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Abstract

Synthetic datasets, recognized for their cost effective-

ness, play a pivotal role in advancing computer vision tasks

and techniques. However, when it comes to remote sens-

ing image processing, the creation of synthetic datasets be-

comes challenging due to the demand for larger-scale and

more diverse 3D models. This complexity is compounded by

the difficulties associated with real remote sensing datasets,

including limited data acquisition and high annotation

costs, which amplifies the need for high-quality synthetic al-

ternatives. To address this, we present SyntheWorld, a syn-

thetic dataset unparalleled in quality, diversity, and scale.

It includes 40,000 images with submeter-level pixels and

fine-grained land cover annotations of eight categories, and

it also provides 40,000 pairs of bitemporal image pairs

with building change annotations for building change de-

tection. We conduct experiments on multiple benchmark

remote sensing datasets to verify the effectiveness of Syn-

theWorld and to investigate the conditions under which our

synthetic data yield advantages. The dataset is available at

https://github.com/JTRNEO/SyntheWorld.

1. Introduction

High-resolution remote sensing image processing is vi-

tal for urban planning, disaster response, and environmen-

tal monitoring. Although advances in deep neural networks

and the emergence of various benchmark datasets have led

to significant progress in these research areas, the unique as-

pects of remote sensing image processing tasks still present

many challenges.

First, acquiring large-scale datasets that compare with

those in computer vision and natural language processing is

difficult due to the sensitivity, privacy, and commercial con-

siderations of remote sensing data. As a result, remote sens-

ing datasets tend to be significantly smaller. Second, com-

pared to fields like computer vision or natural language pro-

cessing, remote sensing data annotation is both more costly

and time-intensive. For example, annotating a 1024× 1024
image from a large land cover mapping dataset such as [40]

usually takes more than two hours. Finally, variations in

image capture conditions such as sensor type, image acqui-

sition season, and geographical location introduce a severe

domain shift problem in remote sensing image processing.

Synthetic datasets, with their low-cost acquisition, high

fidelity, and diversity, present a viable solution to these chal-

lenges. In the field of computer vision, numerous high-

quality synthetic datasets [4, 13, 22, 29, 33, 39] have already

emerged, primarily serving tasks such as semantic segmen-

tation, depth estimation, optical flow estimation, and 3D re-

construction of street-view and indoor-view scenario. How-

ever, high-quality synthetic datasets for remote sensing are

scarce in comparison. The most important reason is, as

described in [18], in a virtual world constructed for street-

view or indoor-view scenes, the distance between the sen-

sor and the target location is relatively small (a few or tens

of meters), with the main focus being on pedestrians, ve-

hicles, road signs, or various furniture, resulting in a rela-

tively small virtual world size. In contrast, in remote sens-

ing scenarios, sensors are often located tens of thousands

of meters away from the target virtual world, making even

a relatively small virtual world extend over several square

kilometers, while maintaining a multitude of diverse targets,

such as thousands of trees in different poses and hundreds of

buildings of different styles. This makes the construction of

large-scale synthetic remote sensing datasets exceptionally

challenging.

Upon a thorough survey of the available synthetic re-

mote sensing datasets [3, 18, 28, 35, 41, 43], we discern that

each of them has specific limitations. First, most existing

works focus on a single task, such as building segmenta-

tion [18, 43] or object detection [35, 41]. However, there

is a notable lack of effective synthetic datasets for criti-

cal tasks like multi-class land cover mapping and building

change detection. Furthermore, these datasets exhibit lim-
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Figure 1. Examples of SyntheWorld dataset.

ited diversity due to constraints associated with the size of

the virtual world and the tools used. They either emulate

real-world cities to create a limited number of virtual en-

vironments or use real remote sensing images as the back-

ground. Furthermore, when it comes to 3D models in the

virtual world, existing methodologies consistently rely on

predefined textures, layouts, and geometries, resulting in a

restrictive range of styles for buildings, trees, and other land

objects.

In this work, we use the freely available open-source 3D

modeling software Blender [7], along with various plugins

from the Blender community, GPT-4 [26], and the Stable

Diffusion model [31], to develop a procedural modeling

system specifically for generating high-resolution remote

sensing datasets. We present SyntheWorld, the largest high-

resolution remote sensing image dataset for land cover map-

ping and building change detection tasks. Fig. 1 displays

some examples from the proposed SyntheWorld dataset.

