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Abstract

Despite the recent progress of class-incremental learn-
ing (CIL) methods, their capabilities in real-world scenar-
ios such as multi-label settings remain unexplored. This pa-
per focuses on a more practical CIL problem named multi-
label class-incremental learning (MLCIL). MLCIL requires
the vision models to overcome catastrophic forgetting of
old knowledge while learning new classes from multi-label
samples. Direct application of existing CIL methods to ML-
CIL leads to label absence, representative sample selec-
tion, and feature dilution problems. To address these prob-
lems, we present a novel AdaPtive Pseudo-Label-drivEn
(APPLE) framework consisting of three components. First,
the adaptive pseudo-label strategy is proposed to solve the
label absence problem, which leverages the old model to
annotate old classes for new samples. Second, a cluster
sampling strategy is proposed to obtain more diverse sam-
ples to alleviate catastrophic forgetting under the MLCIL
setting better. Finally, a class attention decoder is designed
to mitigate the object feature dilution problem in multi-label
samples. The extensive experiments on PASCAL VOC 2007
and MS-COCO demonstrate that our proposed method sig-
nificantly outperforms other representative state-of-the-art
CIL methods.

1. Introduction

Class-incremental learning (CIL) [19, 27, 36, 39, 40]
refers to that with the continuous arrival of new datasets,
the deep neural network model learns new classes while
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Figure 1. Comparison of single-label incremental learning and
multi-label incremental learning scenarios. The former has been
extensively studied, in which samples are usually single-label and
the model only needs to focus on new classes in each new ses-
sion. In contrast, the latter studies a more practical problem, in
which samples usually have multiple objects, and the model not
only needs to learn new classes (marked in black) but also classify
old ones (marked in red) in the new dataset.

keeping the knowledge of old classes from being forgotten.
Many efforts [4,8,17,27,43–45,49–51] have been made by
the artificial intelligence community to mitigate the catas-
trophic forgetting problem in CIL, promoting the recogni-
tion performance in all encountered classes. Most of them
share a similar structure, i.e., the knowledge distillation
(KD) [15] on the model’s feature extractor, and auxiliary
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data memory which preserves a small number of preced-
ing representative samples. Although each part keeps pace
with the up-to-date methods, existing CIL methods only fo-
cus on single-label classification and ignore the more gen-
eral multi-label classification problem in the real world. We
term the CIL method with multi-label classification capa-
bility as multi-label class-incremental learning (MLCIL).
As shown in Fig. 1(a), in the (single-label) CIL setting, a
sample contains only one new class, and the model only
needs to classify this class. However, in the MLCIL setting,
a sample contains multiple objects, and the model needs to
classify not only new classes (marked in black) but also old
ones (marked in red). For example, in Fig. 1(b), the model
has learned to classify the person in session 1, and then in
session 2, it needs to learn a new class (Dog) and retain the
ability to classify the old one (Person). Likewise, in session
3, the model learns a new class (Horse) and is required to
classify old ones (Person and Dog).

A feasible way to solve the MLCIL problem is to migrate
the existing CIL methods to the MLCIL problem. How-
ever, compared with CIL, the MLCIL problem poses sev-
eral new challenges: 1) Label absence problem. A sam-
ple always contains multiple objects, where old classes are
not labeled, leading to a label absence problem. This sit-
uation could lead to more serious catastrophic forgetting;
2) Multi-label representative sample selection. Existing
rehearsal-based CIL methods select representative single-
label samples based on the entire image. It’s hard for them
to handle multi-label samples containing multiple classes;
3) Feature dilution problem. Objects of inconsistent size
are distributed in different locations. Classical CIL meth-
ods directly extract features from the whole image, which
may cause the features of some objects (such as smaller, less
prominent, or poor image quality objects) to be diluted, re-
sulting in poor classification results. Furthermore, another
plausible approach is implementing the class-incremental
object detection (CIOD) or semantic segmentation (CISS)
methods in MLCIL. However, although CIOD and CISS
also focus on the multi-label prediction problem, they re-
quire bounding-box information or pixel-level mask anno-
tations, which greatly increase the labor cost. On the con-
trary, the labels of multi-label classification are simple (only
the object category information in the image is required).

