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Abstract
In precision livestock farming, the individual identifica-

tion of cattle is crucial to inform the decisions made to en-
hance animal welfare, health, and productivity. In liter-
ature, models exist that can read ear tags; however, they
are not easily portable to real-world cattle production en-
vironments and make predictions mainly on still images.
We propose a video-based cattle ear tag reading system,
called ReadMyCow, which takes advantage of the tempo-
ral characteristics in videos to accurately detect, track, and
read cattle ear tags at 25 FPS on edge devices. For each
frame in a video, ReadMyCow functions in two steps. 1)
Tag detection: a YOLOv5s Object Detection model and
NVIDIA Deepstream Tracking Layer detect and track the
tags present. 2) Tag reading: the novel WhenToRead mod-
ule decides whether to read each tag, using a TRBA Scene
Text Recognition model, or to use the reading from a previ-
ous frame. The system is implemented on an edge device,
namely the NVIDIA Jetson AGX Orin or Xavier, making it
portable to cattle production environments without external
computational resources. To attain real-time speeds, Read-
MyCow only reads the detected tag in the current frame if
it thinks it will get a better reading when a decision met-
ric is significantly improved in the current frame. Ideally,
this means the best reading of a tag is found and stored
throughout a tag’s presence in the video, even when the tag
becomes occluded or blurry. While testing the system at a
real Midwestern dairy farm housing 9,000 cows, 96.1% of
printed ear tags were accurately read by the ReadMyCow
system, demonstrating its real-world commercial potential.
ReadMyCow opens opportunities for informed data-driven
decision-making processes on commercial cattle farms.

1. Introduction
Precision livestock farming (PLF), or the rearing of live-

stock informed by electronic sensors, tools, and methods, is
spreading worldwide. PLF allows a producer to make early,
optimal, and data-driven decisions informed by the moni-

toring of their livestock’s behavior, welfare, and production
[25]. These systems enhance animal welfare, health and
productivity, as well as improve farming lifestyle, knowl-
edge, and traceability of livestock products [26]. Further-
more, PLF has the potential to reduce the historically repet-
itive and physically demanding jobs conducted in adverse
environments in the livestock sector [23], though further
contemplation of the impacts of PLF is necessary [13]. Sup-
port of cattle health and welfare is particularly important as
the cattle industry represents the largest share of total cash
receipts for agricultural commodities in the U.S., forecasted
to represent about 78.5 billion dollars in 2022 [8]. Thus,
applications of AI are receiving increased attention in agri-
culture, particularly in smart agriculture, precision farming,
and food animal health and production [40].

Many recent advancements have been made in the detec-
tion of cattle behavior and disease using AI. Models capable
of recognizing heat [29], claw lesions [44], respiratory dis-
ease [41], mastitis [47], lameness [38], among others have
found success in experimental settings. However, a gap ex-
ists between the development of disease detection models
and their integration into real-time inference on commer-
cial cattle farms, because, despite detection of disease, it re-
mains a challenge to readily identify the individual diseased
animal, particularly on large-scale cattle farms.

The current industry standard for individual cattle iden-
tification is radio frequency identification (RFID) using
transponders. The radio signal of RFID tags is affected
by electromagnetic environments such as iron fences and
cooling fans as well as tag power and circuit quality [39].
According to [39], the average reading distance of low-
frequency RFID tags is less than 8 inches, limiting the ap-
plication of this identification method, because disease de-
tection models and strategies are applied at larger distances.
In addition, ear tags with visual identification numbers are
cheaper, limiting the widespread use of RFID tags. An al-
ternative individual cattle identification system is needed.

Visual cattle identification tags, applied as ear tags or
neck bands, use printed or handwritten sequences of num-
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bers to identify cattle and other farm animals. The number
of digits on the tags, tag warping, their color, lighting, filth,
and cattle movement make reading these ear tags using opti-
cal character recognition (OCR) algorithms difficult. Mod-
els capable of individual identification of cattle exist and are
functional in certain use cases [1,2,16,17,34,48,51,53,54],
however, they are image-based and not portable.

