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Abstract

Iconography refers to the methodical study and interpre-
tation of thematic content in the visual arts, distinguish-
ing it, e.g., from purely formal or aesthetic considerations.
In iconographic studies, Iconclass is a widely used tax-
onomy that encapsulates historical, biblical, and literary
themes, among others. However, given the hierarchical na-
ture and inherent complexity of such a taxonomy, it is highly
desirable to use automated methods for (Iconclass-based)
image classification. Previous studies either focused nar-
rowly on certain subsets of narratives or failed to exploit
Iconclass’s hierarchical structure. In this paper, we pro-
pose a novel approach for Hierarchical Multi-label Clas-
sification (HMC) of iconographic concepts in images. We
present three strategies, including Language Models (LMs),
for the generation of textual image descriptions using key-
words extracted from Iconclass. These descriptions are uti-
lized to pre-train a Vision-Language Model (VLM) based
on a newly introduced data set of 477,569 images with more
than 20,000 Iconclass concepts, far more than considered in
previous studies. Furthermore, we present five approaches
to multi-label classification, including a novel transformer
decoder that leverages hierarchical information from the
Iconclass taxonomy. Experimental results show the supe-
riority of this approach over reasonable baselines.

1. Introduction

Iconography, as established by Panofsky [38], entails the
systematic analysis of content or meaning in visual art, dis-
tinguishing these elements from mere formal characteris-
tics. For this purpose, Iconclass, short for Iconographic
Classification System, provides a widely used taxonomy for

Figure 1. Utilizing Iconclass, Hans Holbein the Elder’s Last Sup-
per (1501) could be labeled with the notations 73D24 (“Last Sup-
per [. . . ]”) and 41C3 (“laid table [. . . ]”).

annotating visual content [51, 53].1 In particular, the sys-
tem makes it possible to convey semantically complex nar-
ratives, which are found especially in historical, biblical,
and literary themes; see Figure 1 for an example. Cor-
pora labeled with Iconclass are essential for text-based re-
trieval of artworks with certain narratives [7]: they pro-
vide a foundation for the digital exploitation of the col-
lections. However, despite obvious advantages, galleries,
libraries, archives, and museums—known as the GLAM
institutions—only sporadically utilize Iconclass. This is
due, on the one hand, to limited resources for (human) an-
notation, and on the other hand to the inherent complexity
of the system. It is therefore highly desirable to develop an
efficient indexing process via automated image classifica-
tion methods.

To date, related work on visual art objects primarily con-
sidered classification tasks of image-related metadata fea-
tures, such as the identification of artists, genres, or cre-
ation dates [6, 14, 29, 33, 34, 48, 49, 59]. While these tasks
are important, they do not take into account the classifica-
tion of semantic concepts represented in artworks. Previ-
ous studies often focused narrowly on particular subsets of

1https://iconclass.org/ (last accessed on 2023-11-08).
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narratives [35, 44]. Furthermore, attempts to comprehen-
sively map the entire Iconclass system failed to leverage
its hierarchical structure: Banar et al. [3] investigated the
feasibility of ascribing Iconclass notations through cross-
modal retrieval, while Cetinic [9] created image-text pairs
that were used in an image captioning task. In addition,
Vision-Language Models (VLMs) have not yet been ex-
ploited for the classification of iconographic concepts, al-
though they achieve impressive performance in many down-
stream applications, including the classification of metadata
in art-historical images, e.g., the country of origin [14].

In this paper, we propose a novel approach to extensively
classify hierarchical iconographic concepts in order to mit-
igate, or at least minimize, the need for manual annotation.
Our contributions can be summarized as follows: (i) We
propose three strategies that use, for example, LMs [41]
and VLMs [15, 26] to automatically create image descrip-
tions using keywords provided by Iconclass; (ii) We apply
contrastive pre-training with synthetic image-text pairs and
show an improved performance for rare concepts; (iii) We
present five multi-label classification approaches, includ-
ing a novel transformer decoder that leverages hierarchi-
cal information from the Iconclass taxonomy and, to the
best of our knowledge, is the first decoder that can handle
multi-label classification; (iv) Compared to previous stud-
ies [3, 9, 44], we expand the scope of classifiable icono-
graphic concepts by introducing a new data set of 477,569
images with more than 20,000 unique Iconclass concepts.
The source code, models, and data set will be made pub-
licly available.2

The remainder of the paper is structured as follows. In
Section 2, we review related work. Section 3 describes
our proposed transformer model for Hierarchical Multi-
label Classification (HMC) of art-historical concepts, which
uses contrastive pre-training with synthesized image-text
pairs. Section 4 introduces a novel data set, while Section 5
presents experimental results for several benchmarks. We
conclude with Section 6 and outline areas for future work.