To address the MLCIL problem, we propose an AdaP-
tive Pseudo-Label-drivEn (APPLE) framework, which con-
sists of an adaptive pseudo-label strategy, a cluster sampling
strategy, and a class attention decoder module. The adap-
tive pseudo-label strategy leverages the old model from the
previous session to label new samples, thereby alleviating
the impact of label absence. The cluster sampling strat-
egy captures the features of each class in the multi-label
image, thus saving more representative samples. The class
attention decoder is utilized to encode spatial information

in feature maps, so as to help the model learn better repre-
sentations, solving the feature dilution problem. Moreover,
we adopt the knowledge distillation (KD) [15] to alleviate
the catastrophic forgetting problem. To demonstrate the ef-
fectiveness of our method, we conduct comparative experi-
ments with representative CIL methods on two benchmark
datasets, MS-COCO [22] and PASCAL VOC 2007 [11]. To
summarize, our main contributions are as follows:

• We propose the APPLE framework, a novel approach
aimed at addressing the more realistic multi-label
class-incremental learning (MLCIL) problem.

• Our method comprises three components to solve chal-
lenges that MLCIL brings: an adaptive pseudo-label
to alleviate the impact of label absence, a cluster sam-
pling strategy to boost the quality of replay data, and
the class attention decoder to promote the learning
ability of the overall model.

• Extensive experiments on MS-COCO and PASCAL
VOC 2007 datasets demonstrate that our proposed
APPLE framework outperforms state-of-the-art CIL
methods on the MLCIL problem.

2. Related Work
2.1. Class-Incremental Learning

Recently, incremental learning research mainly focuses
on the class-incremental learning (CIL) problem, which
aims to learn a unified model that is able to classify all the
encountered classes through a series of incremental learn-
ing sessions. The major challenge of incremental learn-
ing is the catastrophic forgetting problem, i.e., the model’s
performance improves quickly in new classes, whereas de-
teriorates sharply in old ones in each session. In or-
der to solve such issue, extensive works have been de-
voted to devising CIL methods, which can be primar-
ily divided into regularization-based, rehearsal-based, and
architectural-based methods.

Regularization-based methods introduce regulariza-
tion terms [1, 19, 32] into the loss functions to limit the
changes of critical parameters during the learning of new
sessions. James et al. [19] first attempt to illustrate this idea,
which uses the Fisher matrix to calculate an importance
weight for each parameter in the model, and then regular-
ize the parameters using these weights. Another regulariza-
tion solution is to use distillation to prevent the forgetting
of old knowledge. For example, Li et al. [21] use the dis-
tillation loss function to constrain the output logits change
between the old model and new model to mitigate knowl-
edge forgetting. Castro et al. [4] distill and integrate mul-
tiple classifiers to obtain end-to-end classification results.
PODNet [10] finds that knowledge distillation loss applied
to each stage of the backbone can enhance model stability.
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Rehearsal-based methods first store a small number of
representative samples from previous data and then train
with new data together. iCaRL [27] is the first of this kind
of method, which provides a herding strategy to update its
exemplars and incrementally learns a nearest-neighbor clas-
sifier for new classes. ER [30] constructs a memory buffer
to save samples from old sessions for replay. TPCIL [35]
utilizes topology-preserving loss to mitigate the forgetting
of old knowledge. PASS [51] proposes to preserve pro-
totypes instead of samples, showing memory efficiency.
DER++ [45] addresses the general incremental learning
problem through mixing rehearsal with knowledge distil-
lation and regularization. Another rehearsal-based method
is to use generative algorithms to synthesize previous data.
Shin et al. [34] utilize a generative model to mimic past
data. Ven et al. [36] propose the generative classification
strategy which uses Bayes’ rule to perform classification.

Architectural-based methods use different parameters
to handle different tasks. Progressive neural networks [31]
take the first shot. It simply adds a whole network and fully
connects it with the previous ones to learn the new tasks,
so there is no conflict on different tasks. However, this op-
eration results in parameter increases over time. Several
methods [12, 20, 33, 48] have been proposed to handle this
limitation. Moreover, Wang et al. [39, 40] propose to learn
independent prompts for each incremental task based on a
pre-trained ViT model, which achieves state-of-the-art re-
sults on multiple single-label incremental learning tasks.