The main contributions of this work are:

• We introduce SyntheWorld, the first fully synthetic

high-resolution remote sensing dataset, which inte-

grates procedural 3D modeling techniques with Arti-

ficial Intelligence Generated Content (AIGC).

• We use SyntheWorld as the first synthetic dataset

specifically designed to improve performance in two

crucial tasks: multi-class land cover mapping and

building change detection.

• We propose the Relative Distance Ratio (RDR), a new

metric designed to quantify the conditions under which

the synthetic dataset can drive performance improve-

ments.

• Through comprehensive experiments on various re-

mote sensing benchmark datasets, we demonstrate the

utility and effectiveness of our dataset.

2. Related Works

2.1. Remote Sensing Image Processing Tasks

2.1.1 Land Cover Mapping

The discipline of land cover mapping is a crucial component

of remote sensing image processing, where the goal is to

categorize and depict physical features on Earth’s surface,

such as grass, trees, water bodies, bareland, buildings, etc.

This task resembles semantic segmentation in traditional

computer vision. Although the introduction of benchmark

datasets for real-world scenarios, such as DeepGlobe [11],

LoveDA [38], and OpenEarthMap (OEM) [40], has made

significant advances in associated research, there is still a

clear need for high-quality synthetic datasets. This is an

area where the field of computer vision has made signifi-

cant progress. Recognizing this gap, we were motivated to

create SyntheWorld, a synthetic dataset crafted to improve

performance in land cover mapping tasks.

2.1.2 Building Change Detection

The task of building change detection forms another cru-

cial component within the realm of remote sensing image

processing. It involves the identification and localization of

modifications in man-made structures, especially buildings,

over time, achieved through the analysis of images of the

same area captured at different intervals. It is an indispens-

able technique for assessing damage in scenarios such as

earthquakes, hurricanes, or floods, and for monitoring urban

development and expansion over time. Typical annotations

for this task involve binary masks, with networks trained

to predict areas of building change based on input image

pairs from two time points. While the emergence of bench-

mark real-world datasets such as WHU-CD [16], LEVIR-

CD+ [5], and SECOND [42] have provided the field with

valuable data resources, the lack of high-quality synthetic

datasets has hindered the pace of related research.
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2.2. Existing Synthetic Datasets

2.2.1 Street-view & Indoor-view

As we mentioned, the availability of large, high-quality syn-

thetic datasets for street-view and indoor-view has driven

the development of related techniques in traditional com-

puter vision. The MPI Sintel Dataset [4] is widely used for

training and evaluating optical flow algorithms, capturing

natural scenes and motions in its synthetic dataset derived

from an animated film. SceneFlow [22], with more than

35,000 synthetic stereo video sequences, is designed for the

evaluation of optical flow, disparity, and scene flow algo-

rithms. SYNTHIA [33], a dataset composed of 9,400 multi-

viewpoint frames from a virtual city, targets urban scene un-

derstanding tasks with its pixel-level semantic annotations.

The GTA5 dataset [29], comprising 24,966 synthetic im-

ages from the perspective of a car in virtual cities, is tai-

lored to the understanding of urban scenes with its pixel-

level semantic annotations compatible with the Cityscapes

dataset [9]. Synscapes [39], featuring 25,000 photorealistic

street scenes, aims to improve the performance of computer

vision models in outdoor scenes with its precise semantic

labels. Finally, SceneNet [13], a diverse synthetic dataset

of over 5 million indoor scenes with RGB-D images and

semantic labels, is designed for indoor scene understanding

tasks.

2.2.2 Overhead-view

The AICD dataset [3], one of the earliest datasets with an

overhead view, uses the Virtual Battle Station 2 game en-

gine to simulate building alterations. Despite its 1,000 pairs

of 800×600 RGB image pairs with building change masks,

its 500 change instances are limited compared to the tens

of thousands found in real-world datasets. The GTA-V-

SID dataset [43], extracted from the GTA-V game, covers

a 100km2 area with 121 500 × 500 aerial RGB images.

