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Abstract

Blurry appearance of fast moving objects in video frames
was successfully used to reconstruct the object appear-
ance and motion in both 2D and 3D domains. The pro-
posed method addresses the novel, severely ill-posed, task
of single-image fast moving object deblurring, shape, and
trajectory recovery – previous approaches require at least
three consecutive video frames. Given a single image,
the method outputs the object 2D appearance and position
in a series of sub-frames as if captured by a high-speed
camera (i.e. temporal super-resolution). The proposed SI-
DDPM-FMO method is trained end-to-end on a synthetic
dataset with various moving objects, yet it generalizes well
to real-world data from several publicly available datasets.
SI-DDPM-FMO performs similarly to or better than re-
cent multi-frame methods and a carefully designed baseline
method.

1. Introduction
Deblurring of fast moving objects (FMO), i.e. objects

that move over a distance larger than their size for the du-
ration of camera exposure of a single image has recently
gained significant attention [10, 11, 21–26]. Given an im-
age of an FMO with its estimated background, the methods
showed that the 2D and 3D appearance and trajectory re-
construction of FMOs is possible.

The FMO deblurring task is challenging: (i) the blurry
appearance is ambiguous when the object has complex
shape or texture, (ii) it is impossible to determine the di-
rection of the FMO trajectory, and (iii) in many cases, the
appearance of an FMO can hardly be distinguished from the
background.

Classical deblurring methods that assume global blur ef-
fects such as defocus or camera-induced motion blur are
not applicable to the problem of FMO 2D appearance and
trajectory estimation [24]. Recently, [30] dealt with local
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Figure 1. Single-image temporal super-resolution. Given a sin-
gle input image I with a blurred fast moving object (first column),
SI-DDPM-FMO decomposes the image into a series of deblurred
sub-frames I0/7 to I7/7 as if captured by a high-speed camera.

blurring, but required two consecutive frames of a video as
input, and together with [7] assumed only a small local blur.

All existing FMO methods alleviate the difficulty of the
deblurring task by providing an estimation of the back-
ground, which greatly reduces the ambiguity of the fore-
ground/background separation task. These methods [10,
22, 24] compute the background of the current frame as a
median of the previous three or more frames, removing all
FMOs. However, in many real-world cases, this is either
infeasible, e.g., only a single input image is available, or
unstable, e.g., the video is not static, and the background is
changing. Thus, it greatly reduces their applicability.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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We propose SI-DDPM-FMO – a method that solves this
more general task with only a single RGB image as input
(Fig. 1), in contrast to at least three consecutive frames of
a static-background video, which is the limitation of previ-
ous approaches. If, for whatever reason, only a single image
with a blurred object is available, we do not expect the same
reconstruction quality as when several consecutive frames
are available. We investigate the limits of the single-image
approach. We adopt the denoising diffusion probabilistic
model [27] conditioned on an image of an FMO to gradually
denoise a white Gaussian noise tensor into a sequence of
residual sub-frames, each accompanied by a corresponding
alpha mask (Fig. 2). Adding residual sub-frames to the im-
age conditional reconstructs the FMO’s appearance, thresh-
olding the masks reveals its shape, and the mask’s center of
mass estimates its trajectory. The network is trained end-to-
end on a synthetic dataset with complex and highly textured
objects, generated using a procedure described in [24].

To summarize our contributions, we:

(1) introduce a novel problem of single-image FMO 2D ap-
pearance and trajectory recovery,

(2) propose a novel approach setting a new state of the art
in the single-image FMO 2D appearance and trajectory
recovery problem,

(3) show that a customized conditional denoising diffusion
probabilistic model is successfully applied to the pro-
posed problem.

The codes and models are publicly available at
https://github.com/radimspetlik/SI-DDPM-FMO.

2. Related work
The task of FMO 2D appearance and trajectory recovery

is vaguely related to the task of classical deblurring meth-
ods. However, in the following paragraphs, we refer mainly
to the literature specific to FMO, because there are major
differences between the two areas of research in: (i) the im-
age formation model, and (ii) the task.

Classical deblurring methods Many methods for classic
image deblurring have been proposed, e.g., [13]. However,
as shown in [24], such methods fail on fast moving objects,
and domain-specific methods are required. Similarly, ex-
isting methods for video extraction from a single blurred
image [7,14,18,20,30,31] do not assume fast motion, or re-
quire additional inputs such as more than one input frame,
e.g., [30], or explicit motion guidance, e.g., [31].