2.2. Multi-Label Classification

Multi-Label Classification task has attracted increasing
interest recently. One method to solve the multi-label clas-
sification problem is locating regions of interest. Earlier
methods [24, 41, 46] use proposals and divide multi-label
classification problems into single-label classification prob-
lems. Wang et al. [38] propose to use the spatial transfor-
mation layer to identify regions with semantic information,
and then find their interrelationships through long short-
term memory network [16]. Later works like [13] intro-
duce attention mechanisms to boost these methods further.
Inspired by the work [5], several works [6, 37, 47] try to
improve the multi-label classification results by modeling
label correlations. However, there are some arguments that
spurious correlations can be learned when the label statistics
are insufficient. Another method to solve the multi-label
classification problem is improving loss functions. Several
methods [2, 42] modify the loss to reduce the impact of
negative samples and fit this situation well. Lately, some
approaches [23, 29] leverage the modeling ability of trans-
formers [9] to implicitly capture the label correlations and
achieve better results.

In this paper, we focus on the MLCIL setting and ad-
dress this new problem by drawing lessons from class-

incremental learning and multi-label classification research.

3. Methodology

In this section, we first illustrate the formulation of ML-
CIL and then show how each part in our proposed frame-
work addresses this problem. The overall framework is
shown in Fig. 2.

3.1. Problem Definition

In real-world classification applications, when we want
to train a model, since we may only be interested in several
classes, or only have the energy to label a small part, there
are often unlabeled classes in the training set. The goal of
MLCIL is to learn a unified model to recognize all learned
classes that are presented in test samples. Considering a
stream of T incremental sessions {D1,D2, . . . ,DT ,Z}, Dt

is the training set of session t and all sessions share a com-
mon test set Z . Meanwhile, we denote the data distribution
as Dt = {Xt, Yt} for each session t, where Xt is the train-
ing sample set, and Yt means the annotated label set for
session t and ∩T

t=1Yt = ∅. Furthermore, we define the la-
bel set Ỹt = ∪t

i=1Yi, which represents the classes that are
expected to be recognized by the model in session t. In each
session t, Xt is the only accessible training set, and the ob-
tained model will be evaluated using the test set Zt, where
Zt is produced by labeling Z with Ỹt.

3.2. Framework

An image classification model fθ can be parameterized
by θ. Initially, we train the base model fθ1 using D1

with the multi-label classification loss LASL (see Eq. (7)
in Sec. 3.6). Next, using LASL and LKD, we incrementally
train the base model on D2,D3, · · · , obtaining fθ2 , fθ3 , · · · ,
respectively.

As described in Sec. 1, simply fine-tuning the base model
on a new training set without any constraints causes the
catastrophic forgetting problem, resulting in significant per-
formance drops on old test data. To tackle this problem, as
shown in Fig. 2, we propose the APPLE framework, which
consists of an adaptive pseudo-label strategy, a cluster sam-
pling strategy, and a class attention decoder (CAD) module.
Specifically, after getting model fθt−1 , we use the cluster
sampling strategy to select representative samples of each
class as the replay data, which can help the model recall the
old knowledge better. Then when training in the new ses-
sion t, we freeze the model fθt−1 to generate pseudo-labels,
which are combined with the current labels to jointly train
the new model fθt . Moreover, the learnable class tokens
are fed into the CAD along with the output of the backbone
to better focus on spatial information, alleviating the object
feature dilution problem. The following parts of this section
provide detailed descriptions of these three components.
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Figure 2. An overview of our proposed APPLE framework. (a) illustrates the training process of our method in session t. The model
trained in the session t − 1 is preserved to calculate knowledge distillation loss LKD and produces pseudo-labels for samples of current
session. The training samples are drawn from current training data and a small memory of replay data. (b) presents our proposed cluster
sampling strategy. In the feature space, the features of the same class are close. We use K-means algorithm to split intra-class samples of
each class, and then select central samples from each cluster, improving the diversity of selected samples. (c) shows the structure of class
attention decoder (CAD), which has B blocks. Each block is composed of layer normalization (LN), multi-head cross attention (MCA),
and multi-layer perceptron (MLP). CAD takes the embedded image features F̃ as the key and value of MCA and regards learnable class
tokens αcls as the query.

