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Abstract

Can a text-to-image diffusion model be used as a training

objective for adapting a GAN generator to another domain?

In this paper, we show that the classifier-free guidance can

be leveraged as a critic and enable generators to distill

knowledge from large-scale text-to-image diffusion models.

Generators can be efficiently shifted into new domains indi-

cated by text prompts without access to groundtruth sam-

ples from target domains. We demonstrate the effective-

ness and controllability of our method through extensive

experiments. Although not trained to minimize CLIP loss,

our model achieves equally high CLIP scores and signif-

icantly lower FID than prior work on short prompts, and

outperforms the baseline qualitatively and quantitatively

on long and complicated prompts. To our best knowl-

edge, the proposed method is the first attempt at incorporat-

ing large-scale pre-trained diffusion models and distillation

sampling for text-driven image generator domain adapta-

tion and gives a quality previously beyond possible. More-

over, we extend our work to 3D-aware style-based genera-

tors and DreamBooth guidance. For code and more visual

samples, please visit our Project Webpage.

1. Introduction

Diffusion models have witnessed a remarkable rise in

image-generation tasks with their ability to cover a wide

range of visual semantics from different image domains [5,

11, 14, 16, 37, 45, 46, 48, 51, 58]. These models usually re-

quire lots of iterative generative steps, which is computa-

tionally demanding and makes it undesirable in many ap-

plication scenarios. On the other hand, GANs [9,10,12,13,

15,21±23,25] preserve their advantage over diffusion mod-

els in terms of generation speed and is more computational-

friendly to train. Within a single image domain, GANs can

have an accessible latent space with the expressive power

to synthesize images with fine-grained variations. Lever-

aging a pre-trained text-to-image diffusion model, such as

StableDiffusion [48], we propose a new training objective

that can quickly shift a pre-trained GAN model into an-

other image domain. We take advantage of StableDiffu-

sion’s prior knowledge learned from enormous text-and-

image pairs and use such prior guiding the GAN model to

shift its generation behavior. With the developed training

objective, are able to shift the output of GAN to a totally

different image domain without the need for any training

images in that domain.

The availability of large-scale text-to-image models un-

leashes the potential of zero-shot domain shifting for GANs.

Prior works, such as StyleGAN-NADA [8], take advantage

of CLIP’s [44] power to relate visual features to textual se-

mantics. Via a quick training of minimizing CLIP’s image-

to-text similarity on a certain set of prompts, StyleGAN-

NADA is able to generate cartoon avatars from a model

trained only on realistic faces and oil paintings from a

model initially trained only on photographs. However, these

methods rely on CLIP, which has been shown to proceed

with a misaligned text and image latent space [30]. CLIP

loss is known hard to be minimized in previous work [33]

as it tends to be trapped in a local minimum. This limits

the effectiveness of the selected prompts to drive the GAN

toward the desired image domain, leading to image artifacts

and undermined decreased generation diversity.

In this work, we explore using diffusion to improve the

performance of a text-driven image generator for domain

adaptation. We leverage the power of pre-trained large-

scale diffusion models and build on the recently proposed

Score Distillation Sampling technique [42], where text-to-

image diffusion acts as a frozen, efficient critic that predicts

image-space edits. Our new domain adaptation method

takes advantage of a pre-trained image diffusion model,

providing well-aligned guidance directly from the image

domain to help train the GAN model.

Intuitively, distillation of a generative model (eg. diffu-

sion model) can provide more informative signals for a gen-

erator than a discriminative model (such as CLIP). In this

paper, we investigate two techniques that combine diffusion

with style-based generators to explore this idea further:

• We introduce the diffusion model score distillation

sampling (SDS) into domain adaptation of style-based

image generators and achieve better performance than

prior art.

• To regularize the network and prevent model col-
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Figure 1. Example images after adapting generator to a domain specified by a text description. The first section is a photo from the FFHQ

dataset to 3D stylized Anime, the second section is from cats to 3D rendering cats. Detailed text prompts can be founded in the appendix.

lapse, we propose a diffusion directional regularizer

and adapt the reconstruction guidance to SDS. To solve

blurry issues, we adapt the layer selection into our

framework.