2. Related Work
The rapidly advancing field of Computer Vision (CV),

fueled by sophisticated deep learning models, is facilitat-
ing the in-depth analysis of complex data; a task that, until
recently, could only be performed by human experts. The
implications of this development are particularly significant
when applied to the field of visual art—which frequently
encompasses representations and abstract concepts that dif-
fer considerably from real-world data. This section reviews
related work in CV for the visual arts, as well as HMC,
which is crucial for leveraging the hierarchical structure of
the Iconclass taxonomy.

2https : / / github . com / TIBHannover / iconclass -
classification (last accessed on 2023-11-08).

Computer Vision (CV) for the Visual Arts: Research
in CV for the visual arts focuses on several key areas in-
cluding, but not limited to, aesthetic quality assessment [2],
human pose estimation [23, 32, 47], sentiment analysis [36,
58], correspondence matching [24, 46], and visual ques-
tion answering [18]. To date, however, research efforts
have largely been devoted to classification tasks of image-
extrinsic features, such as the identification of artists, gen-
res, or creation dates [6,14,29,33,34,48,49,59]. While these
tasks are significant, they only address tangible aspects
of the domain, leaving, e.g., content-based features rela-
tively unexplored. Indeed, the classification of intrinsic fea-
tures, particularly those related to iconographic elements,
has been inadequately attended to: prevailing studies have
often focused narrowly on certain subsets of narratives, such
as the prediction of saints [35, 44]. A deviation from this
tendency is illustrated by Gupta et al. [21], who applied im-
age captioning models based on an encoder-decoder archi-
tecture to art-historical images spanning across nine icono-
graphies. Moreover, there have been attempts to compre-
hensively map the entire Iconclass system. Banar et al. [3]
conducted an exploratory investigation into the feasibility
of ascribing Iconclass notations, with up to five levels of
depth, through cross-modal retrieval. Cetinic [9] trans-
formed Iconclass’s textual correlates into descriptions to
create image-text pairs to fine-tune a transformer model,
morphing the classification into an image captioning task.
Compared to these works, we not only scale our approach
to the entire Iconclass system of over 20,000 art-historical
concepts, but fully exploit its hierarchical structure.

Hierarchical Multi-label Classification (HMC): Ap-
proaches to HMC can exploit the hierarchical structure of
taxonomies such as Iconclass. They have been used for
many tasks, e.g., event classification [37] and geolocation
estimation [13] involving real-world data like text [22] and
image [11]. Hierarchical information provides the oppor-
tunity to generate a chain of coarse-to-fine labels describ-
ing an object [10, 13] or to unify data sets into a common
annotation scheme [42]. Prior work on image classifica-
tion leverages hierarchical dependencies in several ways:
(i) some work maps the hierarchical relationship between
individual classes in the embedding space [1, 4, 19, 60];
(ii) hierarchical loss functions have been presented to take
into account the hierarchical information from the ontology
during optimization [5, 16, 20, 20, 37, 61]; (iii) hierarchical
architectures design the architecture of the model so that
it can solve a particular hierarchical ontology [50, 57, 62].
Most of the papers investigate problems where each image
has only one annotation [11, 37] or use structures that are
difficult to transfer from several thousand of classes [20].
Our proposed approach scales to several thousand concepts
and is suitable for multiple annotations per sample.

7221



3. Hierarchical Multi-label Classification of
Iconographic Concepts

In this section, we introduce our approach to the Hier-
archical Multi-label Classification (HMC) of iconographic
concepts in images. First, we describe the Iconclass nota-
tion scheme, which provides a taxonomy of iconographic
concepts (Section 3.1). In Section 3.2, we suggest three ap-
proaches to synthesize textual descriptions based on key-
words for Iconclass concepts that are used to pre-train
VLMs according to Section 3.3. Finally, we use the im-
age encoder of a pre-trained VLM along with several ap-
proaches for HMC, including a novel transformer-based
classification decoder that incorporates structured informa-
tion from the Iconclass taxonomy (Section 3.4).