Image formation model Classical deblurring methods
describe a single color image as

I = H ∗B +N, (1)

assuming that the entire image B is convolved with a blur
kernel H , optionally with the addition of Gaussian noise N
(cf. Eq. (2)). This definition is explicitly in, e.g., [30]. It
is worth mentioning that in some recent works, more ad-
vanced models are used to better capture real-world blur,
e.g., affine transformations [14], or neural networks [29].
Still, the blur is assumed to be present in the whole image,
as in the case of blur induced by camera motion. The classi-
cal literature on deblurring also assumes a much lower level
of blur than is commonly present in images of FMO.

Our method aims specifically to reconstruct the appear-
ance and trajectory of an FMO defined in [23]. In the blur-
ring and matting (blatting) equation [10,11], a 2D image of
the fast moving object F is introduced as

I = H ∗ F + (1−H ∗M)B, (2)

where I is a single color image, H is a blur kernel, M is
the shape of the object (indicator function of F ), and B is
the background. We use the blatting equation (2) to clearly
distinguish the task of FMO 2D trajectory and appearance
recovery to the task of classical deblurring methods mani-
fested in Eq. (1).

Task FMO methods belong to a group of temporal super-
resolution methods. In temporal super-resolution methods,
the appearance is reconstructed as K images, each being
exposed for 1

K of the original exposure time, forming a tem-
porally consistent sequence I1, . . . , IK such that

1

K
(I−1

1 + · · ·+ I−1
K ) = I−1 (3)

holds1, where I−1 is the image I in the linear image space
as captured by a camera2.

The task of the classical deblurring methods is to recon-
struct the sharp image. This formulation is adopted in [14],
where the datasets designed to measure the performance
of FMO methods [9, 10] are used to evaluate the classi-
cal deblurring task – the reconstruction of a single sharp
image. The authors [14] specifically mention that “both
[FMO] datasets [9, 10] do not have a sharp ground truth
image.” There are no sharp ground truth images, i.e. im-
ages with no blur present, in the FMO benchmarks, because
FMO methods perform temporal super-resolution (Eq. 3).
Two recent deblurring works [7, 30] also perform temporal
super-resolution. In [30], two images are required as input,

1It should be noted that this image formation model does not take into
account the gap between exposures of consecutive frames. When shut-
ter is closed, some parts of object motion are not observed by a camera,
which manifests in the exposure gap. Also note that in [31] the term “blur
decomposition” is used to describe the same procedure.

2This linear space is commonly unavailable due to a highly non-linear
processing introduced by camera manufactures and is therefore only ap-
proximated by applying inverse gamma calibration to RGB images.
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Figure 2. SI-DDPM-FMO method. A white Gaussian noise ten-
sor is gradually denoised with a DDPM [27] conditioned on a sin-
gle image of a fast moving object (FMO), resulting in 24 residual
images with alpha masks. When added to the image of an FMO,
the residual images form a series of sub-frames as if captured by
a high-speed camera (i.e. temporal super-resolution). The trajec-
tory of FMO is estimated as the center of mass of the alpha masks.

in both works only a small blur is assumed and neither of
them provides a trajectory estimation. The 2D trajectory es-
timation provided by the FMO methods allows for tracking.
We use the image formation model in Eq. (3) to construct
our training and validation datasets.

The FMO research area is represented by a series of
publications [9–11, 22–24]. In [23], detection and track-
ing of FMO was introduced. Their work is limited by
assuming that object F must: (i) not change its appear-
ance within an image (no rotation or rotational symmetry),
(ii) have a high contrast to the background and no contact
with other objects, and (iii) travel in a 2D plane parallel
to the camera plane. The limitations are partially lifted by
a method called Tracking by Deblatting (TbD) introduced
in [10], which solves a joint deblurring and matting prob-
lem. In [21], the TbD trajectories are improved with non-
causal post-processing. A special case with a planar FMO
that rotates only within a 2D plane parallel to the camera
plane was studied. In [32], improved motion blur prior to
FMOs was proposed.