Although it is useful for building segmentation tasks, its

1m GSD limits performance in high-resolution remote sens-

ing datasets. Syntinel-1 [18], the first high-resolution syn-

thetic remote sensing dataset for building segmentation, is

based on CityEngine and offers a variety of urban styles.

The Syntcities dataset [28] is for disparity estimation in re-

mote sensing images, featuring three virtual cities and 8,100

pairs of high-resolution images. RarePlanes [35], a semi-

synthetic dataset for aircraft object detection, combines real

WorldView-3 satellite imagery and 3D models.

3. Dataset Generation and Description

Constructing a virtual city manually is time-consuming.

Comparatively, SyntheWorld differs from existing

overhead-view synthetic datasets by using procedu-

ral modeling. Previous studies in computer graphics

Road/River.py

#Road/River parameters

river_num = randint()

road_num = randint()

width = uniform()

...

Tree.py

#Tree parameters

trunk = Sample_Noise()

branch_num = randint()

leaf_num = randint()

...

Building.py

#Building parameters

height = uniform()

type = select()

roof_angle = uniform()

...

Grid_based.py

#Grid-based parameters

district_num = randint()

district_size = randint()

obj_density = uniform()

...

Terrain_based.py

#Terrain-based parameters

flat_area = uniform()

mountain_area = uniform()

tree_density = uniform()

...

GPT-4
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Sensor.py

#Sensor parameters

azimuth = uniform()

look_angle = gaussian()

gsd = uniform()

...

Sun.py

#Sunlight parameters
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color = [uniform(),uniform(),uniform()]
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Figure 2. The essential components for building SyntheWorld

dataset.

have explored procedural modeling for cities and build-

ings [17, 24, 25], but none have utilized these techniques

for the creation of overhead view datasets. We create our

own procedural rules to create 3D geometries and apply

textures derived from generative models, which minimize

labor costs and enrich diversity.

3.1. Generation Workflow

Layout. We adopt grid-based and terrain-based methods

for the virtual world, as illustrated in Fig. 2. For the grid-

based method, we randomly slice a grid of 0.25-0.36km2

into several blocks of varying numbers and sizes, placing

different types of buildings and trees in each block, and

the boundaries between the blocks serve as our road sys-

tem. It mainly simulates the more regular city and subur-

ban layouts, and also contributes to the production of 0.3-

0.6m GSD synthetic remote sensing images. For the terrain-

based method, we use random noise textures to generate ter-

rains such as mountains, plains, and oceans with ranges of

1-2km2. Placing rivers, roads, buildings, and trees accord-

ing to carefully designed rules based on Geometry Nodes

in Blender [7], this method mimics irregular layouts in de-

veloping regions. It mainly contributes to the production of

0.6-1.0m GSD synthetic remote sensing images.

Geometry. The geometry row in Fig. 2 demonstrates

our approach to procedurally model trees and buildings. For

buildings, we use random noise to cut out differently shaped

grids on a flat plane, which we then extrude into 3D geome-

tries following pre-set rules. Users can control predefined

parameters to generate an infinite number of different ge-

ometric styles. We distribute predefined asset components

(walls, roofs, windows, etc.) to the geometry and finally

map the texture generated by AIGC to the building. For

trees, we use random-shaped curves as trunks and distribute

different styles of tree components to the curve following

certain rules.

Texture. The last row in Fig. 2 shows examples of our

process for generating corresponding texture assets using
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RS Synthetic Datasets
Features and Composition

GSD (m) Task # of images Image Size Automatic

Labeling

Fully Synthetic Procedural

Modeling

AICD [3] − BCD 1, 000 pairs 800 × 600
√ √

×
GTA-V-SID [43] 1 BS 121 500 × 500 ×

√
×

Synthinel-1 [18] 0.3 BS 1, 054 572 × 572
√

× ×
RarePlanes [35] 0.31 ∼ 0.39 OD 50, 000 512 × 512

√
× ×

SyntCities [28] 0.1, 0.3, 1.0 DE 8, 100 pairs 1024 × 1024
√

× ×

SyntheWorld (Ours)
0.3 ∼ 0.6

BS/LC/BCD
30, 000 pairs 512 × 512 √ √ √

0.6 ∼ 1.0 10, 000 pairs 1024 × 1024

Table 1. Features and composition comparison among remote sensing synthetic datasets. LC: land cover mapping. BCD: building change

detection. BS: building segmentation. OD: object detection. DE: disparity estimation.