3.1. Iconclass Notation Scheme

While Iconclass is explicitly designed for the iconogra-
phy of Western fine art, it also encompasses universal defi-
nitions ranging from natural phenomena to socio-economic
aspects [53]. As shown in Figure 2a, each definition within
the taxonomy is represented by a unique combination of al-
phanumeric characters, referred to as the ‘notation,’ here-
after denoted as Iconclass concept C, and an explanatory
‘textual correlate’ TC , accompanied by a corresponding set
of keywords KC . A notation comprises at least one digit
symbolizing the first level of hierarchy or ‘division.’ This
can be followed by another digit at the secondary level, and
one or two (identical) capital letters at the tertiary level.
This structure, referred to as the ‘basic notation,’ can be fur-
ther supplemented with auxiliary components [51, 53]. No-
tations may be linked using a colon to establish a relation-
ship between two or more notations, as in 79C52:42E3.

3.2. Image-Text Pairs for Contrastive Pre-Training

Several recent methods have shown that Vision-
Language Models (VLMs) pre-trained with image-text
pairs from other domain-relevant [14,27] or large-scale data
sets in general [28, 40] can significantly improve the per-
formance of many downstream applications. As shown in
Figure 2b, it is necessary to provide textual descriptions for
the corresponding images in order to optimize a VLM with
contrastive pre-training (Section 3.3). However, these de-
scriptions can be difficult to obtain, and in our case they
are only available for the Iconclass concepts (Section 3.1)
represented in an image, but not for the image itself.

Similar to Conde and Turgutlu [14], our goal is to create
a textual description D for an image I that has been labeled
with k Iconclass concepts C = {C1, C2, . . . , Ck}. For this
purpose, we leverage the associated keywords KC of each
Iconclass concept C ∈ C. However, unlike the data set
used by Conde and Turgutlu [14], these keywords do not
contain a subdivision into categories such as origin, mate-

rial, or dimension. Thus, we cannot use a generic free-form
to create textual descriptions. Instead, we consider the fol-
lowing three approaches to generating pairs of images and
textual descriptions for language-supervised pre-training of
VLMs; examples are shown in Figure 2a.

Descriptions based on Iconclass Keywords (KW) In this
baseline strategy, a textual description D is created by
comma-separating all unique keywords KC from each an-
notated Iconclass concept C ∈ C of an image I . However,
comma-separating keywords leads (i) to a loss of informa-
tion when projected into a textual description space, and
(ii) to redundancies (e.g., stained glass, glass) that should
be avoided given CLIP’s limited textual context length. Fur-
thermore, the resulting descriptions are different from those
typically used to train CLIP (e.g., LAION-400M [45]),
which may increase the optimization time.

Descriptions based on Large Language Models (GPT)
To address the issues with the aforementioned KW approach,
we use a Language Model (LM) to generate descriptions
based on a set of keywords provided by Iconclass. The in-
tention behind this idea is that LMs can generate shorter and
more natural image descriptions compared to simply chain-
ing keywords together. To this end, we first fine-tune a GPT-
2 model [41] for the task of image captioning, using a set of
keywords as input. To train such a model, we extract named
entities as keywords from ground-truth image captions pro-
vided by MS COCO [30] using Wikifier [8]. The goal of
the LM is to reproduce the ground-truth caption from MS
COCO using this set of named entities as input. During in-
ference, we use the trained model to generate captions that
serve as textual description D for an image I based on a
set of keywords KC for each Iconclass concept C ∈ C. In
doing so, we often found it helpful to provide the GPT-2
model with the start of the caption, such as “A photo of . . . ”
or “A drawing of . . . ”, along with the keywords.