The limitations on object appearance were partially lifted
by the TbD-3D [22] which assumes a piece-wise constant
formation model

I =
∑
i

Hi ∗ Fi + (1−
∑
i

Hi ∗Mi)B, (4)

where the index i denotes one part of the complete trajec-
tory H =

∑
i

Hi that traveled within a frame I , and the

appearances of the sub-frames Fi and the alpha masks Mi

account for the potentially changing appearance of an object
(cf. the blatting equation Eq. (2)). TbD-3D is highly depen-
dent on initial trajectory estimation from external module.
Moreover, TbD-3D only works with objects of trivial shape
(e.g., a sphere) or appearance (e.g., uniform color).

In [24], the first learning-based method was presented
for FMO deblurring, DeFMO. The generalized formation
model

I =

∫ 1

0

Fi ·Midi+ (1−
∫ 1

0

Midi) ·B, (5)

where the appearance of the object Fi and the alpha mask
Mi is modeled by an encoder-decoder network, which gen-
eralizes to objects with a 2D appearance that can change
arbitrarily along the trajectory.

The two recent papers [25, 26] explore the 3D recon-
struction of FMOs. Unlike [25], the [26] method produces:
(i) more complex trajectories, (ii) temporally consistent pre-
dictions, and (iii) more completely reconstructed 3D shape
models.

All published FMO methods require an estimation of the
background B. We are the first to study the problem of
the single-image FMO reconstruction.

3. Method
In the following paragraphs, we describe a novel single-

image method for reconstruction of the 2D appearance and
trajectory of fast moving objects (SI-DDPM-FMO).

Simply put, we adopted the generative model [27] condi-
tioned on an image of an FMO to gradually denoise a white
Gaussian noise tensor into a sequence of 24 residual sub-
frames accompanied by alpha masks (Fig. 2). The appear-
ance is recovered by adding the residuals to the image con-
ditional, the shape is recovered by thresholding the masks,
and the trajectory is estimated as the center of mass of the
masks. Our method can produce arbitrary time interpola-
tion, as it may be applied recursively.

Denoising Diffusion Probabilistic Model (DDPM) [27]
defines a diffusion process that transforms a random white
Gaussian noise tensor xT ∼ N (0, 1) into a ground-truth
residual image x0 in T time steps and vice versa. Each step
in the forward direction is given by

q(xt | xt−1) = N (xt;
√
1− βtxt−1, βtI), (6)

where βt is the variance of the Gaussian noise in the
timestep t. The sample xt is obtained by adding i.i.d. Gaus-
sian noise with variance βt and scaling the previous sample
xt−1 with

√
1− βt according to a variance schedule.

The DDPM, represented by a neural network with pa-
rameters θ, is trained to reverse the process in Eq. (6). Con-
ditioned on xc (which is I in Eq. (2)), the network predicts
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Figure 3. Baseline – SI-DeFMO method. A single image of a fast
moving object (FMO) is fed to a background estimation network.
The FMO image and estimated background, together with the time
index t ∈ (0, 1), are passed to the DeFMO method [24]. The
output is a deblurred object appearance with an alpha mask at time
index t.

the parameters µθ(xt, t | xc) and Σθ(xt, t | xc) of a Gaus-
sian distribution

pθ(xt−1 | xt, xc) = N (xt−1;µθ(xt, t | xc),Σθ(xt, t | xc)).
(7)

The learning objective Lvlb for the model in Eq. (7) is
derived from the variational lower bound and can be de-
composed [17] as

Eq

LT +
∑
t≥1

Lt−1 − L0

 (8)

where

LT = DKL (q(xT | x0) || p(xT )) , (9)
Lt−1 = DKL (q(xt−1 | xt, x0) || pθ(xt−1 | xt, xc)) , (10)
L0 = log pθ(x0 | x1, xc). (11)

Note that LT does not depend on θ, L0 is calculated accord-
ing to [17], and Lt−1 is a KL divergence between two Gaus-
sian distributions and can therefore be evaluated in closed
form.

The predicted mean µθ(xt, t | xc) in Eq. (7) may be
parametrized in many ways. In our training, we experimen-
tally selected the parameterization in which the neural net-
work predicts x0. Accordingly, µθ is computed as

µθ(xt, t) =

√
ᾱt−1βt

1− ᾱt
x̂0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, (12)

where x̂0 is the network prediction of x0 parametrized by θ,

αt = 1− βt, and ᾱt =
t∏

s=0
αs is the total noise variance.