Video-Based Recognition versus Image-Based Recog-
nition: For the purposes of this paper, an image-based
pipeline is an AI pipeline that makes predictions for a sin-
gle frame using only information from that frame. A video-
based pipeline is an AI pipeline that makes predictions for
a frame while taking advantage of the temporal character-
istics present in a video: it uses the information from past
frames to make better predictions for the current frame. A
single frame from a video can only provide so much in-
formation to an identification system. For example, if the
last digit of an ear tag is occluded in a frame, an image-
based tag reading pipeline will report the wrong reading for
that frame, regardless of whether the correct reading had
already been found in a previous frame. A video-based
pipeline, on the other hand, can read this tag in its current
state, compare this frame’s reading to previous readings of
the same tag through a tracker, and choose which reading
to report based on confidences or other metrics. In addition,
a video-based pipeline is capable of skipping certain com-
putationally expensive steps in certain frames where they
are deemed unnecessary, speeding up the pipeline. The cat-
tle identification models currently present in literature are
mostly image-based.

Portability-Performance Tradeoff: A limitation of cur-
rent cattle identification models is their portability. Com-
puter vision models often demand extensive computational
resources. Most commercial cattle farms do not have
access to these computational resources or a stable net-
work connection. A solution to this problem is to run
AI pipelines on edge devices. However, the smaller and
more convenient the device, usually the more limited its
computational power, slowing detection speed and reduc-
ing the model’s effectiveness, although, with modern ad-
vances such as TinyML [50], this tradeoff could diminish.
NVIDIA has started integrating their high-powered GPUs
into a line of edge devices capable of efficiently running
accurate AI models. An effective and useful cattle identifi-
cation model must strike a balance between portability and
performance, where environmental constraints and model
effectiveness coexist.

Contributions: We propose a tag reading system, called
ReadMyCow, capable of detecting and tracking multiple
visual ear tags throughout their consecutive appearances
in a video stream, reporting the best tag reading, at 25
FPS on an edge device. A key technical contribution is

the WhenToRead module, which decides whether a tag
should be read anew in each frame or to use a previous
frame’s reading, enabling real-time speeds. Our experi-
ments demonstrate that our system is significantly faster and
more accurate than both an image-based baseline as well as
a video-based baseline that only performs tracking without
the WhenToRead module. The ReadMyCow system pro-
vides an important step towards mobilizing AI models in
applied settings as well as introducing a tag reading system
capable of commercial utilization in a cattle production set-
ting, enabling exact animal husbandry in precision livestock
farming. When presented and tested at a commercial 9,000
cow dairy farm, the management of the dairy expressed in-
terest in the ReadMyCow system, asking how soon the sys-
tem would be available commercially. Importantly, while
we focus on cows due to the data that we have, our approach
could also easily be applied to other livestock animals such
as pigs and sheep.

2. Related Work

2.1. Individual Identification of Cattle
Physical Body Features: Reports in literature propose in-
dividual cattle identification through body markings [3, 16,
33, 34, 51]. Similarly, [1, 48] use bovine faces for identifi-
cation. These identification methods are limited to the cat-
tle present at the time of training the model, reducing the
scalability of these models on commercial farms with large
turn-over of cattle. [2] addresses this by proposing a more
open and general model capable of differentiating cows it
has never seen before. Yet, mapping the differentiated body
markings to an individual animal is still necessary. In gen-
eral, when faced with a commercial production environment
where the number of cows can exceed 1000, the scalabil-
ity and usefulness of cattle identification models that use
body features are limited. In addition to cattle, it is impor-
tant to mention that a lot of work has been done in the in-
dividual identification of other animals such as sheep [45],
pigs [14,28], and wild animals using a wide variety of meth-
ods [20, 43].