Descriptions based on Vision-language Models (BLIP)
The introduction of instruction-based fine-tuning of Large
Language Models (LLMs) allows descriptions to be created
without the need to optimize the LLM itself for that spe-
cific task. Another difference to the previous KW and GPT
approaches is that in addition to the Iconclass keywords,
the corresponding image is also used as input. We use the
BLIP2 model [26] fine-tuned to instructions [15], which in
turn consists of a CLIP vision encoder [40] and a FlanT5
language model [12]. To create a textual description D,
we use the corresponding image I , all n associated key-
words K ∈ KC for each Iconclass concept C ∈ C, and the
following instruction as input: “Create a description of up
to three sentences for this image and try to include the terms
⟨K1⟩, ⟨K2⟩, . . . , ⟨Kn⟩.”
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KW		 village, path, road, migration, tree, traffic, world, plant, land, transporting

GPT	 A low resolution photo of a rural-looking society travelling traffic and transporting culture.

BLIP	 The image depicts a landscape with a path leading to a mountain, which is likely a migration [...] 

11H(JOHN THE BAPTIST) 31A72

46C3 11I62(ABRAHAM)11(+2) 25G3

46A231(+0)

Basic Notation Queue Bracketed Text Structural Digits Keys

73D24

Notation Scheme

(a) (b)

Figure 2. The proposed approach for Vision-Language Model (VLM) pre-training based on images labeled according to the Iconclass
notation scheme: (a) Based on the keywords KC from each annotated Iconclass concept C ∈ C of an image I , three strategies are
used (KW, GPT, BLIP) to create image descriptions (Section 3.2); (b) They are used for contrastive pre-training of CLIP [40] (Section 3.3).

3.3. Constrastive Pre-Training

Given a data set containing a set of images and as-
sociated annotations according to the Iconclass notation
scheme, we create textual descriptions based on the asso-
ciated keywords using one of the methods presented in the
previous section. As shown in Figure 2b, the Info Noise-
Contrastive Estimation (InfoNCE) contrastive loss [52] is
used to optimize the VLM model CLIP [40] based on these
image-text pairs. We refer to Section 5.1 for more details on
optimization. After pre-training, the weights of the vision
transformer are further optimized during classifier training
for the hierarchical classification of iconographic concepts,
as explained in Section 3.4.

3.4. Iconographic Concept Classification

Based on the pre-trained image encoder of the VLM,
we aim to train an image classifier that predicts the corre-
sponding iconographic concepts. Please note that we do not
use the text encoder for classification as there is no textual
information available for the images during testing. The
Iconclass taxonomy consists of L levels of granularity, each
with its own set of concepts Cl, l ∈ [0, L − 1]. An image
is labeled with a set of Iconclass concepts C ∈ C based on
the Iconclass notation scheme (Section 3.1). Note that the
annotated concept can be at any level of granularity in the
taxonomy. The goal of the classifier is to predict the set of
ground-truth Iconclass concepts for a given image.

For the prediction, we use the embedding from the clas-
sification token of the vision transformer [17] as input.
This token is also used during the CLIP pre-training (Sec-
tion 3.3). Subsequently, a fully-connected layer with neu-
rons corresponding to the amount of classes (i.e., icono-
graphic concepts) is added as the classification head. In the
remainder of this section, we propose one zero-shot classi-
fication approach (Section 3.4.1) and four supervised clas-
sifiers (Section 3.4.2 to Section 3.4.5).

3.4.1 Zero-shot CLIP-based Classification (CLIP)

For zero-shot classification, we measure the similarity be-
tween an image and the textual descriptions for all Iconclass
concepts (as shown in Figure 2b) using a CLIP model pre-
trained according to one of the strategies in Section 3.3. Un-
like the following supervised classifiers, this method does
not require a classification head and further optimization.
More specifically, for each Iconclass concept C ∈ C, we
create a textual description based on the associated key-
words KC . To make this procedure more robust, we follow
Radford et al. [40] and combine the keywords KC with a set
of pre-defined templates to create hard prompts (e.g., “This
is a photo of ⟨class⟩”, “A drawing of ⟨class⟩”). These hard
prompts serve as input to the text encoder from Section 3.2
to create textual embeddings for the given Iconclass con-
cept. Finally, we compute the dot product between the av-
erage textual embeddings of all n concepts and the image
embeddings produced by the vision transformer, resulting
in a similarity vector ŷ ∈ Rn. Unlike for following classifi-
cation methods that aim for a binary decision, this approach
uses the similarity vector as a ranking to calculate the mean
Average Precision (AP) for HMC according to Section 5.2.