3.3. Adaptive Pseudo-Label

We propose an adaptive pseudo-label strategy to increase
the label information in the training data. In the MLCIL
setting, the training data may include objects that belong
to the previously learned classes but are not annotated in
the current session. Hence, we use the model fθt−1 trained
in the previous session to obtain the output probability for
learned categories, thereby obtaining pseudo-labels to al-
leviate the impact of label absence problem. For an input
sample x ∈ Xt, the output probability of model fθt−1

can
be represented by P = {p1, p2, · · · , pK}, pk ∈ (0, 1),
where K is the number of categories learned by fθt−1 .
Assuming the pseudo-label set Ŷt, the pseudo-label ŷ =
{ŷ1, ŷ2, · · · , ŷK} ∈ Ŷt can be obtained as follows:

ŷk =

{
1, if pk > ϵ

0, if pk ≤ ϵ
(1)

where ϵ is a threshold hyper-parameter.
According to Eq. (1), the size of the pseudo-label set Ŷt

can be controlled by the threshold ϵ. If ϵ is small, too many
pseudo-labels could affect the learning of new classes. By

contrast, if ϵ is large, too few pseudo-labels lead to poor
recognition accuracy for old classes. Therefore, we intro-
duce an adaptive strategy to help determine the threshold
rather than use a fixed number. Since the training data is
randomly divided into different sessions, when the dataset
is large, we can assume that the proportion of objects of the
same category in different sessions is the same. As an exam-
ple, in session t−1, the model has learned knowledge of K
classes, there are Lt−1 annotated labels, and the total num-
ber of samples is Mt−1. The average number of K class ob-
jects per image can be defined as ct−1 = Lt−1

Mt−1
. Similarly,

in each training epoch of session t, the average number of
K class objects per image is c̃t, c̃t ≈ ct−1. Hence, we can
adjust the threshold according to the relationship between
c̃t and ct−1:

ϵ =

{
min(ϵmax, ϵ+∆ϵ), if c̃t > ct−1

max(ϵmin, ϵ−∆ϵ), if c̃t ≤ ct−1

(2)

where ∆ϵ represents the step size, ϵmax and ϵmin denote the
maximum and minimum threshold, respectively. Finally,
these pseudo-labels are added into the current label set for
training.
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3.4. Cluster Sampling

As a commonly used strategy in CIL, data replay [27]
significantly alleviates catastrophic forgetting. In single-
label CIL, some methods [17, 27] are proposed to take ran-
dom or herding sampling as their sampling strategy. These
selection methods are based on the feature of the whole im-
age. However, in MLCIL setting, an image often corre-
sponds to several objects, and the features of different ob-
jects are coupled in one feature map, which makes it diffi-
cult to select the most representative samples for each class.
Thereby, we propose a new sampling strategy, namely clus-
ter sampling, to improve the quality of selected samples. As
shown in Fig. 2(b), we select samples based on the features
of the objects. The size of the feature map output by class
attention decoder is K ∗D, where K is the number of cate-
gories and D is the embedding dimension. According to the
label set Yt, we can get the 1∗D size feature corresponding
to each object. Accordingly, for k-th class, the feature set
Fk
t can be expressed as follows:

Fk
t = {fikt |fikt = fθt(x

i
t, y

ik
t ; θt), x

i
t ∈ Xt, y

ik
t ∈ Yt}, (3)

where fikt denotes the feature of the k-th class object of the
i-th sample in session t, which can be obtained by the model
fθt , xi

t represents the i-th sample in Xt, and yikt is the label
of the k-th class object of xi

t.
Although the object features of the same class are close,

they are still distinguishable in different dimensions, indi-
cating intra-class differences. Thus, we divide the Fk

t into
different clusters by the K-means [26] clustering method.
For instance, in Fig. 2(b), the red stars represent the fea-
ture set of cats, which are divided into three clusters. It is
obvious that samples in the same cluster have similar char-
acteristics, and sampling from different clusters results in
more diverse samples, so as to further enrich the feature set
of cats. Here, we use the hyper-parameter m to determine
the number of clusters. Through this cluster sampling strat-
egy, we are able to select more diverse and representative
samples.