2. Related Work

Image generator domain adaptation. How can we get a

generator without having access to enough real data? The

goal of domain adaptation is to shift the data distribution

of image generators to a desired new domain different from

what it is trained on. Prior works branches into two direc-

tions: few-shot and text-guided zero-shot fine-tuning.

Few-shot models are trained with several hundred or

fewer [32, 39] image samples. To better capture the target

domain, some control channel statistics [38] or sampling

process [55] in the latent space. Regularizer to prevent

model collapse issue [29, 35, 41, 47, 54]. Some use auxil-

iary tasks [31,57] to alleviate overfitting. Text-guided zero-

shot fine-tuning uses only text as guidance. Prior works ex-

ploited the semantic power of large-scale CLIP models [44]

to find editable latent space directions in a pre-trained Style-

GAN2 [24]. For example, StyleCLIP [40] optimizes the la-

tent code for the generator and minimizes the text-image

similarity score from CLIP. StyleGAN-NADA [8] takes a

step further by directly fine-tuning the generator using the

CLIP text-image directional objective.

More recently, diffusion models show great potential in

text-guided fine-tuning. similar to StyleCLIP [40], Diffu-

sionCLIP [28] applies CLIP [44] objective to diffusion gen-

erators. Some fine-tune the text embedding [7] or the full

diffusion model [50] on a few personalized images.

Text to image diffusion model. Diffusion models [17, 52]

have achieved state-of-the-art image synthesis quality [37,

43, 51, 53], especially on large-scale text-to-image synthe-

sis tasks. Introduced by [17], diffusion models use an iter-

ative denoising process, which enables them to iteratively

convert Gaussian noise into fine-grained images from a di-

verse and complicated image distribution. Latent diffusion

models (LDMs) such as StableDiffusion [49] is a class of

diffusion models that operates on a latent space of a pre-

trained autoencoder. Instead of learning directly from the

image space, learning from the latent space greatly reduces
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(Face) → Joker (Cat) → Pikachu Cat (Dog) → Comic Dog

(Face) → Werewolf (Cat) → Dog (Dog) → Epic Dark Dog (Car) → Car Sketch

(Car) → TRON Wheel

Figure 2. Generated images from experiments on FFHQ face, AFHQ-Cat, Car and Dog [2]. The text below each section is the driving

prompt. Notice our model only takes in a target prompt and does not need the source prompt.

the data sample dimension. The latent space comes with

well-compressed semantic features and visual patterns that

are already learned by the autoencoder, thus saving the cost

of the diffusion model to learn everything from scratch.

Score distillation sampling. Prior works use diffusion

models as critics to optimize an image or a Differentiable

Image Parameterization (DIP) [36] and bring it toward the

distribution indicated by a text prompt. DreamFusion [42]

is a recent work that proposed a Score Distillation Sampling

(SDS) loss to utilize a pre-trained text-to-image diffusion

model [51] to guide the training of NeRF [34]. Their pro-

posed method can efficiently bypass the score-predicting

module and approximate the gradient with the difference

between the classifier-free guidance score and the ground-

truth noise. DreamFusion [42] performs SDS on image

pixel space. We adopt the same gradient trick but extend

it to the latent space of StableDiffusion [49] and use it as

guidance for StyleGAN2 [24] generator domain adaptation.

We also include experiments with 3D-aware domain adap-

tation on EG3D [1] image generators.

3. Methods

3.1. Background

Latent diffusion model. We use the publicly available la-

tent diffusion model(LDM) StableDiffusion [49] in this pa-

per as our guidance model. A LDM encodes images x into

latent space z with an encoder E , z0 = E(x), and the de-

noising process is preformed in the latent space Z . Briefly,

a latent diffusion model ϵθ can be trained on a denoising

objective of the following form:

Ez0,c,ϵ,t

[

wt∥ϵθ(zt|c, t)− ϵ∥22
]

(1)

where (x, c) are data-conditioning pairs, ϵ ∼ N (0, I), t ∼
Uniform(1, T ) and wt is a weighting term.