AIGC. In terms of operational specifics, we first make a

Stable Diffusion usage guide as a prompt to help GPT-4 un-

derstand its workings and prompt forms. We then provide

excellent prompts as examples and ask GPT-4 to generate

different themed prompts for different types of textures. In

total, we generated around 140,000 seamless textures for

different geometry to build SyntheWorld, far exceeding the

number of textures used by existing overhead-view datasets.

See the supplementary material for detailed prompts and

generated images.

3.2. Structure of Dataset

As shown in Tab. 1, SyntheWorld is a comprehensive im-

age dataset, consisting of 40,000 pairs of images. Of these,

30,000 pairs have a GSD ranging from 0.3 to 0.6 m, with

each image having size 512 × 512. The remaining 10,000

pairs have a GSD of 0.6 to 1.0 m and a larger image size of

1024× 1024.

Each pair in the dataset contains a post-event image,

which is utilized for the land cover mapping task. These

post-event images are accompanied by semantic labels of

eight categories, as shown in Fig. 1. These categories are

consistent with those of the OEM [40] dataset. Correspond-

ingly, the pre-event images are derived by introducing vari-

ability in each scene. This involves different textures, light-

ing parameters, and camera settings. Additionally, there is

a 10% to 50% chance that any given building in the scene

might be removed.

Both pre-event and post-event images from each pair are

used collectively for the building change detection task. Ac-

cordingly, the dataset comes with 40,000 binary classifica-

tion masks corresponding to this task.

The off-nadir angle of all images ranges from −25◦ to

25◦ and follows a Gaussian distribution with a certain mean

0◦ and variance 2.3◦. Similarly, we simulate the sun’s posi-

tion during the day in most countries by adjusting the zenith

(ranging between 25◦ to 35◦) and the elevation parameters

(ranging between 45◦ to 135◦), as guided by the documen-

tation of the Pro Atom [8] addon in the Blender commu-

nity, both parameters following a uniform distribution. This

inclusion of various viewing angles and sun elevation en-

hances the robustness of SyntheWorld and ensures its appli-

cability to a wide range of real-world datasets.

3.3. Comparison with Existing Synthetic Datasets

As depicted in Tab. 1, we provide a comparative anal-

ysis of SyntheWorld and existing synthetic remote sensing

datasets, in terms of their features and composition. The

Task column presents the primary tasks illustrated in the

corresponding dataset’s literature.

Regarding label generation, the GTA-V-SID dataset [43]

consists of screenshots of the GTA-5 commercial video

game, with buildings manually annotated. On the contrary,

the remaining datasets are capable of automatically gener-

ating annotations via the corresponding 3D software.

In terms of complete synthesis, only SyntheWorld

achieves this feat. The other datasets have adopted real re-

mote sensing images to some extent as texture or as part of

the dataset during their construction.

Finally, in SyntheWorld, most 3D models are gener-

ated using procedural modeling, while in other synthetic

datasets, the geometric structure and texture of the models

are either predefined or meticulously designed by 3D artists.

This unique characteristic of SyntheWorld significantly en-

hances its diversity.

4. Experiments

4.1. Real-world Benchmark Datasets

To validate the versatility and effectiveness of Syn-

theWorld, we performed experiments using several high-

resolution remote sensing datasets from various real-world

scenarios. In the subsequent discussion, we present an in-

depth overview of these datasets. In the experiments show-

cased in this section, we employ “w” to signify the utiliza-

tion of the SyntheWorld dataset and “w/o” to indicate its

non-use.