3.5. Class Attention Decoder

Different from single-label classification, in multi-label
classification, images often have several objects in different
positions. If the global features are directly used for classi-
fication, small objects may be ignored, resulting in the fea-
ture dilution problem. Hence, we propose the class atten-
tion decoder (CAD), which can pay more attention to the
location information of the object and extract local features
adaptively. As illustrated in Fig. 2 (c), the CAD contains B
blocks which have multi-head cross attention (MCA) mod-
ules and multi-layer perceptron (MLP) modules. The fea-
ture embeddings obtained by the feature extractor can be
termed as F ∈ RH×W×D, where H , W , and D represent

the height, width, and embedding dimension of the feature
map, respectively. By reshaping F to (H ·W )×D and
adding position embedding we can get F̃ . Then we use
learnable class tokens αcls ∈ RK×D as query, where K is
the number of categories, and take the feature embedding F̃
as the key and value. The class tokens αcls are compared
with F̃ at different spatial locations to generate attention
maps, thereby extracting the object features adaptively. In
the first block of CAD (b = 1), taking F̃ and αcls as input,
the output is shown as follows:

Qba = LN(αcls) ·W q
ba,

Kba = LN(F̃) ·W k
ba,

Vba = LN(F̃) ·W v
ba,

Hba = Softmax(
Qba ·KT

ba√
D/A

) · Vba,

Ob = MLPb([Hb1,Hb2, · · · ,HbA] ·W o
b ),

(4)

where LN(·) means the layer normalization, and W q
ba, W k

ba

and W v
ba represent the weight matrices of the a-th attention

head of the b-th block. A denotes the number of attention
heads. By concatenating A attention heads and multiplying
the weight matrix W o

b , we can get the output Ob of block
b. If b > 1, we only need to replace Qba in Eq. (4) with
Eq. (5), and the others remain unchanged.

Qba = LN(Ob−1) ·W q
ba. (5)

Since in each block, the query for each class αcls exam-
ines the feature embeddings F̃ and chooses the most rele-
vant part to combine, the CAD could efficiently extract the
spatial information in F̃ , leading to better performance un-
der multi-label circumstances.

3.6. Overall Objective

Apart from the above strategies, we are inspired by the
current progress in class-incremental learning and multi-
label classification field. To be specific, in order to over-
come catastrophic forgetting, as illustrated in Fig. 2(a), we
adopt knowledge distillation (KD) loss [15], which applies
regularization on the feature space. Denoting the outputs of
the backbone as ot, the distillation loss can be defined as:

LKD = ∥ot−1 − ot∥2. (6)

Additionally, we use asymmetric loss (ASL) [2] to ad-
dress the positive-negative sample imbalance problem in
multi-label classification tasks. Different γ values are used
to manipulate the impact of positive and negative samples.
Given a sample x, the model can predict its category proba-
bilities P = {p1, p2, ..., pK} ∈ RK , where there are totally
K categories. Then the ASL loss can be defined as follows:
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Figure 3. The division of the MS-COCO dataset under the B0-C20 protocol in the MLCIL setting. In this figure, S indicates session and
the model is trained and tested in session 3. Each class label appears in just one session, even if classes overlap between sessions.

Table 1. Experimental results (mAP%) of our method and comparison CIL methods on MS-COCO dataset.

Methods
MS-COCO B40-C10 MS-COCO B0-C20

ResNet101 TResNet-L ResNet101 TResNet-L
Last Acc Avg Acc Last Acc Avg Acc Last Acc Avg Acc Last Acc Avg Acc

FT 9.94 31.88 11.12 35.83 21.44 48.54 23.60 51.87
JT 85.88 - 86.49 - 85.88 - 86.49 -
iCaRL [27] 64.28 (↓ 9.23) 75.10 65.60 (↓ 9.01) 76.69 62.00 (↓ 12.94) 74.52 64.54 (↓ 12.11) 76.53
ER [30] 38.34 (↓ 35.17) 56.16 64.05 (↓ 10.56) 72.30 45.53 (↓ 29.41) 58.32 50.14 (↓ 26.51) 63.59
TPCIL [35] 59.05 (↓ 14.46) 67.10 71.20 (↓ 3.41) 75.28 62.16 (↓ 12.78) 69.41 68.89 (↓ 7.76) 73.54
PODNet [10] 63.66 (↓ 9.85) 74.58 66.12 (↓ 8.49) 77.11 59.94 (↓ 15.00) 73.06 61.01 (↓ 15.64) 74.78
PASS [51] 59.07 (↓ 14.44) 72.32 59.44 (↓ 15.17) 73.80 54.91 (↓ 20.03) 74.03 49.88 (↓ 26.77) 72.16
DER++ [3] 52.68 (↓ 20.83) 58.56 55.77 (↓ 18.84) 66.71 62.60 (↓ 12.34) 69.41 67.33 (↓ 9.32) 73.82
APPLE(ours) 73.51 (↓ 0.00) 80.94 74.61 (↓ 0.00) 82.05 74.94 (↓ 0.00) 81.62 76.65 (↓ 0.00) 83.49