3.4.2 Flattened Classification (Flat)

To create a baseline classifier, we ‘flatten’ the concepts Ch

of all hierarchy levels in Iconclass (similar to Figure 3). We
use a fully-connected layer with as many neurons n as there
are concepts at all levels of the hierarchy. A multi-hot en-
coded target vector y ∈ {0, 1}n is created that indicates
only the annotated Iconclass concepts of an image, disre-
garding the corresponding parent nodes of those concepts
according to the Iconclass taxonomy. A sigmoid function
is used as activation in the classification layer to predict a
probability vector ŷ ∈ Rn. The cross-entropy loss between
the predicted and target vectors is used for optimization.
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Hierarchical Flattened Concept Prediction

Figure 3. Workflow of the Hierarchical Flattened Classification (Flat-H). A vision transformer [17] is used to create a semantic represen-
tation of the images. The classification head is used as input for a fully-connected feed-forward layer with sigmoid activation that flattens
the Iconclass taxonomy using as many neurons as iconographic concepts in the whole taxonomy. The colors in the flattened prediction
represent all concepts Cl in a given taxonomy level l; the blocks within the colors have the same parental notation.

3.4.3 Hierarchical Flattened Classification (Flat-H)

This classifier extends Flat with a ‘flattened,’ multi-hot
encoded target vector y ∈ {0, 1}n that encodes not only the
annotated concepts of an image, but also their correspond-
ing parents according to the Iconclass taxonomy. The struc-
ture of this approach is shown in Figure 3. For optimiza-
tion, we follow the approach of YOLO9000 [42] and com-
pute the cross-entropy loss between the ground-truth vec-
tor y ∈ {0, 1}n and the predicted probabilities ŷ ∈ Rn at
each level of the taxonomy. For this purpose, we apply the
sigmoid activation function only to concepts at taxonomy
level l ∈ [0, L− 1] that are related (i.e., synsets) to the most
likely parent class(es) at level l − 1. Concepts with other
parents are not considered in the loss term. This allows
the classifier to learn from structured hierarchical informa-
tion. It also alleviates the problem of class imbalance, as
the number of concepts to be classified as negative classes
is significantly reduced. During inference, the probability
of a concept can be refined by considering the probabilities
of its parents (e.g., by multiplication).

3.4.4 Weighted Flattened Classification (Flat-W)

To integrate ontology information, we use a weighting
scheme similar to that presented by Müller-Budack et
al. [37] for ontology-driven event classification. As for
Flat-H, we first create a multi-hot encoded target vec-
tor y ∈ {0, 1}n that encodes the annotated concepts of an
image and its parents in the Iconclass taxonomy. To put
more emphasis on annotated iconographic concepts, we as-
sign a weight of w = 1 to all concepts that have been la-
beled for at least one training image, while concepts that
have no annotations are weighted with w = 0.5. Subse-
quently, the target vector and the predicted probabilities (us-
ing sigmoid activation), are multiplied by the correspond-
ing weights. The cosine similarity between the weighted
vectors is optimized during training. Unlike Müller-Budack
et al. [37] we (i) consider a Hierarchical Multi-label Clas-

sification (HMC) task where samples can contain more
than one annotation, and (ii) the fraction of nodes as-
signed with a maximum weight is much higher for our data
set (19,829 / 23,113; see Section 4) compared to the Visual
Event Classification Data set (148 / 409; [37]). As a result,
the weighting of concepts may be less significant.

3.4.5 Hierarchical Cross-Attention Transformer (CAT)

To better represent the Iconclass taxonomy, we introduce
a novel approach that does not compute all Iconclass con-
cepts in one step, but in an iterative fashion. The general
idea behind this approach is similar to the recurrent hierar-
chical classification approach HMCN-R [55] or image cap-
tioning [25], where in each iteration, a level of the hierar-
chy, or a token of the Iconclass concept C (Figure 2a), is
predicted. In contrast to related work, we use an encoder-
decoder structure based on recent transformer architectures.
The entire architecture is shown in Figure 4. The vision
encoder is the vision transformer, pre-trained according to
Section 3.3. We use the original transformer decoder pro-
posed by Vaswani et al. [54] that applies cross-attention to
the vision encoder. Cross-attention allows all regions of the
image, i.e., the heads of all regions that carry the embed-
dings, to be considered by the decoder in each iteration of
token prediction. This is the main difference to the variants
of the Flat classifier that use only the classification head.