For the building segmentation task, we relied on

OEM [40] and LoveDA [38] datasets, as well as INRIA [21]

and BANDON [27] datasets. The INRIA dataset, which
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Train on

Test on
OEM* LoveDA* INRIA BANDON

GTA-V-SID [43] 2.43 0.88 1.74 1.64

Synthinel-1 [18] 35.37 14.13 39.89 28.19

SyntCities [28] 23.61 21.39 30.39 30.01

SyntheWorld 49.26 37.28 45.76 34.01

OEM* [40] 80.48 55.35 75.61 64.19

Table 2. mIoU(%) results of the building segmentation task using

DeepLabv3+. * means to use only the part of the building label in

the dataset.

targets building footprint segmentation, incorporates aerial

images from ten cities in the United States and Europe at a

resolution of 0.3 m. The BANDON dataset stands out with

significant off-nadir angles and focuses on urban areas with

skyscrapers. It offers high-resolution 0.6m remote sensing

images from Beijing and Shanghai.

We turned to OEM and LoveDA datasets again for the

multi-class land cover mapping task. The OEM dataset, en-

compassing 97 regions across 44 countries worldwide, pro-

vides high-resolution images with detailed eight-class land

cover annotations. The LoveDA dataset offers 0.3m GSD

remote sensing images from three diverse regions in China,

labeled with seven land cover categories.

In the building change detection task, we harnessed

the WHU-CD [16], LEVIR-CD+ [5], and SECOND [42]

datasets. The LEVIR-CD+ dataset consists of 987 image

pairs, with 637 pairs in the training set and 348 pairs in the

test set. SECOND, a semantic change detection dataset, col-

lects 4662 pairs of aerial images from various platforms and

sensors across cities like Hangzhou, Chengdu, and Shang-

hai. The WHU-CD dataset consists of two pairs of super-

high-resolution (0.075m) aerial images. We cropped these

large training (21243×15354) and testing (11265×15354)

images into non-overlapping 512× 512 patches for our ex-

periments.

4.2. Building Segmentation

To compare with existing overhead-view synthetic

datasets, which mainly include semantic labels of build-

ings, we performed building segmentation experiments. We

use the DeepLabv3 + [6] network equipped with ResNet-

50 [14] backbone. We adopted the SGD optimizer [30] for

all synthetic datasets, employing a learning rate of 1e-3, a

weight decay of 5e-4, and a momentum of 0.9; for the OEM

dataset, we opted for a higher learning rate of 1e-2.

The results are presented in Tab. 2. The GTA-V-

SID [43] dataset underperforms on various high-resolution

real-world datasets due to its smaller quantity and 1m GSD.

The model trained on the SyntheWorld dataset outperforms

other datasets on four real-world datasets, especially on the

OEM and LoveDA datasets. These two datasets include a

considerable number of buildings in developing or devel-

Datasets w/o w/

OEM [40] 66.96 66.84

LoveDA [38] 51.14 53.32

O→L 35.28 34.83

L→O 21.95 25.24

Table 3. Land cover mapping mIoU(%) outcomes from intra-

dataset and cross-dataset evaluations, utilizing the DeepLabv3+

model for all experiments. O→L denotes training on the OEM

training set and testing on the LoveDA validation set, while L→O

represents the converse.

oped areas. Thus, the performance of SyntheWorld far ex-

ceeds that of other competitors in these two datasets. As the

buildings in the INRIA [21] and BANDON [27] datasets are

predominantly high-rises in urban areas or well-organized

detached houses in suburban areas, the advantage of the

SyntheWorld dataset is not as evident as in the other two

datasets, but still shows the best performance. Further-

more, the last column of Tab. 2 shows the performance of

the model trained on the OEM dataset and tested on other

datasets. Although SyntheWorld significantly outperforms

other synthetic datasets, there is still a gap compared to real-

world datasets.

In Fig. 3 (a), we also visualized the feature extract of

the well-trained ResNet-50 of all synthetic and real datasets

using UMAP [23]. In terms of feature space, SyntheWorld

is closer to real-world datasets than any existing synthetic

datasets.

4.3. Land Cover Mapping

SyntheWorld is the first synthetic dataset that offers con-

sistent annotations compatible with high-resolution real-

world benchmarks. In this section, we primarily discuss

the performance of SyntheWorld in the land cover mapping

task.