LASL =
1

K

K∑
k=1

{
(1− pk)

γ+ log(pk), if yk = 1

(pk)
γ− log(1− pk), if yk = 0

(7)

where yk is a binary label to indicate whether the sample x
has label k or not. Thus, the overall objective of our frame-
work can be stated as follows:

L = LASL + λLKD, (8)

where λ is a hyper-parameter to balance these two terms.

4. Experiments
4.1. Experiment Setup and Implementation Details

Datasets and Protocols. We conduct several experi-
ments on MS-COCO [22] and PASCAL VOC 2007 [11]
datasets to verify the effectiveness of our proposed method.
MS-COCO dataset is widely used to evaluate multi-label
image classification and we adopt the 2014 split. It consists
of 122,218 images and has 80 categories of common ob-
jects, with an average of 2.9 labels per image. PASCAL
VOC 2007 dataset is also a commonly used benchmark

in multi-label classification. We conduct the incremental
learning tasks on the train-val set with 5,000 images
and then evaluate it on test set with 5,000 images.

We adopt the protocols which are commonly used in
CIL [45]. The protocol could be represented by a unified
terminology Bi-Cj, where i denotes the class number to
be learned in the base session and j is the class number
to be learned in each incremental session. We evaluate the
models on MS-COCO dataset with B40-C10 and B0-C20
protocols and on PASCAL VOC 2007 dataset with B10-C5
and B0-C5 protocols.

To illustrate how we handle the dataset in the MLCIL
setting, we show the division method of the MS-COCO
dataset under the B0-C20 protocol in Fig. 3. The model
is trained and tested in session 3 in this figure. For the train-
ing set, we first use seed 1998 to sort it randomly. Then,
the number of training samples in each session is obtained
by the ratio of current session’s number of classes among
the total classes. For example, the B0-C20 protocol learns
20 classes in each session, so we divide the training set into
4 parts on average. Finally, we specify the classes to be
learned for each session. In this figure, the model learns
classes 0 ∼ 19, 20 ∼ 39, 40 ∼ 59, and 60 ∼ 79 in order
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Figure 4. Performance curves (mAP%) of the nine methods with respect to session 1 ∼ T on MS-COCO dataset. Two different MLCIL
protocols are adopted and the backbone is ResNet101.

Table 2. Experimental results (mAP%) of our method and comparison CIL methods on PASCAL VOC 2007 dataset.

Methods
PASCAL VOC 2007 B10-C5 PASCAL VOC 2007 B0-C5

ResNet101 TResNet-L ResNet101 TResNet-L
Last Acc Avg Acc Last Acc Avg Acc Last Acc Avg Acc Last Acc Avg Acc

FT 35.34 58.85 60.09 74.82 33.73 58.37 59.73 74.10
JT 94.80 - 93.79 - 94.80 - 93.79 -
iCaRL [27] 85.75 (↓ 1.84) 89.66 87.07 (↓ 2.29) 90.78 83.31 (↓ 0.91) 87.62 84.78 (↓ 0.84) 88.33
ER [30] 78.37 (↓ 9.22) 86.70 73.91 (↓ 15.45) 86.01 66.18 (↓ 18.04) 79.64 68.31 (↓ 17.31) 82.68
TPCIL [35] 86.70 (↓ 0.89) 88.84 84.18 (↓ 5.18) 90.19 83.99 (↓ 0.23) 86.24 79.38 (↓ 6.24) 87.95
PODNet [10] 85.61 (↓ 1.98) 89.64 86.35 (↓ 3.01) 90.35 82.65 (↓ 1.57) 86.89 84.12 (↓ 1.50) 87.78
PASS [51] 79.26 (↓ 8.33) 87.07 76.93 (↓ 12.43) 86.01 57.59 (↓ 26.63) 76.42 51.84 (↓ 33.78) 75.58
DER++ [3] 85.55 (↓ 2.04) 89.46 83.95 (↓ 5.41) 90.22 82.92 (↓ 1.30) 86.84 84.82 (↓ 0.80) 88.95
APPLE(ours) 87.59 (↓0.00) 90.27 89.36 (↓ 0.00) 91.68 84.22 (↓ 0.00) 87.83 85.62 (↓0.00) 89.52

during four sessions. When testing, we set the labels includ-
ing the already learned classes to 1 (i.e., class 0 ∼ 59), and
set the other labels to 0.

