set of images and
two downloaded models of stable diffusion v1.5 and v2.0
fine-tuned on a large set of anime images3 and robot im-
ages4. Models denoted as SD 1.4S, SD 1.5A and SD 2.0R
respectively. For each model we generated 1000 images
from the same caption set that was used with SD 1.4, in-
cluding style/object keywords specific to each model. Then
train DIF for each with 512 real and 512 generated images
(Sec. 4.2). Upon analyzing the results presented in Fig. 4,
we can conclude that the relationships observed in previous
experiments are maintained even when the model is fine-
tuned with new data. Consequently DIF will also perform
well on images generated by fine-tuned models.

4.4. Model Lineage Analysis

We can use our extracted fingerprints to detect the lin-
eage of trained models. In Fig. 5 we show cross-detection
results for LTIMs. We observe that SD 1.4 and MJ produce
high-cross detection accuracy, thus MJ is likely to be a fine-
tuned version of SD 1.4. Indeed, while this is not public
knowledge, we found evidence that our analysis is correct5.

In contrast, SD 2.1 does not retain such a relation with
both SD 1.4 and MJ, therefore we can conclude that this
model was trained from scratch. Indeed, this was confirmed
by the SD 2.1 developers3.

4.5. Robustness

To test our method’s robustness to image compression,
we use two models: SD 1.4 and GLIDE, representing strong

3https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion
4https://huggingface.co/nousr/robo-diffusion-2-base
5https://tokenizedhq.com/midjourney-model/
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FA FE FA FE

SD 1.4 GLIDE

Figure 2. Fingerprints of SD 1.4 and GLIDE. Per each model two types of fingerprint are shown: fingerprint by residual averaging (FA)
and extracted by DIF (FE). Observe the FA of each model: SD 1.4 demonstrates strong grid-like pattern, whereas GLIDE shows none -
GLIDE has a “weak” fingerprint. In contrast to FA, FE reveals clear patterns of SD 1.4 and GLIDE.

NP NS Method CycleGAN StyleGAN StyleGAN2 StarGAN BigGAN GauGAN ProGANe Mean

0 1024

Joslin20 51.6 72.5 52.4 68.6 50.8 53.9 50.2 57.1
Marra18 58.8 82.6 50.9 92.5 54.8 51.5 48.5 62.8
Ning18 49.5 61.7 57.2 64.1 57.7 55.5 50.2 56.6
DIF 94.4 96.6 91.5 99.9 96.9 91.8 57.7 89.8

720k

1024
Wang20 91.7 94.1 94.0 95.6 85.7 95.0 100 92.6
Corv22 93.0 94.8 92.6 98.3 93.0 95.9 95.1 94.7
Grag21 98.0 100 100 100 98.2 98.5 100 98.8

0
Wang20 84.6 76.5 72.2 84.7 59.4 82.9 100 91.9
Corv22 50.6 59.8 51.2 45.7 51.9 46.3 51.2 51.0
Grag21 93.5 100 100 99.9 96.5 90.9 99.9 97.2

Table 3. Classification accuracy (%). NS and NP are the amount of train samples and pre-train dataset size. DIF achieves best result
comparing to rule-based methods and is on par with pre-trained models. Low accuracy with DIF for ProGANe is expected as it is a mix of
images generated from 20 different models.

Figure 3. Cross-detection accuracy in percents. Each grid charac-
terized by model and epoch. Observe clusters for epochs 40,52,70.

and “weak” F-s, respectively. We created four additional
datasets for each model: images compressed using JPEG at
quality levels of 75 (J75) and 50 (J50), resized (R) images,
and blurred (B) images. Uncompressed images are denoted
as U. The resized images were down-sampled to half of
their original size and then up-sampled back to their orig-
inal size using nearest-neighbor interpolation. We applied
blur with a sigma value of 3, resulting in heavy smoothing.

We train DIF separately on each compression set for each
model, following the procedure outlined in Sec. 4.2, using
256 training images each time. To emulate a more realistic
scenario in which the compression type is not known, we
also train the model on a mixed dataset where images are
randomly compressed during the training procedure.

The detection accuracy for each compression type in re-
ported in Figs. 6a and 6b for SD 1.4 and GLIDE, respec-
tively. We observe that the blur significantly reduces the
extraction and detection capabilities of the method because
the F signal resides on higher frequencies of the image. In
other cases, the accuracy is reduced, but this depends on the
characteristics of the fingerprint.

We hypothesize that the detection of compressed images
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DIF Grag21 Marra18

Figure 4. Model lineage analysis of SD models with different detection methods. For DIF and Grag21 we show cross-detection (%)
and for Marra18 cross-correlation of fingerprints. Notably, only DIF exhibits clusters of SD 1.x and SD 2.x with high and symmetric
cross-detection.

Figure 5. Model lineage analysis of LTIMs with DIF by cross-
detection (%). DM and D2 denote DALL·E-Mini and DALL·E-2,
respectively. Relation between SD 1.4 and MJ is similar to relation
between SD 1.x models.

(Fig. 4).

GLIDE SD 1.4

Figure 6. Detection and cross-detection accuracy per compression
for images generated by GLIDE and SD 1.4.

is influenced by the original pattern of F . For example, we
can observe different detection behaviors for resized images
in both models. DIF trained on GLIDE’s resized images
can easily detect uncompressed images, but in the same sce-
nario, where DIF is trained on images produced by SD 1.4,
it is unable to detect uncompressed images. Additionally,

we can barely observe symmetry in cross-detection accu-
racy per model. This is a clear sign of changes within F
that result from compression.

The above is only a brief analysis of the effect of com-
pression on F . It appears to be a complex topic that requires
a more comprehensive investigation, which we leave for fu-
ture work.

5. Conclusions and Future Work

This study provides a twofold contribution: the devel-
opment of new methods for synthetic image detection and
the establishment of a methodology for model lineage anal-
ysis. We have shown that CNNs naturally exhibit image
artifacts, which we leverage in our method called DIF. DIF
extracts fingerprints from generated images, allowing us to
detect images that come from the same model or its fine-
tuned versions. Our method achieves high detection accu-
racy, surpassing methods trained under the same conditions
and performing similarly to pre-trained state-of-the-art de-
tectors for generated images from popular models. Remark-
ably, we achieve these results using a small number of gen-
erated images (up to 512), while other detectors require sig-
nificantly more samples for training.

In terms of model lineage analysis, we employ cross-
detection as a means to trace fine-tuned generative models.
Notably, our analysis reveals that MidJourney is indeed a
fine-tuned variant of the Stable Diffusion 1.x model.

However, we identified several drawbacks that require
further investigation. Some image generators produce weak
fingerprints, which are challenging for DIF. Furthermore,
the method performs poorly on certain compression meth-
ods and blurred images. We believe that the effect of com-
pression on fingerprint extraction and detection requires ad-
ditional attention and is a topic for future research.
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