For each level l ∈ [0, L−1] in the taxonomy, we learn an
individual class embedding representing all Iconclass con-
cepts |Cl| in that level, and an additional start and stop to-
ken, for the initial input and to end the prediction. These
L class embeddings are used as input to the decoder.

In the classification layer, we use L separate dense lay-
ers with sigmoid activation for each level of the hierarchy.
Each dense layer consists of |Cl| + 1 neurons outputting
the probabilities ŷl ∈ R|Cl|+1 of the |Cl| concepts in the
taxonomy level l and an additional neuron indicating the
probability for the stop token. To handle multiple Iconclass
concepts per image, we repeat this process m times to pre-
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Figure 4. Workflow of the Hierarchical Cross-Attention Transformer (CAT) based on a vision transformer [17] as encoder and an hier-
archical decoder extended from Vaswani et al. [54]. The hierarchical decoder applies cross-attention to include features from all image
regions and learns individual class embedding for all Iconclass concepts |Cl| in a particular level l ∈ [0, L− 1] of the taxonomy. The CAT
model predicts in each iteration the concepts of a level (illustrated with different colors) based on the input embedding from the previous
level (parent Iconclass concept). Thus, in each step, only one of the blocks in the concepts Cl is predicted. The details for the optimization
of the classifier are visualized in Figure 5.

CE0

CE1 CE2

CE0

CE1 CE2

41C3

73D24

Figure 5. Optimization of the multi-label CAT classification. Us-
ing two notations, 41C3 and 73D24 from Figure 1, we apply
the CAT model twice. First, the input of the transformer is the
sequence #s (start), 4, 1, where the ground-truth annotation is
highlighted in orange. Second, the cross-entropy CEl loss be-
tween the respective ground-truth and the prediction is calculated
for each level l ∈ [0, L− 1] considering only the valid parent.

dict a total of up to m notations. In each case, we use one
of the Iconclass concepts as the input sequence to the trans-
former (teacher forcing) and then optimize the respective
valid part of ŷl ∈ R|Cl|+1 with the matching ground-truth
vector yl ∈ {0, 1}|Cl|+1 using the cross-entropy loss CEl:

LCAT =

L−1∑
l=0

CEl (yl, ŷl) = −
L−1∑
l=0

Cl∑
c=0

yl,c log (ŷl,c) (1)

The optimization process is summarized in Figure 5.
To predict more than one path through the taxonomy

during inference, we cannot use a greedy decoder or beam
search procedure [56], as is common in image captioning,
since this would result in only one prediction. Instead, we
use a simple solution of repeatedly running the decoder with
the current most likely concept as input, which still has
child Iconclass concepts that have not been predicted yet.

To avoid having to repeat the process for each classifier, we
can define two termination criteria: (i) we can limit the max-
imum number of iterations p; (ii) we can stop the process if
no concept has a probability above a certain threshold t.

4. Data Sets

Despite increasing efforts to digitize art-historical ma-
terial, the amount of collections available online utilizing
Iconclass remains disproportionately low. We are relying
on two data sets that unite several institutions and entail
a wide range of art-historical objects, such as paintings,
emblems, drawings, engravings, and manuscripts: (i) Icon-
class AI Test Set [39], in the following abbreviated to ICAI.
The data set contains 87,744 images sampled from the
Arkyves database.3 These images are labeled with a total
of 362,561 Iconclass concepts, 12,488 of which are unique.
(ii) ICARUS (Iconographic Classification and Representa-
tion Understanding). In addition, we introduce a novel data
set that comprises 477,569 images, providing 1,328,417 an-
notations for 20,596 unique Iconclass concepts. To com-
pile this data set, a total of 19 publicly available collections
were harvested from a variety of countries; further details
are given in the supplementary material. For machine learn-
ing purposes, we divided ICARUS into training, validation,
and testing sets, with approximate split ratios of 80%, 10%,
and 10%, respectively. Details of image pre-processing and
duplicate removal are explained in supplementary material,
as is the unification of the annotations of ICAI and ICARUS.

5. Experimental Setup and Results

In this section, we present the network architecture
and parameters (Section 5.1), the evaluation metrics (Sec-
tion 5.2), the experimental results of the pre-training of the
VLM models (Section 5.3), as well as the performance of
the hierarchical classification approaches (Section 5.4).