4.3.1 Cross-dataset Experiments

To evaluate the enhancements brought about by using Syn-

theWorld, we adopted the mixed training strategy [29] often

used with synthetic datasets, a batch size of 8, including 7

real images and 1 synthetic image per batch. The model was

trained using DeepLabv3+ with the SGD optimizer and an

initial learning rate of 1e-2, accompanied by a weight de-

cay of 5e-4, and a momentum of 0.9. All experiments were

trained for 100 epochs on a Tesla A100 GPU. Specifically,

we map the rangeland class and the developed space class in

OEM and SyntheWorld to the background class in LoveDA

to keep the classes consistent.

Tab. 3 outlines the results obtained by integrating train-

ing images from a real-world dataset with SyntheWorld

and the results of cross-dataset tests using the Synthe-

World dataset. Incorporating SyntheWorld with the entire

8291



BANDON

(Real)

INRIA

(Real)

LoveDA

(Real)

OEM

(Real)

GTA-V-SID

(Synthetic)

SyntCities

(Synthetic)

Synthinel-1

(Synthetic)

SyntheWorld

(Synthetic)

(a) (b)

Figure 3. (a) 2D UMAP visualization of synthetic and real

datasets. We use ResNet-50 pre-trained on the OEM dataset as

the feature extractor; (b) Colormap of density estimation for Syn-

theWorld, OEM, and LoveDA dataset.

Datasets 1% 5% 10%

w/o w/ w/o w/ w/o w/

OEM [40] 40.9 45.01 52.21 54.0 58.40 59.31

LoveDA [38] 34.59 36.75 42.38 44.58 45.27 48.12

Table 4. mIoU(%) results from the DeepLabv3+ model, trained

both with and without SyntheWorld, and deployed on two real-

world land cover mapping datasets at various proportions of real

image utilization.

OEM [40] training set does not result in performance en-

hancements. Similarly, combining SyntheWorld with the

OEM training set and subsequently testing on LoveDA [38]

slightly reduces model efficacy. However, when we merge

SyntheWorld with the LoveDA and test on the same, the

model’s mIoU increases by 2.18 points. In addition, a 3.29-

point improvement in mIoU is observed when testing the

OEM test set after integrating SyntheWorld and LoveDA.

To investigate the observed phenomenon, we made den-

sity estimation maps for the three datasets as displayed

in Fig. 3 (b). This reveals a notable overlap between

SyntheWorld and OEM, with a lesser overlap in relation

to LoveDA. The expansive coverage of the OEM dataset

surpasses that of LoveDA and SyntheWorld. This find-

ing sheds light on the patterns observed in Tab. 4. The

vast diversity of the OEM dataset effectively captures the

most data diversity inherent in SyntheWorld. Therefore,

no performance enhancement results from integrating Syn-

theWorld. Nevertheless, the substantial overlap between

SyntheWorld and OEM enables a performance boost when

SyntheWorld is merged with LoveDA and tested on OEM.

Conversely, the lesser overlap between SyntheWorld and

LoveDA means that integrating SyntheWorld during OEM

training does not lead to improvements in the LoveDA test

set.

Subsequently, we assessed performance when integrat-

ing SyntheWorld with varying proportions of real-world

datasets. Tab. 4 presents the findings. Irrespective of the

real-world dataset being OEM or LoveDA, the integration

Train on

Test on
Urban Rural

w/o w w/o w

Urban 47.00 50.32 33.44 37.95

Rural 36.86 38.17 48.64 51.66

Table 5. Land cover mapping results, measured in mIoU(%), from

cross-domain experiments involving urban and rural areas of the

LoveDA dataset.

of SyntheWorld consistently enhances model performance

when the quantity of training data is limited.

4.3.2 Cross-domain Experiments

In order to examine the performance of SyntheWorld in out-

of-domain test scenarios, we partition the OEM [40] dataset

into seven distinct continents. Africa, Asia, Europe, Cen-

tral America, North America, South America, and Ocea-

nia. Simultaneously, for the LoveDA [38] dataset, we con-

ducted experiments using urban and rural areas as separate

domains. We conduct experiments with various decoders

and encoders; in this section, we show the results of one

model. See supplementary material for more results from

different models, dataset division, and experimental setup.