Implementation Details. For adaptive pseudo-label,
we set the initial threshold ϵinit = 0.75, the step size
∆ϵ = 0.02, the maximum threshold ϵmax = 0.99, and the
minimum threshold ϵmin = 0.01. The number of replay
samples is set to 20 per class for all datasets. We divide
each class feature into 20 clusters by K-means and select
the central feature of each cluster as the sample to be pre-
served. In the CAD module, we adopt 4 blocks (B = 4).
The λ is set to 25 for KD loss LKD. For the asymmet-
ric loss LASL, the γ+ and γ− are set to 4 and 1, respec-
tively. To verify the effectiveness of our proposed frame-
work, we evaluate models using two backbones, including
ResNet101 [14] and TResNet-L [28]. Furthermore, when
training in the first session, we load the ImageNet [7] pre-
trained model, and when training in session t(t > 1), we
load the model trained in the previous session. We train the
models for 40 epochs using Adam [18] optimizer, with true
weight decay [25] of 1e-4, and the learning rate of 1e-4. All
images are resized to 448× 448 for training and testing.

Evaluation Metrics. We adopt the mean average preci-
sion (mAP) across all categories for evaluation. The model
performance is calculated on those already learned classes.
We report the mAP after the final session as ’Last Acc’ and

the average mAP among all sessions as ’Avg Acc’.

4.2. Quantitative Results

Comparison Methods. Tab. 1 and Tab. 2 summarize
the results of our method and several comparison methods
on MS-COCO and PASCAL VOC 2007. In incremental
learning, fine-tuning (FT) and joint training (JT) are treated
as the lower and upper bound, in which FT fine-tunes the
model without any anti-forgetting constraints and JT con-
ducts supervised training on all data. Moreover, we select
six representative CIL methods to compare with our pro-
posed method, including iCaRL [27], ER [30], TPCIL [35],
PODNet [10], PASS [51] and DER++ [3], where iCaRL and
ER are classical rehearsal-based methods, TPCIL, POD-
Net, and Der++ are best-performing rehearsal-based meth-
ods which save old samples to replay, and PASS is the best-
performing rehearsal-based methods which save the proto-
type of each class to replay. We implement these methods in
the MLCIL setting. For a fair comparison, we change their
original cross-entropy loss to the ASL loss to address the
multi-label classification problem. As for these methods of
saving old samples, as in our method, we adopt 20 samples
per class for replay.

Results on MS-COCO. Tab. 1 summarizes the Last and
average (Avg) results of ResNet101/TResNet-L backbone
under the B40-C10 and B0-C20 protocols on the MS-
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COCO dataset. For the B40-C10 protocol, APPLE with the
ResNet101 backbone achieves the last accuracy of 73.51%
and the average accuracy of 80.94%, which both signifi-
cantly surpass previous models and obtain the state-of-the-
art performance. In comparison, the second-best method
iCaRL achieves the last accuracy of 64.38% and the av-
erage accuracy of 75.10%. Our proposed method outper-
forms iCaRL by up to 9.23% (64.28%→73.51%) for the
’Last Acc’ and 5.84% (75.10%→80.94%) for the ’Avg
Acc’. For the TResNet-L backbone, APPLE outperforms
the second-best TPCIL by 3.41% (71.20%→74.61%) for
the ’Last Acc’ and 6.77% (75.28%→82.05%) for the ’Avg
Acc’. The experimental results above also prove the robust-
ness of our method for different network structures. For
the B0-C20 protocol, APPLE achieves the last accuracy
of 74.94% and 76.65% on the ResNet101 and TResNet-L
backbones, respectively, exceeding the other state-of-the-art
methods in the MLCIL setting.