Ear Tags: Most large-scale cattle production farms al-
ready use individual identification numbers. Animals wear
ear tags with a visible unique ID that is familiar to the
farmer. As RFID tags are more expensive and cannot be
read from a distance, researchers have proposed visual ear
tag identification systems. [17] proposes a system that can
read one near ear tag at a time using color thresholds,
flood fill, Hough transform, skewness correction, and pro-
jection methods. [53, 54] propose an ear tag reading system
that functions by the feed bunks, capable of simultaneously
reading 4-digit ear tags of five cows in pre-determined loca-
tions using head detection, HSV conversion, color thresh-
olds, skewness correction, digit segmentation, and digit
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recognition using a Convolutional Neural Network (CNN).
[6] set up a model in a milking robot, reading ear tags by
zeroing in on the tag through HSV conversion, color thresh-
olding, and skewness correction, followed by acquiring the
readings using a CNN fine-tuned on tag data.

These individual cattle identification models are func-
tional but limited. 1) They are trained for very specific con-
ditions and not sufficiently flexible to adapt to a real farm
environment. For example, away from the feed bunk or
milking robot, when the colors of the tags are not uniform,
when the number of digits on the tags vary, or in situations
where the tag is obscured through motion, occlusion, or dirt.
2) They suffer from the image-based versus video-based
recognition problem: the recognition pipeline is restricted
to operating on a frame-by-frame basis, without tracking the
readings of the same tag from previous frames in the video
stream. This means that in frames where a correct reading
is simply impossible, for example, due to a pole blocking a
digit, blur from a flicking ear, among others, the system will
report a wrong reading, even if the correct reading had al-
ready been given a few frames earlier. 3) Another limitation
of these tag reading models is the portability-performance
tradeoff: the models are decently fast, the detections are
mostly accurate, but the models are not portable to a pro-
duction cattle setting where computational resources and
internet connections are limited.

2.2. Deep Learning Approaches to Object Detection

Object detection research has had remarkable advances
over the past decade. Notable deep learning methods in-
clude those of the R-CNN [11, 37] and YOLO [21, 35, 36]
families. Video object detection methods combine static
image-based object detection with video-based tracking to
leverage the temporal signal in video for improved accu-
racy and/or speed [10,19,22,46,52]. Our work builds upon
the YOLOv5 detector for its high accuracy and real-time
speeds, and the NVIDIA Deepstream Tracking Layer for
tracking. Importantly, we introduce a novel WhenToRead
module, which exploits temporal redundancy in video to
further improve accuracy and speed, and attain real-time
speeds on edge devices.

2.3. Deep Learning Approaches to Optical Charac-
ter Recognition and Scene Text Recognition

Optical character recognition (OCR) has been studied for
decades [7, 49]. Scene text recognition (STR) is a specific
type of OCR problem in which the task is to recognize text
(often whole words instead of individual characters) in nat-
ural images [24]. The deep learning era, combined with
popular competitions such as the ICDAR Robust Reading
Competition [30], have led to significant progress in STR
both on the accuracy and inference speed fronts. STR meth-
ods have traditionally been trained with human-annotated

real images. To reduce the dependency on expensive hand-
annotated data, researchers have explored using synthetic
datasets [12, 18] as well as semi-supervised learning tech-
niques [5,9]. Existing approaches typically train a sequence
prediction model like an LSTM [15] or Transformers [42].
In this paper, we leverage the TPS-ResNet-BiLSTM-Attn
model [4] for its state-of-the-art accuracy and speed.

3. Methodology
Our ReadMyCow system takes in an input video of cows

with eartags, and outputs bounding box detections of the
eartags and their corresponding text readings. The ear tags
can be on either ear or both, and the text can be either hand-
written or printed.

The ReadMyCow system is comprised of two steps. For
each frame in a video stream: 1) Tag detection: cattle ear
tags are localized with bounding boxes and connected to
tags from previous frames through a tracking number. 2)
Tag reading: using the novel WhenToRead module, a de-
cision is made whether each tracked bounding box should
be read anew during this frame, or whether a previous read-
ing should be used, increasing the accuracy and speed of
the system by sometimes skipping the tag reading step in
frames where reading anew may be unnecessary or provide
an inaccurate reading. The overall system is implemented
on an NVIDIA Jetson edge device. We provide further de-
tails on each step below. Fig. 1 shows the system overview.