Following [6], we use a simplified training objective

Lsimple = Et,(x0,xc)

[
∥x0 − x̂0∥2

]
. (13)

We learn the variance Σθ(xt, t|xc) in Eq. (7) of the re-
verse process, as it reduces the number of sampling steps by

an order of magnitude [17]. Using the independence prop-
erty of the noise added at each step in Eq. (6), we rewrite
Eq. (6) as

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (14)

allowing efficient sampling of training data to train the re-
verse transition step in Eq. (7). During training, the time
step t is selected with a loss-aware sampling procedure de-
fined in [17].

We experimentally selected the number of denoising
steps T=100. The input of the DDPM is a tuple of K=24
random white Gaussian tensors xT = (x0

T , . . . , x
K−1
T ) ∈

RK×(4,256,256) concatenated with a single RGB image of
an FMO xc. The output x0 = (x̂0, m̂0), where x̂0 =
(x̂0

0, . . . , x̂
K−1
0 ) ∈ RK×(3,256,256) is trained to be a tempo-

rally consistent sequence of K sub-frame residuals with al-
pha masks m̂0 = (m̂0

0, . . . , m̂
K−1
0 ) ∈ RK×(1,256,256) such

that
ẋk = xc + ṁx̂k

0 (15)

is the final k-th sub-frame as if captured by a high-speed
camera, where ṁ = 1

K

∑K−1
i=0 m̂i

0. Note that the network
predicts alpha masks m̂k

0 for each sub-frame k, but the pre-
dicted x̂k

0 is a residual for the whole area of the blurred
FMO. The final loss is computed as

L = λLvlb + Lsimple, (16)

where λ = 0.001 in our experiments to make the Lsimple
main source of influence on µθ(xt, t | xc) and to keep Lvlb
guiding the training process of Σθ(xt, t | xc).

Baseline method (Fig. 3), the single-image DeFMO (SI-
DeFMO), is a modified version of DeFMO [24]. It was
carefully designed to provide the most fair comparison pos-
sible with our approach. DeFMO is an encoder-decoder
network that requires an image of an FMO and an estima-
tion of a background. To provide the estimation, we ex-
perimented extensively with various architectures (Residual
Networks [5], Fast Fourier Convolutions [28], Visual Trans-
formers [4]). We searched exhaustively for both the archi-
tecture and the parameterization of the network. The best
results for the background estimation were produced by a
DDPM conditioned on an input image. The DDPM that per-
forms background estimation in the baseline is conditioned
on a single image of an FMO I in Eq. (2) and produces
background estimation B̂. The estimated background is fed
to the DeFMO network together with I . We discuss more
about the training of the baseline method and our design
choices in Sec. 5.

Training settings The neural networks were trained with
the AdamW [16] optimizer with fixed learning rate 10−4.
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Figure 4. Trajectory estimation on sequences from the Falling
Objects dataset [9] (right) and the TbD-3D dataset [22] (left). Best
viewed zoomed in. Compare almost-static trajectory predictions
(almost dots) of baseline with the proposed SI-DDPM-FMO.

The benchmark (see Sec. 4) requires the reconstructed sub-
frame images to have a size of 320× 240 px. We design the
baseline method SI-DeFMO to work at the same resolution
and resize the 256× 256 px outputs of the SI-DDPM-FMO
method to the requested resolution with bicubic interpola-
tion. Both methods are implemented in PyTorch [19] and
trained on a cluster of 12 to 48 NVIDIA V100 40GB GPUs.

4. Datasets

Fast moving object deblurring benchmark [24] (FMO
benchmark) is a publicly available benchmark3 that con-
sists of three real-world datasets and a Python code desig-
nated to easily test novel methods. The TbD dataset [10]
is made up of 12 high-speed videos captured at 240 fps
in raw format with full exposure (total 471 frames). Low-
speed videos at 30 fps were created by temporal averaging.
Sharp appearances, masks, and full trajectory are provided.
The dataset contains only sport videos with mostly spheri-
cal objects with little change in appearance over time. 10
sequences (total 516 frames) of objects that significantly
change their appearance within a low-speed video frame are
recorded in the TbD-3D dataset [22], which addresses the
mentioned shortcomings of the TbD dataset. The Falling
Objects dataset [9] is the first to contain objects with non-
trivial shapes, i.e. box, marker, pen, key, cell, eraser (6 se-
quences, total of 94 frames). Originally, only high-speed

3https://github.com/rozumden/fmo-deblurring-benchmark

color artifacts garbled reconstruction missing reconstruction

Figure 5. Failure cases of SI-DDPM-FMO. We show three
groups, six samples in total, of the most common failures of the
proposed method. Samples from FMO benchmark (Sec. 4).

videos were available in the dataset. Later, the authors of
the benchmark also added trajectories. Note that the FMO
dataset [23] is not included in the benchmark, as it contains
neither trajectories nor ground-truth appearances.