3https://www.arkyves.org/ (last accessed on 2023-11-08).
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5.1. Implementation Details

For CLIP, we use the vision transformer variant ViT-
B/16 [17] as vision encoder and a transformer model [54]
with twelve layers and eight attention heads as text encoder.
For the CAT classification model (Section 3.4.5), we use the
transformer presented by Vaswani et al. [54] with three de-
coder layers and eight attention heads. During training, we
use m = 5 to achieve a good trade-off between performance
and speed. During inference of the CAT classifier, we use
p = 30 iterations as stopping criterion. Unless otherwise
specified, we optimize our models for 40,000 iterations us-
ing the AdamW optimizer [31] with a batch size of 256 and
a learning rate of 1e − 4. More experiments and details on
the hyperparameters as well as their selection are included
in the supplementary material.

5.2. Evaluation Metrics

Since we consider a Hierarchical Multi-label Classifica-
tion (HMC) problem for more than 20,000 concepts and
significant class imbalance due to the hierarchical structure,
typical classification metrics are not suitable. Therefore, we
calculate the AP for each Iconclass concept and average it
over all concepts that have at least a certain number of train-
ing images. Setting the number of images to larger thresh-
olds provides insights into the model performance for lower
levels (i.e., coarser iconographic concepts) of the taxonomy.

5.3. Contrastive Pre-training with Image-Text Pairs

In this experiment, we evaluate the efficacy of different
strategies for creating image descriptions (Section 3.2) for
contrastive pre-training of VLMs. For this purpose, we gen-
erate a data set using the proposed KW, BLIP, and GPT
methods for text-synthesis and train CLIP [40] for 40,000
iterations on the ICARUS training set. We then fine-tune
our CAT approach from Section 3.4 to classify the Iconclass
taxonomy for another 40,000 iterations and compare the re-
sults. To investigate the performance of our pre-training on
ICARUS, we also fine-tune the CAT classifier on the origi-
nal CLIP model trained on the LAION-400M data set [45].
Therefore, no pre-training takes place in this experiment.
The results of this experiment are shown in Table 1.

Models that were first pre-trained on one of the syn-
thesized image-text pairs generally outperform the original
CLIP model trained on LAION-400M. In particular, the re-
sults improve for concepts that have few training examples
in the corpus. This proves that pre-tuning with art-historical
images does indeed improve performance for iconographic
concept classification. As expected, our novel, more so-
phisticated strategies for description synthesis, i.e., GPT and
BLIP, outperform the KW baseline; the results for BLIP are
slightly better than for GPT. Thus, we choose BLIP for all
subsequent experiments.

Table 1. Results of contrastive pre-training with image-text pairs
on different text generation strategies on the ICARUS test set using
the CAT classifier. The results show the mean Average Precision
(mAP) for all concepts that have at least one image in the test set.
The best-performing strategy is denoted in bold.

Strategy # of Training Images per Iconclass Concept
> 0 > 10 > 100 > 1000

KW 0.1862 0.2025 0.2545 0.3953
BLIP 0.1922 0.2106 0.2596 0.3961
GPT 0.1902 0.2063 0.2583 0.3916
LAION-400M 0.1845 0.2017 0.2540 0.3936

Table 2. Results of the individual classification approaches on the
ICAI and ICARUS test sets using the BLIP text generation. The
results show the mAP for all concepts that have at least one exam-
ple in the test data set. The best-performing classifier per test set
is denoted in bold.

Test Set Classifier # of Training Images per Iconclass Concept
> 0 > 10 > 100 > 1000

ICAI CLIP 0.0033 0.0040 0.0088 0.0323
Flat 0.0294 0.0378 0.0688 0.1639
Flat-H 0.0638 0.0777 0.1148 0.2107
Flat-W 0.0105 0.0134 0.0286 0.0970
CAT 0.1715 0.1803 0.2012 0.2737

ICARUS CLIP 0.0035 0.0038 0.0080 0.0245
Flat 0.0394 0.0484 0.0942 0.2265
Flat-H 0.0789 0.0946 0.1507 0.2935
Flat-W 0.0134 0.0172 0.0382 0.1294
CAT 0.1714 0.1889 0.2407 0.3716