3.1. Tag Detection

3.1.1 Preliminary Detection

The preliminary detection and localization of near-enough-
to-read tags is done by a fine-tuned YOLOv5s model [21].
YOLO (you only look once) models are a popular line of
object detection and image classification models known for
their speed and accuracy. These models process an entire
image in a single forward pass of a convolutional neural net-
work (CNN), making them very fast. The YOLOv5 model
appears in different sizes. For the purposes of the ReadMy-
Cow system, we choose the ‘small’ size as a compromise
between speed and accuracy. An advantage of leveraging
the YOLOv5 line of models is that they are widely used
in both academia and industry, and can be implemented
within the NVIDIA Deepstream library—which we use for
our tracker—on NVIDIA edge devices at very high speeds.

To adapt the pre-trained YOLOv5s object detection
model to cattle ear tag detection, we first fine-tune the base-
line model on a custom ear tag dataset. The custom ear
tag dataset consists of 1,453 images of beef and dairy cattle
with ear tags of different colors in varied situations on two
farms housing more than 30,000 cattle total. Ear tags are la-
belled as either ‘near’ or ‘far.’ A ‘near’ tag is an ear tag close
enough to the camera to be readable by the investigator; all
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Figure 1. ReadMyCow system operations pipeline for a single frame in a video stream.

other tags are labeled as ‘far.’ Challenges present while la-
beling this dataset include defining the edge case procedure.
Specifically, what to do with severely occluded and nearly
illegible tags, and the sheer quantity of possible data; ev-
ery farm has countless potential camera locations. At the
request of the livestock farms, public access to this dataset
is currently not possible, but an abbreviated dataset can be
made available to individuals upon request. We randomly
split the dataset into training (1,308 images) and test (145
images) sets, and fine-tune the baseline YOLOv5s model
for 100 epochs. We keep the model with the best accuracy.
For the best model, the mean average precision (mAP) of
the ‘near’ and ’far’ tags is 0.937 and 0.676, respectively.

3.1.2 Tracking of Detections

After a video frame’s tags are detected by the YOLOv5s
model, the extracted tags enter a multi-object tracking layer
created by NVIDIA in their Deepstream library [31]. The
main objective of this layer is to assign the same tag the
same tracking identification number throughout the video
stream. It does this by tracking each box as it appears
throughout successive frames, while also suppressing po-
tential false detections. This layer evaluates each detection
bounding box for the likelihood of it being a false posi-
tive. A false positive detection would be a bounding box
that does not actually contain a tag. If the tracking layer has
little confidence in the detection truly being a tag, the de-
tection can be suppressed until the confidence rises. A sup-
pressed detection does not get sent to the tag reading step or
get shown to the user. Once the tracking layer is confident
that the tag detection is a true positive, a tracking number is
assigned, and the tag enters the WhenToRead module in the

tag reading step.
The tracking layer described above enables the ReadMy-

Cow system to take advantage of video temporality, speed-
ing up the system while also increasing its prediction ac-
curacy. Low-confidence detections are suppressed, mean-
ing they are not sent to the computationally expensive tag
reading step, decreasing the amount of time spent on poten-
tially unimportant detections. High-confidence detections
are tracked, meaning the output readings from the tag read-
ing step can be saved for each tracking ID, enabling the sys-
tem to skip reading the same tag again when the reading is
not likely to be improved in terms of accuracy. We evaluate
the performance of the tag tracking step in Section 4.

3.2. Tag Reading

3.2.1 WhenToRead Module

Individual video frames may suffer from occlusion, motion
blur, and corruption, among others. To ensure better tag
recognition quality, we design a novel WhenToRead (WTR)
Module, which dynamically selects the best frame for tag
reading as the input stream continues. We show the design
of the WTR module in Figure 2.