Classifier-free guidance. In the denoising sampling pro-

cess, Classifier guidance is an effective method to guide the

synthesis better toward the desired direction, e.g. a class

or a text prompt [4]. The method uses gradients from a

pre-trained model p(c|zt) during sampling. Classifier-free

guidance (CFG) [18] is an alternative technique that avoids

this pre-trained classifier. During the training of the condi-

tional diffusion model, randomly dropping the condition c

lets the model learns to generate an image even without a

condition. Therefore, a well-conditioned image can be gen-

erated by pushing the synthetic results under condition c

further away from the unconditioned results during the dif-

fusion process, where

ϵ̂θ,c(zt) = s · ϵθ(zt|c, t) + (1− s) · ϵθ(zt|∅, t). (2)

Here, ϵθ(zt|c, t) and ϵθ(zt|∅, t) are conditional and uncon-

ditional ϵ-predictions. s is the guidance weight and increas-

ing s > 1 strengthens the effect of guidance.

3.2. Model Structure and Diffusion Guidance Loss

An image x is generated with generator G from a style

code w ∼ Pw, where Pw is the pushforward measure

from z ∼ N(0, I) to W through a mapping network g.

The generated image x = G(w) is then encoded into

the latent space of the StableDiffusion model using its en-

coder E , z0 = E(x) ∈ R
c×h×w. Following the stan-

dard diffusion training schema, we sample a time-step t ∼
Uniform(1, Tx), with 0 < Tx < T , and perform the for-

ward process (namely, ªq sampleº) to get a noisy latent:

zt = q(z0, t) :=
√
ᾱtz0 +

√
1− ᾱtϵ, with ϵ ∼ N(0, I).
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Figure 3. Overview of our StyleGAN-Fusion framework. The style-based generator Gφ receives the gradient ∂L
∂x

backpropagated from
∂L
∂z

through encoder E . ϵ̂θ,c,zt is the classifier-free guidance score. All noises and noisy images are the decoded corresponding latents for

visualization purposes.

Then the denoising process takes in zt and returns the

predicted noise ϵ̂θ,c(zt) (classifier-free guidance score),

conditioned on time step t and text prompt embedding y.

Ideally, if zt is faithfully rendered according to the given

text condition, the diffusion model ϵθ should be able to cor-

rectly recover the true noise ϵ. We follow the gradient trick

proposed by DreamFusion [42] to directly used the differ-

ence between the predicted and the ground-truth scores as

gradient and backpropagated through E to the generator G,

∇φGφ = ∇zLSDS
∂z
∂φ

, and

∇zLSDS := Ec,ϵ,t[wt (ϵ̂θ,c(zt)− ϵ)] . (3)

The generator parameters are updated accordingly.

3.3. Directional and Reconstruction Regularizer

The diffusion guidance loss provides the generator with

an informative direction to evolve, improving the image fi-

delity at the cost of diversity. It does not encourage image

diversities. In fact, we observe that after a sufficient amount

of iterations, the generator will collapse to a fixed image

pattern regardless of its input noise. We assume this hap-

pens because the loss is sufficiently minimized when the

unconditional ϵ̂∅ is equal to the conditional ϵ̂c for all w. It

is searching for an image x that makes diffusion ϵθ to pre-

dict the same noise for both unconditional and conditional

inputs. This phenomenon is also known as differentiable

image parameterization (or DIP). In such a case, the gener-

ator will lose image diversities, leading to a mode collapse.