We created the synthetic training dataset following the
procedure described in [24]. An object was rendered with
6D trajectory on a background frame using Blender Cycles
[3] resulting in a set of sub-frame renderings. To generate
the low-speed frame showing the blurred FMO, the image
formation model in Eq. (5) is applied.

Objects are sampled from 3D models of the 50 largest
classes of the ShapeNet [1] dataset, each class being repre-
sented uniformly. There are 1600 DTD [2] textures used in
the training. Trajectories are sampled uniformly as in [24].
Backgrounds are sampled from the VOT [12] training se-
quences. In total, there are 50000 training images.

5. Experiments
The three datasets from the FMO Benchmark (Sec. 4)

were used to evaluate SI-DDPM-FMO and compare it with
the SI-DeFMO baseline method and the multi-frame meth-
ods. Similarly to [24], we use PSNR (peak signal-to-
noise ratio), SSIM (structural similarity index measure),
and TIoU (intersection over union averaged along the tra-
jectory) [10] as evaluation metrics. We compare to all
multi-frame, or background-requiring, FMO methods that
reconstruct 2D appearance and trajectory, namely TbD [10],
TbD-3D [22], and DeFMO [24]. We do not compare with
recent 3D shape and motion reconstruction methods [25,26]
since our method only produces a 2D appearance and posi-
tion.

The number of sub-frames that our method produces is
fixed to 24. Since the high-speed videos in the benchmark
are available at 8 times higher frame rate than the low-speed
videos, we average every three sub-frames produced by
SI-DDPM-FMO to generate full exposure temporal super-
resolution to match the high-speed frames. SI-DDPM-FMO
performs temporal super-resolution from a single input im-
age. Therefore, the direction of time is ambiguous. To ac-
count for that, we compute metrics for both directions and
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as
et

Typical Object Score
Inputs Background-Requiring Methods Baseline Proposed

B I TbD [10] TbD-3D [22] DeFMO [24] SI-DeFMO SI-DDPM-FMO

Fa
lli

ng
[9

] TIoU ↑ - - 0.545 0.545 0.703 1 0.506 3 0.563 2
PSNR ↑ 19.68 23.73 22.09 23.01 26.80 1 24.16 3 24.77 2
SSIM ↑ 0.459 0.593 0.617 0.695 2 0.752 1 0.632 0.645 3

T
bD

-3
D

[2
2] TIoU ↑ N/A N/A 0.539 0.539 0.850 1 0.666 3 0.770 2

PSNR ↑ 19.81 24.80 2 19.67 21.99 26.23 1 23.63 24.57 3
SSIM ↑ 0.425 0.640 3 0.483 0.621 0.699 1 0.599 0.653 2

T
bD

[1
0] TIoU ↑ - - 0.601 1 0.601 1 0.583 2 0.407 0.551 3

PSNR ↑ 21.51 25.07 3 23.99 24.57 25.54 1 24.46 25.26 2
SSIM ↑ 0.467 0.569 0.612 2 0.678 1 0.599 3 0.547 0.587

Runtime (on 240× 320) - - 0.01fps 0.001fps 20fps 4 fps 5 fps

Table 1. Evaluation on the Fast Moving Object Deblurring Benchmark [24]. Metrics: peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM), and intersection over union averaged along the trajectory (TIoU) [10]. The datasets are sorted by
decreasing difficulty: Falling Objects [9] – arbitrarily shaped and textured, TbD-3D [22] – significantly textured but mostly spherical,
TbD [10] – mostly spherical and uniformly colored objects. Runtime is the output capacity, i.e., how many images per second the method
generates.

report the best one (for all methods). Sub-frame trajectory
(Fig. 4) is estimated as the center of mass of the generated
alpha masks m̂0 (Sec. 3).

Note that we follow the same evaluation methodology
as [24]. We conduct the same quantitative examination and
repeat selected qualitative experiments, because we want to
make the comparison with the relevant area of research as
easy and as fair as possible.