Continent-wise experimental results. Fig. 4 dis-

plays the results of cross-continent experiments in the

OEM dataset using the U-Net [32] architecture with the

EfficientNet-B4 [37] encoder. We can observe that our

SyntheWorld dataset can significantly enhance performance

across most dataset pairs. Also, we show in Fig. 5 the qual-

itative results when synthetic data can lead to a boost. More

results can be found in the supplementary material. How-

ever, in some cases, the synthetic dataset does not yield a

substantial improvement and could even degrade the model

performance. It is crucial to investigate the reasons for

such enhancement and impairment for the use of synthetic

datasets. Therefore, we have conducted a further analysis

of these results in Sec. 4.3.3.

Urban-Rural experimental results. We conducted

similar cross-domain experiments on the LoveDA dataset,

which includes two domains, rural and urban. The results

are illustrated in Tab. 5. We found that the SyntheWorld

dataset enhances model performance in both in-domain and

out-of-domain tests.

4.3.3 Relative Distance Ratio

The cross-domain experiments discussed in Sec. 4.3.1

and Sec. 4.3.2 show that the SyntheWorld dataset does not

always yield significant improvements. This highlights the

need to understand the underlying causes. We introduce a

metric, the Relative Distance Ratio (RDR), aiming to quan-

tify the relationship between source, target, and synthetic
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(a) (b) (c)

Figure 4. Results of continent-wise in-domain and out-of-domain land cover mapping experiments of OEM dataset. The x-axis represents

the target domain and the y-axis represents the source domain. U-Net with EfficientNet-B4 encoder is used for all experiments. (a) The

mIoU results of without using SyntheWorld; (b) The mIoU results of mixed training with SyntheWorld; (c) Changes in mIoU.
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Figure 5. Qualitative results by U-Net model of continent-wise

land cover mapping task.

datasets and clarify when synthetic data can bring improve-

ments.

For measuring the distance between datasets, various

methods have been discussed in the literature [1, 15, 34].

The most commonly used measure of the distance between

synthetic and real datasets is the FID score [15]. Here we

adopt the Fréchet Distance, as the measure of distance be-

tween different datasets. Since the Inception model [36]

pre-trained on ImageNet [12] is not suitable for remote

sensing datasets, we use ResNet-50 [14] pre-trained on the

OEM [40] dataset. The formula to compute the FD between

any dataset pair is as follows:

FD(x, y) = ||µx−µy||
2+Tr(Σx+Σy−2(ΣxΣy)

1

2 ) (1)

where µx and µy denote the mean feature vectors of datasets

x and y, respectively, and Σx and Σy represent the covari-

ance matrices of the corresponding feature vectors.

Then we denote the source domain dataset as S, the tar-

get domain dataset as T , SyntheWorld as G, and the FD be-

tween any two datasets as δ(., .). Afterwards, the distance

between the source domain dataset S and the target domain

Figure 6. Scatter diagram with correlation between mIoU changes

and proposed Relative Distance Ratio (RDR).

dataset T can be expressed as:

δ(fS , fT ) = FD(fS , fT ) (2)

Similarly, the distance between the target domain dataset T

and the synthetic dataset G can be represented as:

δ(fT , fG) = FD(fT , fG) (3)

These fT , fS and fG are obtained by applying a ResNet-

50 model, pre-trained on the OEM dataset.

Subsequently, we can define the Relative Distance Ratio

(RDR), denoted as R(fS , fT , fG), to be calculated using

the following formula:

R(fS , fT , fG) =
δ(fT , fG)

δ(fS , fT )
(4)

Intuitively, a smaller R indicates a greater capacity of the

model to integrate knowledge from the synthetic data and

transfer it to the target domain. To validate this, we pre-

sented a correlation scatter plot in Fig. 6, which reveals

a negative correlation between R and the improvement in

mIoU. This observation aligns with our initial conception

of designing the RDR metric. Therefore, the proposed RDR
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Datasets STANet-PAM DTCDSCN ChangeFormer

w/o w/ w/o w/ w/o w/

LEVIR-CD+ [5] 0.752 0.782 0.793 0.812 0.784 0.835

SECOND* [42] 0.713 0.733 0.712 0.727 0.723 0.734

WHU-CD [16] 0.707 0.802 0.769 0.862 0.783 0.836

Table 6. F1 score resulting from the use or non-use of Synthe-

World across three building change detection benchmark datasets,

assessed with three different models.