Fig. 4(a) and (b) show the comparison curves of the
different methods with ResNet101 backbone under the
B40-C10/B0-C20 protocol. We can observe that our pro-
posed APPLE consistently outperforms other CIL methods
in each session and have a minimal gap with upper bound
JT. As incremental learning proceeds, the superiority of AP-
PLE becomes more pronounced, which illustrates that our
method is more resistant to catastrophic forgetting.

Results on PASCAL VOC 2007. Tab. 2 summarizes the
last and average results of ResNet101/TResNet-L backbone
under the B10-C5 and B0-C5 protocols on the PASCAL
VOC 2007 dataset, which have similar trends to the results
on MS-COCO. For the B10-C5 protocol, the last and aver-
age accuracy of APPLE which uses the ResNet101 back-
bone surpass the second-best method TPCIL with about
0.89% and 1.43%, respectively. For the TResNet-L back-
bone, the last and average accuracy of APPLE outper-
forms the second-best method PODNet by about 3.01% and
1.33%. For the B0-C5 protocol, APPLE also exceeds other
competitive methods. Fig. 4(c) and (d) show the compari-
son curves of the different methods which use ResNet101
backbone under the B10-C5/B0-C5 protocol. It is ob-
served that APPLE is always superior to contrast methods.

4.3. Ablation Study

To verify the effectiveness of each component in our
proposed method, we conduct ablation experiments under
the B40-C10 protocol on MS-COCO dataset and the re-
sults are listed in Tab. 3. In model 1, we simply fine-
tune a ResNet101 model as a baseline. In model 2, we
add the CAD module to the baseline and get a 6.01%
(21.44%→27.45%) relative improvement of ’Last Acc’,
which demonstrates that paying attention to the spatial in-
formation of object features improves the classification per-
formance of the model in the MLCIL setting. Based on

Table 3. Ablation study of our method under the B0-C20 proto-
col on MS-COCO dataset with ResNet101 backbone. KD is the
knowledge distillation, which is used together with cluster sam-
pling (CS) or herding sampling (HS). APL represents the adaptive
pseudo-label strategy and FPL is the fixed-threshold pseudo-label
strategy (ϵ = 0.75). † denotes the comparison modules.

CAD KD+CS APL KD+HS† FPL† Last Acc Avg Acc
Model 1 × × × × × 21.44 48.54
Model 2 ✓ × × × × 27.45 54.31
Model 3 ✓ ✓ × × × 64.97 76.44
Model 4 ✓ × ✓ ✓ × 73.15 81.13
Model 5 ✓ ✓ × × ✓ 72.90 80.13
Model 6 ✓ ✓ ✓ × × 74.94 81.62

this model, in model 3, we further add the KD and cluster
sampling strategy, boosting the final accuracy by 37.52%
(27.45%→64.97%). Then, in model 6, we add the adaptive
pseudo-label (APL) strategy to model 3, which is equiva-
lent to the proposed APPLE framework, resulting in a sig-
nificant improvement of 9.97% (64.97%→74.94%). For
comparison, we replace KD+CS and APL in model 6 with
KD+herding sampling (HS) and fixed-threshold pseudo-
label strategy (FPL), respectively, obtaining model 4 and
model 5. The ’Last Acc’ of model 4 and model 5 are 1.79%
and 2.04% lower than ours, respectively. These results
above strongly prove that our proposed three components
are very effective in preventing catastrophic forgetting and
improving performance in the MLCIL setting.

5. Conclusion
In this paper, instead of the widely studied CIL, we fo-

cus on a more general and challenging multi-label class-
incremental learning (MLCIL) setting, where models are
required to alleviate the catastrophic forgetting problem
while learning new classes from multi-label samples. In or-
der to solve the label absence, representative sample selec-
tion, and feature dilution problems it brings, we propose a
new framework, termed APPLE, which contains three com-
ponents. First, APPLE uses an adaptive pseudo-label strat-
egy to generate pseudo-labels for currently available data,
solving the label absence problem. Second, a clustering
sampling strategy is proposed to obtain more representa-
tive replay samples, which can better mitigate catastrophic
forgetting. Finally, a class attention decoder is designed to
concentrate on the spatial information of object features,
alleviating the feature dilution problem in the multi-label
scenario. Extensive experiments on PASCAL VOC 2007
and MS-COCO datasets show that our method outperforms
comparison CIL methods in the challenging MLCIL setting.
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