To address this issue, we regularize the generator opti-

mization process with an additional loss term, which we de-

fined as a diffusion directional regularizer. Denote the orig-

inal frozen generator as Gfrozen and the current one Gtrain,

the classifier-free guidance scores are given by,

ϵ̂train = ϵ̂train,∅ + s(ϵ̂train,c − ϵ̂train,∅)

ϵ̂frozen = ϵ̂frozen,∅ + s(ϵ̂frozen,c − ϵ̂frozen,∅) (4)

The proposed directional regularizer is the cosine similarity

between ϵ̂train and ϵ̂frozen, maintaining a low directional

difference. To efficiently implement it, we leverage the fact

that a high dimensional Gaussian random variable lies on

a sphere with high probability [20] and minimize their L2

distance instead. To do so, we normalize each score tensor

according to its expected radius r =
√
c× h× w, and add

a regularization gradient term defined as,

∇zLdir
SDS := r

(

ϵ̂train

||ϵ̂train||2
− ϵ̂frozen

||ϵ̂frozen||2

)

. (5)

We use Ldir
SDS as a constraint on the optimization of the

generator. Note that during the fine-tuning, ϵ̂frozen is a

fixed starting point for a given style code. If the genera-

tor only gives a single image for all w, the gradient from all

fixed starting points will be different. Such regularizer en-

courages Gtrain(w) to maintain its initial optimization di-

rection, adding a force in preventing model collapse. Exper-

iments show the directional regularizer can efficiently pre-

vent model collapse. It is a plug-in module that is compati-

ble with other regularization methods.

Additionally, we extend the score distillation framework

to reconstruction guidance [19] and introduce a reconstruc-

tion regularization. Intuitively, we want the current estima-

tion of the clean latent image ẑ0 = (zt −
√
1− ᾱtϵ̂)/

√
ᾱt,

given by the Tweedie’s formula [3], to be similar to the la-

tent image z0 given by Gfrozen,

∇zLrec
SDS := r

(

ϵ̂train

||ϵ̂train||2
− ∇ϵ̂Lrec

||∇ϵ̂Lrec||2

)

, (6)
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Cat Hamster Fox Badger Lion Bear Pig BaselineDog Otter

Figure 4. Uncrated samples from our method on Cat-to-8-animals (left). For each animal type, we show 1 uncurated sample from baseline

(right). Notice the significant visual quality differences. Our method generated more visually realistic and natural results, including

undistorted facial components, cleaner backgrounds, diverse poses, and higher pose faithfulness. We highlight all Gfrozen in red box.

where ∇ϵ̂Lrec is the gradient of reconstruction loss Lrec =
∥ẑ0 − z0∥22. We provide comparisons between the regu-

larizers in the experiment section. The total loss is L =
LSDS + λdirLdir

SDS + λrecLrec
SDS , with λ’s the weighting

coefficients.

3.4. Timestep Range and Layer Selection

The range of denoising timestep (TSDS) from which

timestep t ∼ Uniform(Tmin, Tmax) is sampled closely re-

lates to the model behavior. Increasing TSDS value leads

to an amplified noise level in the resulting latent code fol-

lowing q sampling process. This, in turn, provides more

scope for ϵθ to undertake modifications. The guidance sig-

nal from ϵθ is thus more related to high-level image struc-

tures. A smaller TSDS , on the other hand, leaves less scope

for ϵθ and is more related to local structures and details.

TSDS range configuration allows us to control the scale of

changes (see Sec. 4.3).

Recall that style-based generators has a similar property:

deeper layers control image composition and shallower lay-

ers the image details. Intuitively, if we optimize generator

layers altogether, unsatisfied scenarios could occur where a

high-level overall-structure guidance loss is used to update

a shallow and detailed generator layer, resulting in blurry

generated images. We use layer selection to overcome such

issues. Inspired by StyleGAN-NADA [8], we perform N it-

erations of optimization on the W+ style code space based

on the SDS objective and select k layers that correspond to

the most significantly changed style codes. Ablation study

(see Sec. 4.3) shows the quality boost of multiple k settings,

especially in terms of reducing blurry vagueness.