For each tracked tag detection in the input frame, the
WTR module decides whether to read the tag anew or use
an existing reading through a custom decision metric (DM).
Specifically, we use the tag detection confidence scaled with
the bounding box surface area as the DM. We choose this
value as the DM because it quantifies when a tag could be
more readable. As the surface area of the bounding box
increases, the tag could be getting closer to the camera, ro-
tating from diagonally facing forward to entirely facing for-
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Figure 2. The internal procedure of the WhenToRead (WTR) mod-
ule for a single tag detection, deciding whether the tag should be
read anew or whether the old reading should be used based on a
custom decision metric (DM).

ward, or becoming less occluded. The tag detection confi-
dence can signal the absence of blur, motion, or warping.
When a new tracked detection comes, we always read its
content, compute the DM, and save these values. Subse-
quent readings of the same tag occur only if the current
frame’s DM significantly exceeds the previous ‘best’ read-
ing’s DM. For a DM to significantly exceed another, it must
be larger than the other scaled by a sensitivity multiplier. A
higher multiplier results in less frequent tag readings. In our
implementation, we set the multiplier to 1.1 based on qual-
itative observations. Essentially, a tag is read again when
it gets significantly closer to the camera and the system is
more confident in its detection.

The WhenToRead module helps to increase and balance
the speed and accuracy of the system. The system only
reads the tags during frames predicted to generate a better
reading, reducing the average computing time per frame.
Additionally, in frames where the tag is less likely to yield
a better reading (like when the tag is being slowly turned or
being occluded), the tag will not be read again. Thus, ide-
ally, the best reading for a tag is found and kept throughout
that tracked tag’s lifecycle in the video.

3.2.2 Text Recognition

Text recognition of tags is done by a fine-tuned Scene
Text Recognition model called TPS-ResNet-BiLSTM-Attn
(TRBA), as described in [4]. This model consists of a thin-
plate spine (TPS) input image normalizer to straighten out
text, a ResNet feature extractor, BiLSTM sequence mod-
eler, and attention-based sequence predictor (Attn) [4]. We
choose this model for the ReadMyCow system because it
has the best accuracy in [4]. We choose a Scene Text Recog-
nition (STR) model as the tag reader instead of an Optical

Character Recognition (OCR) model because we want the
system to function no matter how many digits are present
on the ear tag.

We fine-tune the TRBA model on the custom ear tag
dataset. From the 1,453 labelled cow images in the training
dataset used to train the YOLOv5s model, the near-enough-
to-be-read tags are cropped out and labelled with the correct
tag readings. This results in 1,581 labelled images of tags
with anywhere from two to six digits per tag. We randomly
split this dataset into training (1,424 images) and test (157
images) sets. We train the TRBA model on the training set
for 3,000 iterations, and choose the TRBA model with the
best accuracy on the test set (75.16%).

3.3. Deployment on Edge Devices

We implement our system on a Jetson AGX Xavier and
a Jetson AGX Orin. The Xavier is flashed with Jetpack ver-
sion 5.1.1 while the Orin is flashed with Jetpack version
5.0.1. We install NVIDIA Deepstream SDK version 6.1 on
both edge devices [31]. In order to use the YOLOv5s model
within Deepstream, we leverage the Deepstream-Yolo li-
brary [27]. In order to write the software in Python, we
use the deepstream python app library [32]. RTSP cameras
(security cameras), video files, or USB cameras are used as
video stream inputs.

4. Experiments

In this section, we evaluate the impact of the When-
ToRead module on the accuracy and speed of the Read-
MyCow system by comparing it to variations of the system
without the module in an ablation study. We also evalu-
ate the overall applicability of the ReadMyCow system by
measuring what proportion of cows and tags it can identify
when implemented on a commercial dairy farm. Finally,
the usability of the ReadMyCow system in real-world cat-
tle production is commented on by briefly sharing the ideas,
contexts, and challenges of a commercial dairy farm.