Datasets
1% 5% 10%

w/o w/ w/o w/ w/o w/

LEVIR-CD+ [5] 0.517 0.646 0.636 0.731 0.726 0.764

SECOND* [42] 0.401 0.435 0.546 0.622 0.583 0.631

WHU-CD [16] 0.242 0.312 0.433 0.638 0.510 0.705

Table 7. Comparison of F1 scores from the DTCDSCN model

trained with and without SyntheWorld, applied on three different

real-world datasets at varying ratios of real image use.

metric effectively serves as a quantitative conditional crite-

rion for employing synthetic data, that is, when R is large,

there is a risk of using synthetic data and vice versa.

4.4. Building Change Detection

In this section, we demonstrate the effectiveness of Syn-

theWorld on the building change detection task. We em-

ploy four prevalent building change detection networks,

FC-siam-Diff [10], STANet-PAM [5], DTCDSCN [19], and

ChangeFormer [2]. We adhere to a mixed training strat-

egy that includes a 7:1 real-to-synthetic image ratio. For

ChangeFormer and DTCDSCN we use AdamW [20] opti-

mizer with learning rate 1e-4, for the other two models we

use Adam optimizer with learning rate 1e-3. Each mixed

training experiment is trained for 100 epochs on the Tesla

A100 GPU.

Tab. 6 presents the F1 score of three different models ap-

plied to three different datasets in the real world. Evidently,

for each real-world dataset and each model type, integrat-

ing the SyntheWorld dataset induces an improvement, no-

tably for the WHU-CD dataset where it can induce almost

a 10-point increase in the F1 score when using the STANet-

PAM and DTCDSCN models. Also, we display in Fig. 7

the qualitative results when using SyntheWorld can lead to

enhancements. More results can be found in the supplemen-

tary material.

Tab. 7 reveals the F1 score of the DTCDSCN model with

different proportions of the real-world training set, with and

without the incorporation of SyntheWorld. Across all real-

world datasets, SyntheWorld invariably provides substantial

performance improvement when training data is scarce.

Tab. 8 illustrates the generalizability of the Synthe-

World dataset with the FC-siam-Diff model. We draw com-

parisons with three real datasets and the AICD synthetic

Train on

Test on
LEVIR-CD+ SECOND* WHU-CD

LEVIR-CD+ (Real) 0.751 0.180 0.614

SECOND* (Real) 0.405 0.614 0.522

WHU-CD (Real) 0.222 0.248 0.812

AICD (Synthetic) 0.094 0.267 0.092

SyntheWorld 0.419 0.386 0.457

Table 8. Evaluation of generalizability across multiple building

change detection datasets. The table shows the F1 scores. * means

to use the part of building change label in SECOND.

True positive True negative False positive False negative

L
E

V
IR

-C
D

+
S

E
C

O
N

D
*

W
H

U
-C

D
Pre-event image Post-event image Reference map w/ SyntheWorld w/o SyntheWorld

Figure 7. Qualitative results by DTCDSCN model of building

change detection task on three datasets.

dataset. The results show that by using only the Synthe-

World dataset for training, we can achieve acceptable re-

sults on all three datasets. Specifically, compared to the

AICD [3] dataset, ours has a significant performance and

generalization advantage.

5. Discussion and Societal Impacts

We introduced SyntheWorld, the most extensive syn-

thetic remote sensing dataset, used for land cover map-

ping and building change detection. Its diversity, en-

hanced by procedural modeling and AIGC, sets it apart

from other datasets. Comprehensive experiments validate

SyntheWorld’s utility and flexibility. Furthermore, we in-

vestigate scenarios where SyntheWorld does not enhance

performance, proposing the RDR metric for initial explo-

ration of when SyntheWorld can deliver lift.

Notably, SyntheWorld has a significant gap compared to

real datasets. This stems from some modeling rules mis-

matching real-world distributions, a challenge we aim to

address in future work. Additional future work involves

leveraging SyntheWorld to explore domain adaptation and

generalization techniques in remote sensing.
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