4. Experiments

We begin by showing result images. In Fig. 1, the up-

per section contains generated face images in a 3D render-

ing style described by the text promt. we take a Style-

GAN2 generator pre-trained on the photorealistic FFHQ

dataset and fine-tune it using our method. The lower sec-

tion contains generated cat images, fine-tuned from the

AFHQ-Cat [2] checkpoint. Fig. 2 shows diverse results

from werewolves, Joker, photorealistic or artistic rendering

of cats/dogs and cars. Full text prompts in each experiment

and additional image galleries are included in the appendix.

4.1. Qualitative evaluation

We compare our method and the baseline, StyleGAN-

NADA, in multiple Cat-to-animals experiments. Fig. 4

shows 4 uncurated generated samples from our method for

each animal type and 1 sample from the baseline. Our

method is able to generate images with much higher visual

quality and fidelity in these experiments. Baseline results

are optimized to minimize CLIP metric in an adversarial

manner [33] and have much lower visual quality. Our re-

sults look realistic and detailed whereas baseline results are

flat with distorted details. We provide quantitative evalua-

tions for these experiments in the following section.

Our method consistently outperforms the baseline. We

conduct experiments on the FFHQ face model with a

prompt that requires detailed artistic styles on rendering and

lighting. Fig. 5 shows the results from the baseline and

ours. Baseline images have distorted facial components like

asymmetrical eyes, and a rough texture which directly con-

flicts with the prompt. Our results have much higher quality
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Ours Baseline

Figure 5. Compare our method with the baseline on ºFFHQ faceº.

Our method generates higher quality results than the baseline and

better matches the prompt.

and better match the prompt, especially in terms of natural

and undistorted face layouts. Moreover, results from our

model have more realistic 3D lighting and rendering which

better match the text prompts.

Similar results are observed when adapting the

StyleGAN2-Cat [24] model. Fig. 6 shows generated images

from our method and the baseline. The baseline model does

not properly follow the text description and fails in many

aspects. The requested outcome was to have cute, circu-

lar, and large reflective eyes. However, the baseline images

do not seem to exhibit these features. The rendering appears

artificial and of low quality, lacking the appearance of a true

3D representation. Our model perfectly satisfies the prompt

requests with cinematic-like lighting, smoother textures, a

stronger 3D style, and high-quality details. We address our

performance superiority from two perspectives:

• Prior work [33] has demonstrated that the CLIP loss

is prone to be adversarially minimized, and be con-

fined to a local minimum. Researchers also observed

that optimization overcomes the CLIP loss by adding

pixel-level perturbations to the image [8]. Our model,

however, utilizes Stable Diffusion guidance and oper-

ates within the latent space. The generator and dif-

fusion guidance are separated by an image Encoder,

increasing the likelihood of semantically meaningful

optimization rather than adversarially on a pixel level.

• Baseline model uses CLIP text encoders which return

one single embedding vector for the entire text prompt.

The vector space limits the capacity and forces in-

formation compression, reducing the embedding qual-

ity especially when the text prompts are long and de-

Ours Baseline

 

Figure 6. Compare our method with the baseline on ºAFHQ-Catº.

Our method generated significantly more realistic and natural re-

sults than the baseline.

tailed. Our method utilizes StableDiffusion as guid-

ance which uses a sequence of text embeddings and

cross-domain attention, improving the capability to

capture multiple key constraints outlined in lengthy

text prompts. We provide quantitative evaluations in

the following section.

4.2. Quantitative Evaluation

This section quantitatively compares the baseline and

our method. We conduct experiments adapting an AFHQ-

Cat [2] generator to the domain of 8 other animals indicated

by prompts. We manually extracted ground truth images

from AFHQ-Wild subclass and calculate the FIDs in Tab. 1.

We kindly remind these FIDs are achieved in a zero-shot

manner, as both methods are trained solely on text with-

out having an access to a single ground-truth image. Our

method significantly outperforms baselines in FID score in

all cat-to-8-animals experiments.