5.1. Baseline – SI-DeFMO

In this section, we describe the baseline method. For
a fair and equitable comparison of the two closely related
problems, we decided to modify the existing DeFMO [24]
method. DeFMO requires as input a single image of an
FMO and, in contrast to the proposed SI-DDPM-FMO
(Fig. 2), an estimation of a background.

The easiest way to provide an estimate of a background
from a single image of an FMO is to train a neural network
to do so, which we did (Fig. 3). If we assume a simple FMO
image formation model in Eq. (2), the task is a combination
of reflection removal and inpainting.

We could not use a state-of-the-art inpainting method be-
cause the task of inpainting is to fill a specified part of an
image with some visually plausible content. Inpainting as-
sumes that there is no signal to be recovered. By definition,
an FMO does not completely occlude a background – the
signal of the background is attenuated. Therefore, we did
not use inpainting, and instead we trained a designated net-
work.

We also could not use a state-of-the-art reflection re-
moval method – reflection removal methods assume that the
reflection is uniformly blended with the background, form-

ing an image akin to a double-exposure photo. However, the
FMO is spatially localized in the image. Note that there ex-
ists a line of reflection removal research (e.g., [8]) where a
non-uniform blend of the foreground and background layers
is studied. Still, it is tailored to glass-reflection setting, does
not assume appearance of fast moving objects, and cannot
be used to estimate a background without an FMO.

Therefore, we searched exhaustively for the best archi-
tecture and configuration of the background-estimation net-
work. The best results were achieved with a DDPM model
similar to that used in our method. In our SI-DDPM-FMO
method, the DDPM performs a temporal super-resolution.
The task of DDPM in the baseline method is a simultane-
ous segmentation and removal of an FMO. The input of the
baseline DDPM network is a single RGB image with an
FMO, the output is the background estimation required by
the DeFMO.

The baseline DDPM network was trained on a syn-
thesized dataset with FMOs from the dataset described
in Sec. 4 and backgrounds from the train2017 subset of
MS-COCO [15]. The background-estimation network was
trained with a simple ℓ2 loss.

5.2. FMO benchmark

We compared the proposed method against the multi-
frame FMO methods, which require a background estima-
tion, on the FMO benchmark (Sec. 4). The results are
shown in Tab. 1. When available, we include metrics also
for the input of the methods: a background estimation B
and an image of an FMO I .
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Figure 6. Temporal super-resolution, by a factor of 8, on selected sequences from test datasets. The SI-DeFMO baseline method
(Sec. 3) compared with the ground truth of high-speed footage (GT). Ground-truth masks were computed as a difference image between
the GT sub-frames and the background. The proposed SI-DDPM-FMO and baseline method generates all outputs just from a single input
image I on the left.

Falling Objects dataset [9] is a challenging dataset; for
results, see the top block of Tab. 1. the proposed method
outperforms two multi-frame methods and scores similarly
as the baseline method. The clear winner in 2D appearance
and trajectory estimation is the multi-frame approach [24].

TbD-3D dataset [22] results are shown in the middle
block of Tab. 1. Here, DeFMO also performs the best in
all metrics. However, this time the performance of the pro-
posed method is much closer to that of the best method than
in the Falling Objects dataset.

TbD dataset [10] is the most challenging dataset for
learning-based methods. It consists mostly of spherical ob-
jects with a constant appearance. We find that the multi-
frame DeFMO method performs in a way comparable to
our single-frame SI-DDPM-FMO method. We believe that
the results of the two methods are caused by specifics of the
training dataset (Sec. 4) – mostly spherical objects with con-
stant appearance are not included, and therefore we cannot
expect the models to generalize well in this setting. Com-
monly, objects in the TbD dataset occupy only a few per
cent of an image. We believe that the performance of the
proposed SI-DDPM-FMO would be improved by introduc-
ing the aforementioned spherical objects in our datasets.
It is also worth noting that the TbD(-3D) methods are de-
signed to address specifics of the two respective datasets.
Still, SI-DDPM-FMO gives similar or better results than
these tailored methods.

Discussion Overall, the proposed method performs well.
In most cases, it gives better results than the multi-frame
TbD and TbD-3D methods in the FMO benchmark. The
performance gap between the single-image and multi-frame
methods shows the importance of having a good estima-
tion of background. In multi-frame methods, the back-
ground is estimated as a median of three consecutive frames
with the middle frame being an input to a method. The
baseline method, which replaces the multi-frame median
background estimation by a single-frame dedicated DDPM
background estimation, produces worse results than our
proposed method in all cases. Therefore, the proposed
method sets a new state of the art in the novel task of single-
image FMO 2D appearance and trajectory estimation.