4.1. Implementation Details

We set up the ReadMyCow system on a Midwestern
commercial dairy farm with 9,000 Jersey and Holstein Fre-
sian crossbreed cows. Cows are milked twice per day in
a large rotating milking parlor with 106 stalls. A metal
bracket holding a security RTSP camera is installed on the
inside of the rotating parlor. While cows are milked, they
stand facing the camera, rotating in and out of frame about
every four seconds. Between zero and five cows could be
found in frame at a time. We placed the ReadMyCow sys-
tem, implemented on a NVIDIA Jetson AGX Orin, in a sep-
arate room about 20 meters away from the security camera.
The RTSP camera streams into the ReadMyCow system.
Further experimental details are described below.
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4.2. Evaluating the WhenToRead Module

We first perform ablation studies to evaluate the impact
of the WhenToRead (WTR) module on the ReadMyCow
system. Specifically, three variations of the ReadMyCow
system are implemented on a NVIDIA Jetson AGX Xavier:
1) No Tracking – No WhenToRead (No T, No WTR):
for every frame, detected near-enough-to-read (NETR) tag
bounding boxes are sent directly to the tag reading model
to be read (image-based system without memory of previ-
ous frames – no false positive limiter). 2) Tracking with-
out WhenToRead (T, No WTR): for every frame, detected
NETR tag bounding boxes are sent to the tracking layer
where potential false positives are suppressed; boxes with
higher detection confidences are assigned a tracking ID and
sent to tag reading model to be read (image-based system
without memory of previous frames with false positive lim-
iter). 3) Tracking with WhenToRead (T, WTR): for ev-
ery frame, detected NETR tag bounding boxes are sent to
the tracking layer where potential false positives are sup-
pressed; boxes with higher detection confidences are as-
signed a tracking ID, and based on this tracking ID the
WhenToRead module determines whether to read this tag or
use a previous reading (full video-based ReadMyCow sys-
tem as described in the Methodology section).

To compare these variations, we recorded a one-hour
long video of 550 cows passing the RTSP camera in the
rotating milk parlor. This one-hour video is the basis for the
following evaluations: 1) Speed: comparing the FPS of the
different modules; 2) Accuracy: comparing the tag read-
ing accuracy of the different variations. See Fig. 3 for an
overview of the results of these evaluations. Further details
on each specific evaluation can be found below the figure.
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No WhenToRead
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Figure 3. Comparing the speed and accuracy of three variations
of the ReadMyCow system in an ablation study, demonstrating
the impact of the WhenToRead (WTR) module and tracking layer.
The average FPS is computed from a one-hour evaluation video
of cows in a rotating milk parlor. The total text recognition accu-
racy is computed from 600 random test frames from the previously
mentioned evaluation video.

1. Speed: each variation of the ReadMyCow system is
applied to the one hour evaluation video. Every 5 sec-
onds, we evaluate and record the FPS (frames per sec-
ond). The average FPS over the length of the video and
2.5th/97.5th FPS quantiles can be found in Table 1.

System Variation Average
FPS

2.5th
Quantile

97.5th
Quantile

No T, No WTR 10.34 7.59 16.78
T, No WTR 10.40 7.40 20.62
T, WTR 24.69 20.05 29.17

Table 1. An ablation study: three variations of the ReadMyCow
system applied to a one-hour video of cows being milked, demon-
strating the impact of the WhenToRead (WTR) module and track-
ing layer (T) on the system speed. The FPS is computed every five
seconds. Higher is better.

2. Accuracy: 600 frames from the one hour evaluation
video are randomly selected. We apply each variation
of the ReadMyCow system to the video, and extract
the predictions for the 600 frames. We define a ‘read-
able tag’ as an ear tag that is readable by a human in
any frame in the video, but not necessarily from one of
the 600 test frames. For example, even if a test frame
tag’s last digit is occluded, it is still considered ‘read-
able’ if the correct reading can be found in a different
frame. For each variation of the system, the number
of readable tags found and the percentage of readable
tags read successfully are shown in Table 2.

System Variation % Tags
Found

Found Tag
Accuracy

All Tag
Accuracy

No T, No WTR 99.5 46.1 45.8
T, No WTR 76.0 48.3 36.7
T, WTR 76.0 64.6 49.1

Table 2. An ablation study: three variations of the ReadMyCow
system reading 613 ‘readable tags’ from 600 test frames randomly
extracted from a one-hour video of cows milked in a rotating par-
lor, demonstrating the impact of the WhenToRead (WTR) mod-
ule and tracking layer (T) on the system’s prediction accuracy. A
‘readable tag’ is defined as an ear tag that is readable to a human
investigator in any frame of the video.