Such performance gains are persistent when evaluating

the CLIP matching scores between images and the text

prompt. Baseline encodes the entire text prompt into a

fixed-length vector via CLIP text encoder, which inevitably

compresses information. The issue becomes more notice-

able and severe as the length of the text prompt increases.

To provide quantitative evidence of the superiority of our

approach, we evaluate how well our method and base-

line capture each keyword requirement mentioned by the

prompt. Specifically, we separate the prompt into keyword

pieces and calculate the CLIP [44] image-text matching

score between the generated image and keywords. We con-

duct experiments with our method and baseline in adapt-
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Table 1. FID scores of Cat/Dog-to-Animals. Ground-truth images

are extracted from the AFHQ dataset [2]. Our models consistently

outperform the baseline in FIDs by a large margin.

Cat Dog

Ours NADA Ours NADA

Dog/Cat 150.76 206.93 124.72 139.35

Fox 51.51 90.40 61.10 129.58

Lion 30.34 153.82 52.52 173.81

Tiger 19.29 115.46 31.15 223.33

Wolf 45.33 139.66 71.29 160.00

ing the StyleGAN2-Face and Cat generators, as shown in

Fig. 5 and Fig. 6. The prompt requests a rendering style

that contains diverse constraints including eyes, texture, and

lighting. Both methods are trained for 2000 iterations af-

ter which we sample 2000 images for metric evaluation.

Tab. 2 shows that the baseline has difficulty capturing all

key constraints mentioned in the long text prompt. Our

model, in contrast, better captures almost all keywords in

CLIP scores. This fits our intuition as diffusion guidance

uses cross-attention between images and each text token and

has greater information capacity.

Table 2. CLIP between each keyword and generated images. Our

model outperforms the baseline in almost all keywords.

Face Cat

Prompt Keywords Ours NADA Ours NADA

3d cute face/cat 0.303 0.301 0.315 0.307

closeup cute and adorable 0.247 0.222 0.256 0.242

cute big circular reflective eyes 0.276 0.268 0.276 0.267

Pixar render 0.280 0.282 0.251 0.247

unreal engine 0.273 0.271 0.264 0.262

cinematic smooth 0.227 0.208 0.221 0.217

intricate detail 0.213 0.208 0.213 0.218

cinematic lighting 0.231 0.210 0.230 0.229

4.3. Timestep Range and CLIP-LPIPS Trade-off

Recall we sample a timestep t from range TSDS =
(Tmin, Tmax), in each iteration, based on which we apply

the q sample process and update the generator. We experi-

ment with the influence of its configuration on our model

behavior. We observe that a large TSDS enables more

global structural modifications, while a small TSDS only

allows local detail modifications. Fig. 7 right side shows

an example of adapting a cat generator to an otter genera-

tor. As TSDS increases, the generated otter’s ears become

smaller and more realistic This property provides a smooth

transition from the original domain to the target domain and

adds more controllability to the optimization process.

For quantitative results, we calculate CLIP scores for

image-text alignment and LPIPS [59] scores to address im-

99
0

70
0

30
0

Figure 7. Denoising time step controls. The left figure shows

the trade-off between fidelity and diversity. Right figure visually

shows the effect. As Tmax increases, generated images gradually

show more otter features but lose distinctive fur and color patterns.

L12 L6 L3 L12 L6 L3

Figure 8. Ablation on layer selection. With fewer layers selected,

vagueness disappears and image details become clear and sharp.

Table 3. Quantitative ablation on regularizer and layer selection.

We calculate FIDs scores for face experiments.

FIDs w/o Layer Selection w/ Layer Selection 12 (L12) L6 L3 L1

T No Reg Regularize No Reg Regularize Regularize

0.75 143.9836 130.9132 140.1852 119.8765 114.6877 105.0439 102.7785

0.80 135.5151 120.8958 126.5048 104.189 110.6044 97.9570 93.2015

0.85 119.1711 107.4251 108.306 90.8212 89.8302 81.322 71.2215

age diversity [2], as shown in Fig. 7 scatter plot. We fix

Tmin = 0 and conduct experiments with different Tmax set-

tings. Similar to previous work [26] [6], we notice a CLIP-

LPIPS trade-off with TSDS . A larger range enables struc-

ture changes and increases image fidelity to the target do-

main, resulting in high CLIP scores but lower LPIPS diver-

sity. In contrast, a smaller range focuses on local changes

and prefers faithfulness to the original domain, resulting in

high LPIPS diversity but lower CLIP scores.