5.4. Iconographic Concept Classification

In these experiments, we compare our proposed image
classification approach CAT presented in Section 3.4.5 with
several state-of-the-art baseline methods: FLAT is consis-
tent with a common solution for multi-label classification
[43], which uses a sigmoid activation together with a cross-
entropy loss; FLAT-H is a widely applied technique [42]
to exploit hierarchical information; and FLAT-W mimics a
state-of-the-art approach [37] that uses ontology informa-
tion. We have also considered the applicability of other
state-of-the-art approaches to HMC. However, they are
not applicable, either because they cannot handle multiple
classes at the same level of the hierarchy [11], or because
they cannot handle the large number of over 20,000 classes
considered in our task [20]. As mentioned in Section 5.3,
our proposed approaches use the image encoder of the VLM
model pre-trained with BLIP descriptions optimized on the
ICARUS training set. The results are shown in Table 2.

On both test data sets we can see that the CAT approach
performs significantly better than all other baseline clas-
sification methods. Furthermore, the two best performing
approaches, Flat-H and CAT, are those that use masking
to optimize only the relevant parts of the Iconclass taxon-
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(a) 11HH(THERESA) (“the foundress of the reformed (Discalced) Carmelites, T(h)eres(i)a of Avila [...]”)

(b) 71B4 (“ story of the Tower of Babel (Genesis 11:1–9)”)

(c) 92D19217 (“Psyche performing various tasks set to her by Venus”)

Figure 6. Results of the CAT model on the ICARUS test set. For visualization, we randomly selected three Iconclass concepts with
AP > 0.5 and at least five images in the test set. The images are arranged in descending order of prediction probability. Green borders
indicate correctly classified images; red bordered images do not include the selected concept in their ground-truth annotations.

omy. This can probably be explained by the fact that some
of the images in the training set are not thoroughly labeled
and thus also show unlabeled concepts, leading to a worse
optimization for the other methods. We achieve promis-
ing results given the complexity of the task and the limited
amount of training data for some concepts. A qualitative
evaluation conducted with domain experts also showed that
our approach can be usefully applied in practice due to its
hierarchical architecture, since not only the prediction of the
finest level of hierarchical is relevant, but also the prediction
of concepts that are superordinate to this level. We see par-
ticular value in semi-automated use cases, where potentially
relevant concepts can be automatically recommended for an
image and then manually confirmed or refined by an expert.
Figure 6 illustrates some of the art-historical concepts that
were qualitatively analyzed: in addition to the narratives
of primarily Christian religion illustrated in Figure 6a and
Figure 6b, there are also those of classical mythology (Fig-
ure 6c). Visually striking iconographies, such as the story
of the Tower of Babel (Figure 6b), are reliably classified
by the CAT model with the corresponding Iconclass con-
cepts, regardless of the painting or printing technique used;
this is true for copper engravings as well as for illuminated
manuscripts. As shown in Figure 6a, the model occasion-
ally detects similarly predisposed compositions, even if they
are false positives. Further information about the qualitative
evaluation is given in the supplementary material.

6. Conclusions

In this paper, we have presented a novel approach for
Hierarchical Multi-label Classification (HMC) of icono-

graphic concepts. We have introduced three strategies for
automatically creating image descriptions to pre-train a
state-of-the-art Vision-Language Model (VLM) based on a
novel data set comprising 477,569 images for more than
20,000 unique iconographic concepts. Furthermore, we
proposed five classification approaches, including a novel
transformer decoder that leverages hierarchical knowledge
from the Iconclass taxonomy, which is the first decoder
adopted to the problem of multi-label classification. We
have demonstrated that our proposed solution benefits sig-
nificantly from the adoption of Iconclass’s structure: if a
concept situated at a lower hierarchy level is not detected,
the taxonomy allows for an upward traversal, facilitating the
identification of a related concept. This decisively increases
the potential usefulness of digital collections for research
and education in the visual arts.

In the future, we aim to extend our approach to other,
particularly non-western, taxonomies such as the Chinese
Iconography Thesaurus (CIT), as well as other hierarchical
multi-label classification tasks in Computer Vision (CV). It
would also be interesting to explore how simultaneous op-
timization of a VLM and a classifier, which are currently
trained separately in two stages, affects the performance.
Pre-training LLMs on captions for art-historical documents
for description generation is also worth investigating.
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