The WhenToRead module is able to more than double
the average speed of the ReadMyCow system without los-
ing its accuracy, even slightly improving it. A video-based
recognition system that remembers the best reading from
previous frames is able to be accurate even when a tag is oc-
cluded in a current frame, while an image-based approach
cannot accomplish this.

We found that a total of 23 false positive tag detections
are present in the No Tracking – No WhenToRead varia-
tion, which are not present in the other variations. This
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shows that the tracking layer does indeed limit the pres-
ence of false positives. However, it also is sometimes too
restrictive, suppressing readable ear tags and causing them
to go unread. This gap of missing readable tags can be seen
by comparing the accuracy of the No Tracking – No When-
ToRead variation and the Tracking – No WhenToRead vari-
ation; the presence of the tracking layer actually decreases
the accuracy of the model. The presence of the When-
ToRead module more than makes up for this deficit, even
slightly increasing the accuracy over the No Tracking – No
WhenToRead variation.

4.3. Real World Use of ReadMyCow System

We next evaluate the ReadMyCow system’s usability in
a real-world setting. Specifically, we set up and run the sys-
tem in a rotary milking parlor on a commercial Midwestern
farm. We use one hour of real-time recognition. Fig. 4 de-
picts some example frames with real system outputs.

4.3.1 Quantitative Results

We report accuracies for two types of entities: tags and
cows.

1. Tags: In the one-hour video, a total of 646 tags are
humanly readable. We define a tag as ‘humanly read-
able’ if a human investigator playing back the video
can pause, digitally zoom in, and read the correspond-
ing tag in at least one frame. 461 of the tags are printed
(71.4%); 185 tags are handwritten (28.6%). The over-
all proportion of tags that are read correctly is 84.2%.
The overall proportion of printed tags that are read cor-
rectly is 96.1%. Handwritten tags are much more dif-
ficult to read than the printed tags with an overall ac-
curacy of 54.6%. Results are shown in Table 3.

Type of Tag Count Accuracy
Printed 461 96.1
Handwritten 185 54.6
Total 646 84.2

Table 3. ReadMyCow system identification accuracy for 646 cattle
ear tags in a one hour video of a rotating milk parlor.

2. Cows: Each cow has one, two, or zero ear tags, and can
have any mixture of handwritten and printed ear tags.
In the one-hour video, a total of 550 cows pass by the
RTSP camera. We define an identifiable cow as a cow
who has an ear tag that is humanly readable. 435 of the
cows are identifiable (79.1%). Of the 115 unidentifi-
able cows, 86 never show the flat face of their ear tags,
and 29 of them show their ear tags, but the tag number
is unreadable by a human. Of all the 550 cows, 71.3%
are correctly identified by the ReadMyCow system. Of

the 435 identifiable cows, 90.1% are correctly iden-
tified by the ReadMyCow system. Of the 333 cows
identifiable by a printed ear tag, 95.8% are correctly
identified by the ReadMyCow system. The handwrit-
ten tags are again more difficult to read: of the 119
cows identifiable by a handwritten ear tag, 75.6% are
correctly identified by the ReadMyCow system. Table
4 shows these results in detail.

Type of Cow Count Accuracy
Identifiable through print 333 95.8
Identifiable through handwriting 119 75.6
Identifiable 435 90.1
Total 550 71.3

Table 4. ReadMyCow system identification accuracy for 550 cows
in a one hour video of a rotating milk parlor. An ‘identifiable’ cow
is defined as a cow whose tag number can be read by a human
investigator in any frame of the video.