We provide a qualitative study in Fig. 6. Alpha masks
produced by our method greatly resemble the ground-truth
masks.

To complete the image of the single-frame versus multi-
frame FMO deblurring methods, we reconstruct the com-
parison presented in [24]. The results are in Fig. 7. Note
that we did not cherry pick the results; we exactly repro-
duced the work of [24] and added the output of the baseline
and proposed methods accordingly. In the SI-DDPM-FMO
column, we find very clear masks and spatially precise 2D
appearance reconstructions. Even compared to the best-in-
benchmark, multi-frame DeFMO method, our reconstruc-
tions seem to have similar visual quality.

More examples and videos are available in the supple-
mentary material.
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Figure 7. Comparison on the Falling Objects dataset [24] with the multi-frame methods: TbD [10], TbD-3D [10], TbD-3D [22], and
with the SI-DeFMO baseline (Sec. 3). For each method, we show the estimated alpha mask and the first and the last sub-frame of the
generated temporal super-resolution sequence of length 8.

5.3. Failure Cases

Single-image temporal super-resolution is a severely ill-
posed problem (Sec. 1). Therefore, we did not expect to
over-perform existing multi-frame methods. Our goal was
to get as close to their performance as possible. Fig. 5 ex-
emplifies three of the most common failure groups of our
SI-DDPM-FMO method. We hypothesize that the failures
could be solved, at least partially, by introducing more di-
verse training data, specifically images of backgrounds sim-
ilar to those we see in the FMO benchmark.

Furthermore, the proposed SI-DDPM-FMO cannot re-
cover FMOs that are similar in color to the background (see
the marker cap in Fig. 7). The method is also not designed
for transparent objects such as a bottle or glass.

6. Conclusions

We studied a novel, severely ill-posed, problem of
single-image fast moving object 2D appearance and trajec-
tory estimation. We proposed a method based on denoising
diffusion probabilistic models, which performs better than
a carefully designed baseline built on a recent state-of-the-
art method. Experimental results show that the proposed
method handles real-world fast moving objects with com-
plex shapes and significant appearance changes well.
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Matas, and Marc Pollefeys. DeFMO: Deblurring and Shape

6865



Recovery of Fast Moving Objects. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3455–3464, June 2021. ISSN: 2575-7075.
1, 2, 3, 4, 5, 6, 7, 8

[25] Denys Rozumnyi, Martin R. Oswald, Vittorio Ferrari, and
Marc Pollefeys. Shape from Blur: Recovering Textured 3D
Shape and Motion of Fast Moving Objects. In Advances in
Neural Information Processing Systems, volume 34, pages
29972–29983. Curran Associates, Inc., 2021. 1, 3, 5

[26] Denys Rozumnyi, Martin R. Oswald, Vittorio Ferrari, and
Marc Pollefeys. Motion-From-Blur: 3D Shape and Mo-
tion Estimation of Motion-Blurred Objects in Videos. pages
15990–15999, 2022. 1, 3, 5

[27] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In
Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume
37, ICML’15, pages 2256–2265, Lille, France, July 2015.
JMLR.org. 2, 3

[28] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. Resolution-robust Large Mask Inpainting with
Fourier Convolutions. In 2022 IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pages 3172–
3182, Jan. 2022. ISSN: 2642-9381. 4

[29] Kaihao Zhang, Wenhan Luo, Yiran Zhong, Lin Ma, Björn
Stenger, Wei Liu, and Hongdong Li. Deblurring by Realis-
tic Blurring. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2734–2743,
June 2020. ISSN: 2575-7075. 2

[30] Zhihang Zhong, Mingdeng Cao, Xiang Ji, Yinqiang Zheng,
and Imari Sato. Blur Interpolation Transformer for Real-
World Motion from Blur. Nov. 2022. 1, 2

[31] Zhihang Zhong, Xiao Sun, Zhirong Wu, Yinqiang Zheng,
Stephen Lin, and Imari Sato. Animation from Blur: Multi-
modal Blur Decomposition with Motion Guidance. In Shai
Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria
Farinella, and Tal Hassner, editors, Computer Vision – ECCV
2022, Lecture Notes in Computer Science, pages 599–615,
Cham, 2022. Springer Nature Switzerland. 2
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