4.4. Ablation on Layer Selection and Regularizers

This section evaluates the effect of the layer Selection

and our diffusion-guidance regularizers. For quantitative

evidence, we show FIDs scores for face experiments in

Tab. 3. Since we don’t have ground-truth images, we uti-

lize StableDiffusion img2img to approximate them with 3

strength values (T ). The left part shows the effective-

ness of our proposed regularization. Regularized models

are consistently better in all experiments with or without

layer selection. The right part of the table is a quantitative

comparison of layer selection with different layer settings.

From L12 to L1, we select fewer layers for each training
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Figure 9. Regularization serves a key role. The regulated ones

better preserve the details including facial expressions, hairs, and

backgrounds, whereas the non-regulated approach ignores them.

iteration and FID performance improves Continuously.

Fig. 8 visually shows the effect of layer selection on our

method. We select 12/6/3 layers to optimize for each itera-

tion. Selecting fewer layers slows down the training speed

and requires more iterations of training. We show results

with the best visual quality for each layer configuration. By

selecting fewer layers, the blurry and vague appearance of

the image is mitigated, resulting in sharper and more dis-

tinct details, such as hair and eyes.

We visually show the importance of our regularizers for

the model performance using the face experiment. The text

prompt is the same as Fig. 1, requesting a rendering of

anime faces with cute circular reflective eyes. Fig. 9 upper

panel shows training snapshots of non-regularized baseline.

Without regularization, the generator gradually collapses

into a few very similar images and eventually completely

ignores its input. It overfits on image features mentioned in

the text prompt (large eyes, Pixar render, etc) but ignores

all other aspects that are important for visual quality but

are not mentioned in the prompt, such as background, gen-

der, facial expression, etc. In another word, the generator is

guided by LSDS to focus on image features specified by the

prompt while disregarding all other image features, leading

to an overemphasis on the prompt-specified features. Given

enough training iterations, the non-regulated approach de-

grades to very similar images and ignores its input z, result-

ing in a model collapse. Fig. 10 further inspects the differ-

ence between regularizers.

4.5. Extension to 3D Generators and DreamBooth

We extend our method to 3D Geometry-aware genera-

tors from EG3D [1] on the face and cat models. During

optimization, all parameters are frozen except the weights

of Conv layers in the tri-plane generator. We add LPIPS

[59] to the loss function to stabilize training. We show ad-

ditionally extend to DreamBooth [50] guidance in Fig. 12

and the appendix. We tried public available DreamBooth

checkpoints ªWa-vyº style [56] and ªWoolitizeº style [27]

R
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Figure 10. Compare directional and reconstruction regulariz-

ers. L
rec
SDS is a stronger constraint and keeps more details intact,

whereas Ldir
SDS is mild and allows more modifications.

Figure 11. 3D domain adaptation on EG3D-Face and Cat [1] .

Results from Gtrain are located in the middle; Gfrozen on the left

and its mesh on the right highlighted with blue box.

Figure 12. DreamBooth guided results. We show the original

DreamBooth StableDiffusion samples in blue boxes.

5. Conclusion

We presented a novel domain adaptation method for

image generators that uses StableDiffusion guidance and

Score Distillation Sampling. Our method allows flexible

control of the magnitude of modifications by selecting the

value of TSDS . With the introduced diffusion-guidance

directional regularizer and layer selection techniques, our

model is able to shift the generator to generate new images

from a target domain indicated by the text prompt, with im-

proved quality compared to existing methods. We also show

that our method can be extended to 3D-aware style-based

generators and used with DreamBooth models as guidance.
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