4.3.2 Qualitative Results

The ReadMyCow system works extremely well on the good
quality tags that are visible. However, several factors can
still limit its accuracy:

1. Cow behavior: cows rarely put their ears forward, un-
less stimulus piques their interest. Some cows never
show their ear tags to the camera at all, while others
only flick their ears forward for a frame or two before
flicking back. An idea for improving this limitation
would be to tie or mount something interesting in front
of the cows; however, this would be unsustainable in
the long term when the cows lose interest. Another
idea for mitigating this limitation would be to have an-
other camera situated on the side of the cows to catch
the sideways ear tags. Further testing would need to
be done on evaluating the system’s performance using
multiple cameras.

2. Quality of the ear tags: many ear tags are handwrit-
ten. The model often has issues discerning 2s from 7s
and 4s from 9s on handwritten tags. The model also
has trouble adjusting to ear tags with uncentered num-
bers. Other ear tags are notched by herdsmen to signal
treatments of diseases. Others are very bent or warped,
resulting in half-hidden tags even when the cow points
its ears forward. Some tags are blank. Fig. 5 shows
examples of ear tags that were difficult for the system
to read. An idea for improving some aspects of this
limitation would be to further fine-tune the tag reading
model on a bigger dataset including handwritten tags,
damaged tags, and tags where the digits are not located
in the center.
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Figure 4. Example output frames from ReadMyCow system operating in real dairy farm. The bounding box line thickness and size of the
text predictions have been enlarged for visibility.

Figure 5. Examples of difficult to read cattle ear tags.

Overall, the system felt dependable. If a tag is reason-
ably written and shown for a few frames, the system can
accurately read it in real-time speed.

4.4. Usability in Real-World Cattle Production

To our pleasant surprise, the staff members of the com-
mercial dairy farm were intrigued and excited about the
models. The ReadMyCow system could be used in several
locations on the farm: 1) By a series of gates to automat-
ically direct identified cows to the correct pen. 2) In the
maternity pen, when combined with another AI model, to
identify calving cows. 3) In the rotating milk parlor, when
combined with another AI model, to detect cow foot dis-
eases. 4) In the general housing pens, to generate treatment
lists for cows diagnosed by other disease detection systems.

The commercial dairy farm has to invest a lot of time and
human resources into these repetitive tasks. For example,
every 20 minutes, a staff member walks along the maternity
pen to look for calving cows. Automating these tasks would
be of great help to the farm and the cattle. The commercial
dairy farm was impressed by the system’s ability to accu-
rately read many tags at once from a distance and looked
forward to seeing the future developments of the ReadMy-
Cow system.

Implementation Challenges: Every livestock farm is
different: cattle breeds, lighting, tag colors, among others
can all vary widely, as well as the place the farmer wants
to implement the system. For the ReadMyCow system to
be more broadly effective, much larger datasets of ear tags

from widespread cattle farms should be created. Broad-
ening the system to use multiple cameras should also be
explored to increase the likelihood of successful detection.
For each farm, local experts must establish ground rules for
when the system is unable to identify a cow depending on
the intent behind the system implementation. For exam-
ple, if the goal is to send specific cows to specific pens as
they return from the milking parlor, which gate should be
opened for an unidentifiable cow? There is a long road to
widespread implementation of the ReadMyCow system, but
the system’s flexibility highlights the potential for its appli-
cation to many settings, tasks, and animals.

5. Conclusion

The ReadMyCow system can accurately identify cattle
in real-time in a real-world environment. The WhenToRead
module strikes a balance between accuracy and speed while
also taking advantage of the temporality of videos to allow
these computationally expensive models to run efficiently
on edge devices. The ReadMyCow system does video-
based recognition: meaning that the information from pre-
vious frames of a video can be used to inform decisions
made in future frames. Consequently, it is able to iden-
tify a cow, even if its tag is occluded in the current frame.
The ReadMyCow system is implemented on an edge de-
vice, meaning it is portable to farm environments without
prior computational resources, and reads tags at 25 FPS.

When presented at a commercial dairy farm with 9,000
cows, the ReadMyCow system garnered interest from the
management of the dairy, creating the potential to be per-
manently implemented. The ReadMyCow system opens
opportunities for informed data-driven decision-making on
commercial cattle farms, enhancing animal welfare, health,
and productivity, as well as improving traceability of live-
stock products, knowledge, and farming lifestyle.
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